fundamentals of modern optics - iap.uni-jena.deof+modern+optics1427752800/... · script...

26
Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 1 Fundamentals of Modern Optics Winter Term 2014/2015 Prof. Thomas Pertsch Abbe School of Photonics Friedrich-Schiller-Universität Jena Table of content 0. Introduction ............................................................................................. 4 1. Ray optics - geometrical optics (covered by lecture Introduction to Optical Modeling) .............................................................................................. 17 1.1 Introduction ..................................................................................................... 17 1.2 Postulates ....................................................................................................... 17 1.3 Simple rules for propagation of light ............................................................... 18 1.4 Simple optical components ............................................................................. 18 1.5 Ray tracing in inhomogeneous media (graded-index - GRIN optics) .............. 22 Ray equation................................................................................................... 22 1.5.1 The eikonal equation ...................................................................................... 24 1.5.2 1.6 Matrix optics.................................................................................................... 25 The ray-transfer-matrix ................................................................................... 25 1.6.1 Matrices of optical elements ........................................................................... 25 1.6.2 Cascaded elements ........................................................................................ 26 1.6.3 2. Optical fields in dispersive and isotropic media ..................................... 27 2.1 Maxwell’s equations .................................................................................... 27 Adaption to optics ........................................................................................... 27 2.1.1 Temporal dependence of the fields................................................................. 30 2.1.2 Maxwell’s equations in Fourier domain ........................................................... 31 2.1.3 From Maxwell’s equations to the wave equation ............................................ 31 2.1.4 Decoupling of the vectorial wave equation...................................................... 32 2.1.5 2.2 Optical properties of matter............................................................................. 33 Basics ............................................................................................................. 34 2.2.1 Dielectric polarization and susceptibility.......................................................... 37 2.2.2 Conductive current and conductivity ............................................................... 38 2.2.3 The generalized complex dielectric function ................................................... 40 2.2.4 Material models in time domain ...................................................................... 44 2.2.5 2.3 The Poynting vector and energy balance........................................................ 45 Time averaged Poynting vector ...................................................................... 45 2.3.1 Time averaged energy balance ...................................................................... 47 2.3.2 2.4 Normal modes in homogeneous isotropic media ............................................ 49 Transversal waves .......................................................................................... 50 2.4.1 Longitudinal waves ......................................................................................... 51 2.4.2 Plane wave solutions in different frequency regimes ...................................... 52 2.4.3 Time averaged Poynting vector of plane waves ............................................. 57 2.4.4 2.5 Beams and pulses - analogy of diffraction and dispersion .............................. 57 Diffraction of monochromatic beams in homogeneous isotropic media .......... 59 2.5.1 Propagation of Gaussian beams..................................................................... 71 2.5.2 Gaussian optics .............................................................................................. 78 2.5.3 Gaussian modes in a resonator ...................................................................... 82 2.5.4 Pulse propagation ........................................................................................... 87 2.5.5

Upload: phungnhu

Post on 08-Apr-2018

233 views

Category:

Documents


1 download

TRANSCRIPT

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 1

Fundamentals of Modern Optics Winter Term 2014/2015

Prof. Thomas Pertsch Abbe School of Photonics

Friedrich-Schiller-Universität Jena

Table of content 0. Introduction ............................................................................................. 4 1. Ray optics - geometrical optics (covered by lecture Introduction to Optical

Modeling) .............................................................................................. 17 1.1 Introduction ..................................................................................................... 17 1.2 Postulates ....................................................................................................... 17 1.3 Simple rules for propagation of light ............................................................... 18 1.4 Simple optical components ............................................................................. 18 1.5 Ray tracing in inhomogeneous media (graded-index - GRIN optics) .............. 22

Ray equation ................................................................................................... 22 1.5.1 The eikonal equation ...................................................................................... 24 1.5.2

1.6 Matrix optics .................................................................................................... 25 The ray-transfer-matrix ................................................................................... 25 1.6.1 Matrices of optical elements ........................................................................... 25 1.6.2 Cascaded elements ........................................................................................ 26 1.6.3

2. Optical fields in dispersive and isotropic media ..................................... 27 2.1 Maxwell’s equations .................................................................................... 27

Adaption to optics ........................................................................................... 27 2.1.1 Temporal dependence of the fields ................................................................. 30 2.1.2 Maxwell’s equations in Fourier domain ........................................................... 31 2.1.3 From Maxwell’s equations to the wave equation ............................................ 31 2.1.4 Decoupling of the vectorial wave equation...................................................... 32 2.1.5

2.2 Optical properties of matter ............................................................................. 33 Basics ............................................................................................................. 34 2.2.1 Dielectric polarization and susceptibility.......................................................... 37 2.2.2 Conductive current and conductivity ............................................................... 38 2.2.3 The generalized complex dielectric function ................................................... 40 2.2.4 Material models in time domain ...................................................................... 44 2.2.5

2.3 The Poynting vector and energy balance........................................................ 45 Time averaged Poynting vector ...................................................................... 45 2.3.1 Time averaged energy balance ...................................................................... 47 2.3.2

2.4 Normal modes in homogeneous isotropic media ............................................ 49 Transversal waves .......................................................................................... 50 2.4.1 Longitudinal waves ......................................................................................... 51 2.4.2 Plane wave solutions in different frequency regimes ...................................... 52 2.4.3 Time averaged Poynting vector of plane waves ............................................. 57 2.4.4

2.5 Beams and pulses - analogy of diffraction and dispersion .............................. 57 Diffraction of monochromatic beams in homogeneous isotropic media .......... 59 2.5.1 Propagation of Gaussian beams ..................................................................... 71 2.5.2 Gaussian optics .............................................................................................. 78 2.5.3 Gaussian modes in a resonator ...................................................................... 82 2.5.4 Pulse propagation ........................................................................................... 87 2.5.5

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 2

2.6 (The Kramers-Kronig relation, covered by lecture Structure of Matter) ......... 100 3. Diffraction theory ................................................................................. 104

3.1 Interaction with plane masks ......................................................................... 104 3.2 Propagation using different approximations .................................................. 105

The general case - small aperture ................................................................ 105 3.2.1 Fresnel approximation (paraxial approximation) ........................................... 105 3.2.2 Paraxial Fraunhofer approximation (far field approximation) ........................ 106 3.2.3 Non-paraxial Fraunhofer approximation........................................................ 108 3.2.4

3.3 Fraunhofer diffraction at plane masks (paraxial) ........................................... 108 Fraunhofer diffraction pattern ........................................................................ 108 3.3.1

3.4 Remarks on Fresnel diffraction ..................................................................... 113 4. Fourier optics - optical filtering ............................................................. 114

4.1 Imaging of arbitrary optical field with thin lens .............................................. 114 Transfer function of a thin lens ...................................................................... 114 4.1.1 Optical imaging ............................................................................................. 115 4.1.2

4.2 Optical filtering and image processing .......................................................... 117 The 4f-setup .................................................................................................. 117 4.2.1 Examples of aperture functions .................................................................... 119 4.2.2 Optical resolution .......................................................................................... 120 4.2.3

5. The polarization of electromagnetic waves .......................................... 123 5.1 Introduction ................................................................................................... 123 5.2 Polarization of normal modes in isotropic media ........................................... 123 5.3 Polarization states ........................................................................................ 124

6. Principles of optics in crystals .............................................................. 126 6.1 Susceptibility and dielectric tensor ................................................................ 126 6.2 The optical classification of crystals .............................................................. 128 6.3 The index ellipsoid ........................................................................................ 129 6.4 Normal modes in anisotropic media .............................................................. 130

Normal modes propagating in principal directions ........................................ 131 6.4.1 Normal modes for arbitrary propagation direction ......................................... 132 6.4.2 Normal surfaces of normal modes ................................................................ 136 6.4.3 Special case: uniaxial crystals ...................................................................... 138 6.4.4

7. Optical fields in isotropic, dispersive and piecewise homogeneous media ........................................................................................................... 141 7.1 Basics ........................................................................................................... 141

Definition of the problem ............................................................................... 141 7.1.1 Decoupling of the vectorial wave equation.................................................... 142 7.1.2 Interfaces and symmetries ............................................................................ 143 7.1.3 Transition conditions ..................................................................................... 143 7.1.4

7.2 Fields in a layer system → matrix method .................................................... 144 Fields in one homogeneous layer ................................................................. 144 7.2.1 The fields in a system of layers ..................................................................... 146 7.2.2

7.3 Reflection – transmission problem for layer systems .................................... 148 General layer systems .................................................................................. 148 7.3.1 Single interface ............................................................................................. 154 7.3.2 Periodic multi-layer systems - Bragg-mirrors - 1D photonic crystals ............. 161 7.3.3 Fabry-Perot-resonators ................................................................................. 168 7.3.4

7.4 Guided waves in layer systems .................................................................... 174 Field structure of guided waves .................................................................... 174 7.4.1 Dispersion relation for guided waves ............................................................ 175 7.4.2 Guided waves at interface - surface polariton ............................................... 177 7.4.3 Guided waves in a layer – film waveguide .................................................... 179 7.4.4 how to excite guided waves .......................................................................... 183 7.4.5

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 3

8. Statistical optics - coherence theory .................................................... 186 8.1 Basics ........................................................................................................... 186 8.2 Statistical properties of light .......................................................................... 188 8.3 Interference of partially coherent light ........................................................... 190

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 4

0. Introduction • 'optique' (Greek) lore of light 'what is light'? • Is light a wave or a particle (photon)?

D.J. Lovell, Optical Anecdotes

• Light is the origin and requirement for life photosynthesis • 90% of information we get is visual

A) Origin of light • atomic system determines properties of light (e.g. statistics, frequency,

line width) • optical system other properties of light (e.g. intensity, duration, …) • invention of laser in 1958 very important development

Schawlow and Townes, Phys. Rev. (1958).

• laser artificial light source with new and unmatched properties (e.g. coherent, directed, focused, monochromatic)

• applications of laser: fiber-communication, DVD, surgery, microscopy, material processing, ...

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 5

Fiber laser: Limpert, Tünnermann, IAP Jena, ~10kW CW (world record)

B) Propagation of light through matter • light-matter interaction

effect dispersion diffraction absorption scattering ↓ ↓ ↓ ↓ governed by frequency spatial center of wavelength spectrum frequency frequency spectrum

• matter is the medium of propagation the properties of the medium

(natural or artificial) determine the propagation of light • light is the means to study the matter (spectroscopy) measurement

methods (interferometer) • design media with desired properties: glasses, polymers, semiconductors,

compounded media (effective media, photonic crystals, meta-materials)

Two-dimensional photonic crystal membrane.

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 6

C) Light can modify matter • light induces physical, chemical and biological processes • used for lithography, material processing, or modification of biological

objects (bio-photonics)

Hole “drilled” with a fs laser at Institute of Applied Physics, FSU Jena.

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 7

D) Optics in our daily life

A small story describing the importance of light for everyday life, where all

things which rely on optics are marked in red.

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 8

E) Optics in telecommunications • transmitting data (Terabit/s in one fiber) over transatlantic distances

1000 m telecommunication fiber is installed every second.

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 9

F) Optics in medicine, life sciences

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 10

G) Optical sensors and light sources • new light sources to reduce energy consumption

• new projection techniques

Deutscher Zukunftspreis 2008 - IOF Jena + OSRAM

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 11

H) Micro- and nano-optics • ultra small camera

Insect inspired camera system develop at Fraunhofer Institute IOF Jena

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 12

I) Relativistic optics

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 13

K) What is light? • electromagnetic wave propagating with speed of c= 3*108 m/s • leading to evolution of:

− amplitude and phase complex description − polarization vectorial field description − coherence statistical description

Spectrum of Electromagnetic Radiation

Region Wavelength (nanometers)

Wavelength (centimeters)

Frequency (Hz)

Energy (eV)

Radio > 108 > 10 < 3 x 109 < 10-5

Microwave 108 - 105 10 - 0.01 3 x 109 - 3 x 1012 10-5 - 0.01

Infrared 105 - 700 0.01 - 7 x 10-5 3 x 1012 - 4.3 x 1014 0.01 - 2

Visible 700 - 400 7 x 10-5 - 4 x 10-5 4.3 x 1014 - 7.5 x 1014 2 - 3

Ultraviolet 400 - 1 4 x 10-5 - 10-7 7.5 x 1014 - 3 x 1017 3 - 103

X-Rays 1 - 0.01 10-7 - 10-9 3 x 1017 - 3 x 1019 103 - 105

Gamma Rays < 0.01 < 10-9 > 3 x 1019 > 105

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 14

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 15

L) Schematic of optics

• geometrical optics

⋅ λ << size of objects → daily experiences ⋅ optical instruments, optical imaging ⋅ intensity, direction, coherence, phase, polarization, photons

• wave optics

⋅ λ ≈ size of objects → interference, diffraction, dispersion, coherence ⋅ laser, holography, resolution, pulse propagation ⋅ intensity, direction, coherence, phase, polarization, photons

• electromagnetic optics

⋅ reflection, transmission, guided waves, resonators ⋅ laser, integrated optics, photonic crystals, Bragg mirrors ... ⋅ intensity, direction, coherence, phase, polarization, photons

• quantum optics

⋅ small number of photons, fluctuations, light-matter interaction ⋅ intensity, direction, coherence, phase, polarization, photons

• in this lecture

⋅ electromagnetic optics and wave optics ⋅ no quantum optics subject of advanced lecture

geometrical optics

wave optics

electromagnetic optics

quantum optics

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 16

M) Literature • Fundamental

1. Saleh, Teich, 'Fundamenals of Photonics', Wiley, 1992 2. Mansuripur, 'Classical Optics and its Applications', Cambridge, 2002 3. Hecht, 'Optik', Oldenbourg, 2001 4. Menzel, 'Photonics', Springer, 2000 5. Lipson, Lipson, Tannhäuser, 'Optik'; Springer, 1997 6. Born, Wolf, 'Principles of Optics', Pergamon 7. Sommerfeld, 'Optik'

• Advanced 1. W. Silvast, 'Laser Fundamentals', 2. Agrawal, 'Fiber-Optic Communication Systems', Wiley 3. Band, 'Light and Matter', Wiley, 2006 4. Karthe, Müller, 'Integrierte Optik', Teubner 5. Diels, Rudolph, 'Ultrashort Laser Pulse Phenomena', Academic 6. Yariv, 'Optical Electronics in modern Communications', Oxford 7. Snyder, Love, 'Optical Waveguide Theory', Chapman&Hall 8. Römer, 'Theoretical Optics', Wiley,2005.

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 17

1. Ray optics - geometrical optics (covered by lecture Introduction to Optical Modeling)

The topic of “Ray optics – geometrical optics” is not covered in the course “Fundamentals of modern optics”. This topic will be covered rather by the course “Introduction to optical modeling”. The following part of the script which is devoted to this topic is just included in the script for consistency.

1.1 Introduction − Ray optics or geometrical optics is the simplest theory for doing optics. − In this theory, propagation of light in various optical media can be

described by simple geometrical rules. − Ray optics is based on a very rough approximation (λ→0, no wave

phenomena), but we can explain almost all daily life experiences involving light (shadows, mirrors, etc.).

− In particular, we can describe optical imaging with ray optics approach. − In isotropic media, the direction of rays corresponds to the direction of

energy flow. What is covered in this chapter?

− It gives fundamental postulates of the theory. − It derives simple rules for propagation of light (rays). − It introduces simple optical components. − It introduces light propagation in inhomogeneous media (graded-index

(GRIN) optics). − It introduces paraxial matrix optics.

1.2 Postulates A) Light propagates as rays. Those rays are emitted by light-sources and

are observable by optical detectors. B) The optical medium is characterized by a function n(r), the so-called

refractive index (n(r) ≥ 1 - meta-materials n(r) <0)

cnc

=n

cn – speed of light in the medium

C) optical path length ∼ delay i) homogeneous media

nl ii) inhomogeneous media

( )B

A

n ds∫ r

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 18

D) Fermat’s principle

( ) 0B

A

n dsd =∫ r

Rays of light choose the optical path with the shortest delay.

1.3 Simple rules for propagation of light A) Homogeneous media

− n = const. minimum delay = minimum distance − Rays of light propagate on straight lines.

B) Reflection by a mirror (metal, dielectric coating) − The reflected ray lies in the plane of incidence. − The angle of reflection equals the angle of incidence.

C) Reflection and refraction by an interface − Incident ray reflected ray plus refracted ray − The reflected ray obeys b). − The refracted ray lies in the plane of incidence.

− The angle of refraction θ2 depends on the angle of incidence θ1 and is

given by Snell’s law: 1 1 2 2sin sinn nθ = θ

− no information about amplitude ratio.

1.4 Simple optical components A) Mirror

i) Planar mirror − Rays originating from P1 are reflected and seem to originate from P2.

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 19

ii) Parabolic mirror − Parallel rays converge in the focal point (focal length f). − Applications: Telescope, collimator

iii) Elliptic mirror − Rays originating from focal point P1 converge in the second focal point

P2

iv) Spherical mirror − Neither imaging like elliptical mirror nor focusing like parabolic mirror − parallel rays cross the optical axis at different points − connecting line of intersections of rays caustic

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 20

− parallel, paraxial rays converge to the focal point f = (-R)/2 − convention: R < 0 - concave mirror; R > 0 - convex mirror. − for paraxial rays the spherical mirror acts as a focusing as well as an

imaging optical element. paraxial rays emitted in point P1 are reflected and converge in point P2

1 1 2( )1 2z z R

+ ≈−

(imaging formula)

paraxial imaging: imaging formula and magnification m = -z2 /z1 (proof given in exercises) B) Planar interface Snell’s law: 1 1 2 2sin sinn nθ = θ

for paraxial rays: 1 1 2 2n nθ = θ − external reflection ( 1 2n n< ): ray refracted away from the interface − internal reflection ( 1 2n n> ): ray refracted towards the interface − total internal reflection (TIR) for:

2 2π

θ = 2

1

sin sin nn

θ = θ =1 TIR

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 21

C) Spherical interface (paraxial)

− paraxial imaging

1 2 12 1

2 2

n n n yn n R

−θ ≈ θ − (*)

1 2 2 1

1 2

n n n nz z R

−+ ≈ (imaging formula)

1 2

2 1

n zmn z

= − (magnification)

(Proof: exercise) − if paraxiality is violated aberration − rays coming from one point of the object do not intersect in one point

of the image (caustic) D) Spherical thin lense (paraxial)

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 22

− two spherical interfaces (R1, R2, ∆) apply (*) two times and assume

y=const (∆ small)

2 1yf

θ ≈ θ − with focal length: ( )1 2

1 1 11nf R R

= − −

1 2

1 1 1z z f+ ≈ (imaging formula) 2

1

zmz

= − (magnification)

(compare to spherical mirror)

1.5 Ray tracing in inhomogeneous media (graded-index - GRIN optics) − ( )n r - continuous function, fabricated by, e.g., doping − curved trajectories graded-index layer can act as, e.g., a lens

Ray equation 1.5.1Starting point: we minimize the optical path or the delay (Fermat)

( ) 0B

A

n dsd =∫ r

computation:

( )

B

A

L n s ds= ∫ r

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 23

variation of the path: ( ) ( )s s+ dr r

( ) ( )

( ) ( ) ( )

2 2

2 2 2

grad

2

1 2

1

B B

A A

L nds n ds

n n

ds d d d

d d d d d

d dds dsds ds

d dds dsds ds

d ddsds ds

d = d + d

d = ⋅d

d = + d −

= + ⋅ d + d −

d≈ + ⋅ −

d ≈ + ⋅ −

d= ⋅

∫ ∫

r

r r r

r r r r r

r r

r r

r r

grad

grad

B

AB

A

d dL n n dsds ds

d dn n dsds ds

d d = ⋅ d + ⋅

= − ⋅ d

r rr

r r integration by parts and A,B fix

0Ld = for arbitrary variation

grad d dn nds ds =

r ray equation

Possible solutions: A) trajectory

x(z) , y(z) and ( ) ( )2 21ds dz dx dz dy dz= + +

− solve for x(z) , y(z) − paraxial rays (ds ≈ dz )

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 24

( )

( )

, ,

, ,

d dx dnn x y zdz dz dx

d dy dnn x y zdz dz dy

B) homogeneous media − straight lines

C) graded-index layer n(y) - paraxial, SELFOC

paraxial 1dydz and dz ds≈

( ) 22 2 20

220

1( ) 1 ( ) 12

n y n y n y yn = − α ⇒ ≈ −

α for 1a

( ) ( ) ( ) ( )2 2

2 2

1 ( )d dy d dy d y d y dn yn y n y n yds ds dz dz dz dz n y dy

≈ ≈ ⇒ =

for n(y)-n0<<1: 2

22

d y ydz

= −α

00

0 0

( ) cos sin

( ) sin cos

y z z z

dy

y

z y z zdz

= α + αα

θ = = − α α + θ α

θ

The eikonal equation 1.5.2− bridge between geometrical optics and wave − eikonal S(r) = constant planes perpendicular to rays − from S(r) we can determine direction of rays ∼ grad S(r) (like potential)

( ) ( )2 2S n= grad r r

Remark: it is possible to derive Fermat’s principle from eikonal equation − geometrical optics: Fermat’s or eikonal equation

( ) ( ) ( ) ( )gradB A

B B

A AS S S ds n ds− = =∫ ∫r r r r

eikonal → optical path length ∼ phase of the wave

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 25

1.6 Matrix optics − technique for paraxial ray tracing through optical systems − propagation in a single plane only − rays are characterized by the distance to the optical axis (y) and their

inclination (θ) two algebraic equation 2 x 2 matrix Advantage: we can trace a ray through an optical system of many elements by multiplication of matrices.

The ray-transfer-matrix 1.6.1

in paraxial approximation:

2 1 1

2 1 1

y Ay B

Cy D

= + θ

θ = + θ 2 1

2 1

y yA B A BC D C D

= → = θ θ

M

A=0: same 1θ same y2 focusing D=0: same 1y same 2θ collimation

Matrices of optical elements 1.6.2A) free space

10 1

d =

M

B) refraction on planar interface

Script Fundamentals of Modern Optics, FSU Jena, Prof. T. Pertsch, FoMO_Script_2014-10-19s.docx 26

1 2

1 00 n n

=

M

C) refraction on spherical interface

( )2 1 2 1 2

1 0n n n R n n

= − −

M

D) thin lens

1 01 1f

= −

M

E) reflection on planar mirror

1 00 1

=

M

F) reflection on spherical mirror (compare to lens)

1 02 1R

=

M

Cascaded elements 1.6.3

1 1

1 1

N

N

y yA B A BC D C D

+

+

= → = θ θ

M M=MN….M2M