1. fundamentals of ultrafast optics and...

42
1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy 3. Time-resolved spectroscopy Femtsecond pulse generation: active and passive mode-locking, ultrafast amplifiers Laser Raman/Raleigh, multi-photon excitation spectroscopy; SWCNs Today Today Jigang Wang, Feb, 2009

Upload: others

Post on 28-Jun-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

1. Fundamentals of ultrafast optics and lasers

2. Laser-based static spectroscopy

3. Time-resolved spectroscopy

Femtsecond pulse generation: active and passive mode-locking, ultrafast amplifiers

Laser Raman/Raleigh, multi-photon excitation spectroscopy; SWCNs

Ultrafast incoherent & coherent transient, magneto-optical, infrared & time-domain THz

SWCNs, (Ga,Mn)As, HTc superconductors

Today Today

Jigang Wang, Feb, 2009

Page 2: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

A A femtosecondfemtosecond laser oscillator laser oscillator

Page 3: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

Higher IntensitiesHigher Intensities

Rep rate (pps)

Puls

e en

ergy

(J)

10910610310010-3

10-9

10-6

100

10-3

Oscillator

Cavity-dumped oscillator

RegA

Regenerative

Regen + multipass

Regen + multi-multi-pass

1 W average power

Francois Salin, CELIA, France

Ultrafast am

plifiers

Page 4: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

Ultrafast AmplifierUltrafast Amplifier

Pulse compressor

t

t

Solid state amplifiers

t

Dispersive delay linet

Short pulse

oscillator

Regenerative amplifier scheme

Page 5: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

Regenerative Regenerative amplifieramplifier

Page 6: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

Ultrafast AmplifiersUltrafast Amplifiers

PC1

PC2WP

Rod TFP

TFPSeed input

M1

M2

Before injection

Intra-cavity components:M1, M2 : End mirrors Rod : Ti:Sapphire rod WP : ¼ Waveplate TFP : Thin Film PolarizerPC2 : Pockels Cell

Only the pulse to be amplified enters the cavity

Page 7: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

Ultrafast AmplifiersUltrafast Amplifiers

Intra-cavity components:M1, M2 : End mirrors Rod : Ti:Sapphire rod WP : ¼ Waveplate TFP : Thin Film PolarizerPC2 : Pockels Cell

PC1

PC2WP

Rod TFP

TFPSeed input

M1

M2

Regen operation: pulse injection

V1=Vλ/2

V2=Vλ/4

Pulse is injected using the external Pockels cell PC1.Pulse is trapped using the internal Pockels cell PC2.

Page 8: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

Intra-cavity components:M1, M2 : End mirrors Rod : Ti:Sapphire rod WP : ¼ Waveplate TFP : Thin Film PolarizerPC2 : Pockels Cell

PC1

PC2WP

Rod TFP

TFPSeed input

M1

M2

Regen operation: pulse ejection

V2=Vλ/4

output

V2=0

:internal Pockels cell PC2 is turned off

Page 9: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

The worldThe world’’s largest lasers largest laserAlmost 10 years journey, due next month!

192 shaped pulses; 1.8 MJ total energy

National Ignition Facility(LLNL)

Page 10: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

Lasers as spectroscopy light sources Lasers as spectroscopy light sources

1. Static spectroscopy using CW lasers

2. Static spectroscopy using ultrashort pulsed lasersLaser Raman/Raleigh scattering, multi-photon excitation Spectroscopy; SWCNs

Page 11: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

Laser scattering experiment Laser scattering experiment -- basics basics

Excitation laser

Scattered light

Basic Instrumentation:

– Illuminate a sample with laser light (e.g. 532nm, 780nm)

– Scattered (no absorbed) light in two forms – collection and spectrally resolved detection

• Elastic (Rayleigh) → λscattered = λincident

• Inelastic (Raman) → λscattered ≠ λincident

Photon energy ωp

0

30

50

60

Inte

nsity

I s

Spectrally-resolved detection

RayleighRaman Raman

ωe

Page 12: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

Laser Rayleigh and Raman scatteringLaser Rayleigh and Raman scattering

tIRωααα sin10 +=

tEE eωααµ sin0==

])cos()[cos(2

1sin 010 ttEtE IReIRee ωωωωαωαµ +−−+=

Induces polarization P = N0µ oscillates at three frequencies!

Induced dipole Polarizability Incoming field

ωIR

ωe ωs

ωIR

ωe ωs

ωIR

ωs

E1

E2

VirtualState

Rayleigh Stokes Raman Anti-Stokes Raman

Page 13: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

Signals from the scattering experimentsSignals from the scattering experiments

• Spectrum – ωIR can be molecular vibrationsand low energy collective excitations such as

phonons, magnons, plasmons, spin flip transitions…

• Scattered intensity – ~ 0.1 part per million photons

• Cross section – ~ 10-30 cm2

R

θ462

2

24

2

2

0 )2

()2

1()

2(

2

cos1 −∝+−+= λ

λπθ d

n

n

RII

22

2

4

65

)2

1(

3

2

+−=

n

nds λ

πσ ωσ h/0 sph IN =

Page 14: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Reman/Rayleigh scattering – a net change in polarizability

Absorption, FTIR – a net change in dipole moment,

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

The origin of polarizabilityThe origin of polarizability

Tendency of charge distribution or wave function of a dipole to be distorted by local E field, i.e.,

Lex ENE 00 /χεα = χ: electrical susceptibility0/ ≠dtdα

oC

o oC

o oC

o0/ ≠dtdµ

Page 15: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

Selection rules: Raman vs. IRSelection rules: Raman vs. IR

ωe ωs

ωIR

ωe ωs

E1

Rayleigh Stokes Raman

V

)(),()( 0 ises EP ωωωχεω =

11),( EVVEse MM →→∝ωωχ

E2

E1

M is dipole transition element, e.g., where η is along E filed ><=→ irfM fi .η

21),( EVVEse MM →→∝ωωχ

ωe

IR absorptionE2

E1

One-photon

21)( EEe M →∝ωχ

Multi-photon, e.g., twophoton

1221

),(

EEEVVE

ee

MMM →→→∝ωωχ

Page 16: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

SingleSingle--wall carbon nanotubeswall carbon nanotubes

Metallic Semiconducting

Ch = na + mb

n – m = 3M + ν

1) M = ν = 0

2) M ≠ 0, ν = 0

3) M ≠ 0, ν = ±1

Metal

Narrow Gap Semicond.

Large Gap Semicond.

Page 17: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

Example: Laser Raman in SWCNsExample: Laser Raman in SWCNs

“Dark-field Spectroscopy”

1. Presence of nanotubes 2. Orientation of isolated tubes or aligned samples3. Diameters of carbon nanotubes:4. Mechanical strain

Raman Intensity vs. shift

Page 18: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

Rayleigh scatterings in individual SWCNsRayleigh scatterings in individual SWCNs

In-situ CVD growthacross etched slit

Rayleigh Spectra

Energy (eV)

Heinz, Brus, Colombia Univ

Page 19: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

MultiMulti--photon Excitation Spectroscopy in SWCNsphoton Excitation Spectroscopy in SWCNs

α

1s

2p

Eg

Heinz, Brus, Colombia Univ

Page 20: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Motivations and basic schemes

Transient transmission and reflection spectroscopy

Ultrafast magneto-optical spectroscopy

Ultrafast mid-infrared/THz spectroscopy

Coherent transient spectroscopy

Examples

1. Time-resolved (ultrafast) laser spectroscopy

TodayToday’’s Lectures Lecture

Jigang Wang, Feb, 2009

Page 21: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, http://www.cmpgroup.ameslab.gov/ultrafast/

TimeTime--resolved laser spectroscopy: whyresolved laser spectroscopy: why

Ultra-fast

Ultra-broadband

Ultra-intensive

Manipulation

Fundamental time scales for key microscopic interactions

Energy scales of important collective excitations

Searching for new regimes of condensed matter physics

A new paradigm for condensed matter physics

Page 22: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Fundamental time scales in condensed matterFundamental time scales in condensed matter

Jigang Wang, Feb, 2009

10-9 s = 1 ns

10-12 s = 1 ps

10-15 s = 1 fs

Time

carrier recombination(100ps-1ns)

carrier cooling (1-100ps)e-acoustic phonon (1-100 ps)

e-opitcal phonon scattering (<1 ps)e-hole scattering (<1 ps)

h-optical phonon scattering (100 fs)e-e scattering (10 fs)

e correaltion time (<1 fs)

Electronic Magnetic (Atomic) Structural

Spin precession, dampingin in FM(100 ps-10ns)

Spin-phonon (1-100ps)Spin precession in AFM (1-100ps)

Spin-orbit (10 fs)Spin-spin exchange(1 fs)

vibration period (100 fs)

ultrafast chemical/biological reactions

Ultrafast melting(1-100 ps)

Rotations of Molecules (1ns)

Page 23: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Fundamental energy scales in condensed matterFundamental energy scales in condensed matter

Jigang Wang, Feb, 2009

3 eV

Energy

1 eV

100 meV X

0 meV

Mott gap, charge-transfer gap (1-3 eV)

Interband transition in most semiconductors (400 meV – 2 eV)Multi-phonons and multi-magnons (50-500 meV)

Intra-exciton trainsiton in semiconducting SWCNs(150 meV - 300 meV)

Polarons (20-300 meV)

Pseudogap excitation (30-300 meV) Optical phonons (40-70 meV)Magnons (10- 40 meV)

Superconduting gap (1-40 meV)

Page 24: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

Ultrafast laser spectroscopy: schemes Ultrafast laser spectroscopy: schemes

The most commonly used geometry is “pump and probe”.

It usually involves exciting the medium with one (or more) ultrashort laser pulse(s) and probing it a variable delay later with another.

E

K

Ultrafast excitation –Highly non-equilibrium state

Time-delayed probe –build-up of transient state

and recovery of the ground state

Page 25: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

Ultrafast laser spectroscopy: how Ultrafast laser spectroscopy: how

∆t

10 fs – 100 fs

k2

DetectorSpectrometer

k1TimeTime

SignalSignal

∆∆tt = = --100 fs100 fs ∆∆tt = 0 fs= 0 fs ∆∆tt = 100 fs= 100 fs

λλ λλλλ

Sub-10 fs, sub-1 nm, B field up to 10T, Low temperature

down to 1.2K

Page 26: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

Ultrafast laser spectroscopy: types Ultrafast laser spectroscopy: types

∆t

T

2k2-k1

k1

R

EEUltrafast incoherent Spectroscopy: Transient reflection/transmission

Ultrafast mid-infrared

Ultrafast THz Spectroscopy

Ultrafast magneto-optical

Coherent transient spectroscopy

Page 27: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

Ultrafast laser spectroscopy: signalsUltrafast laser spectroscopy: signals

TransmissionTransmission

ReflectionReflection

EmissionEmission

Signals -> M, p, σ, χ(2) , χ(3) ...

Absorption

magnetization, conductivity, electrical polarization, 2nd and 3rd order nonlinearity……

Page 28: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Let the unexcited medium have an absorption coefficient, α0.Immediately after excitation, the absorption decreases by ∆α0.

∆α(τ) = ∆α0 exp(–τ /τex) for τ > 0

where τ is the delay after excitation, and τex is the excited-state lifetime.

So the transmitted probe-beam intensity—and hence pulse energy and average power—will depend on the delay, τ, and the lifetime, τex:

Itransmitted(τ) = Iincident exp–[α0 – ∆α0exp(–τ /τex)]L where L = sample length

= Iincident exp–α0L exp∆α0exp(–τ /τex)L

≈ [ Iincident exp–α0L] 1+∆α0exp(–τ /τex)L assuming ∆α0 L << 1

≈ Itransmitted(0−) 1+∆α0exp(–τ /τex)L

Jigang Wang, Feb, 2009

Ultrafast laser spectroscopy: modelingUltrafast laser spectroscopy: modelingExample: transient transmission

Page 29: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

Ultrafast laser spectroscopy: modelingUltrafast laser spectroscopy: modelingExample: transient transmission

∆T(τ) /T0 = [Itransmitted(τ) – Itransmitted(0−)] /Itransmitted(0−)

The relative change in transmitted intensity vs. delay, τ, is:

Cha

nge

in p

robe

-be

am in

tens

ity

Delay, τ0

Itransmitted(τ) ≈ Itransmitted(0−) 1+∆α0exp(–τ /τex)L

∆T(τ) /T0 ≈ ∆α0 exp(–τ /τex)L

InGaAs

Page 30: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

Example: transient transmission in LT InGaAs

-0.8

-0.4

0.0

0.4

0.8

∆R/R

(%

)

20016012080400

Time Delay (ps)

-0.8

-0.4

0.0

0.4

∆R/R

(%

)

100Time Delay (ps)

InGaMnAs/InGaAsT= 20K

Ultrafast carrier dynamicsUltrafast carrier dynamics

Pump: 2 µmProbe: 775 nm

1. Initial drop in reflectivity

2. Very rapid rise (~2 ps) + sign change

3. Periodic oscillations(~ 23 ps)

4. Very slow decay(100’s of ps)

Page 31: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

Carrier trapping: two regimesCarrier trapping: two regimes

V.B

C.B

As+Ga

Antisite

Ga Vacancies

As0Ga

Antisite

(1) carrier trapping by mid- bandgapdefects (~2 ps)

(2) reexcitation and recombination of trapped carriers

-6

-4

-2

0

2

103 *∆

R/R

3210-1Time delay [ps]

(1)

(2)

Page 32: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

-1.0

-0.5

0.0

0.5

1.0

∆R/R

(%

)

1208040Time Delay (ps)

650nm

775nm

850nm

Propagating coherent acoustic phonons Propagating coherent acoustic phonons

EF

~100 fs

Phonon package

Cs

InAs GaSb

Page 33: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

Ultrafast MagnetoUltrafast Magneto--optical Spectroscopyoptical Spectroscopy

Magnetic IonsMagnetic Ions

CarriersCarriers

ExcitationExcitation

Detection Detection kθ

M

fs- & vectorially resolved Magnetization dynamics at H < 8.0 T and T > 1.5K

Page 34: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

Transient Demagnetization in Transient Demagnetization in InMnAsInMnAs

0.4

0.2

0.0

− ∆θ

K /θ

K

1 10 100 1000Time Delay (ps)

(1) (2) (4)(3)

-∆M

/MSpin-spin Spin-phonon Heat diffusion

Page 35: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

Ultrafast Rotation in Ultrafast Rotation in GaMnAsGaMnAs

-80

-60

-40

-20

0

20

∆θ k

(µr

ad)

8006004002000Time Delay (ps)

30

20

10

0

∆θ k

(µr

ad)

3.02.01.00.0-1.0Time Delay (ps)

Y+(0)

|B|=0T, T = 5K

Page 36: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

-10

1

-8-6

-4-2

02

-1

0

1

∆Mz (10 -5

rad)

∆My (10

-5 )

∆Mx (10

-5 )

Z (001)

X (110)

Y (1-10)

(100)MHA

3.1 eV ~ 120 fs

Ultrafast Rotation in Ultrafast Rotation in GaMnAsGaMnAs

-10

-8

-6

-4

-2

0

∆M

z (1

0-5 ra

d)

-1.0 0.0 1.0

∆My (10-5 )

-1.5

-1.0

-0.5

0.0

0.5

1.0 ∆

My

(10-5

)

-1.5 -1.0 -0.5 0.0 0.5 1.0

∆Mx (10-5 )

-10

-8

-6

-4

-2

0

∆M

z (1

0-5 ra

d)

-1.5 -1.0 -0.5 0.0 0.5 1.0

∆Mx (10-5 )

9.3 ps

Page 37: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Amplitude Amplitude andand Phase informationPhase informationReal & Imaginary Part of Real & Imaginary Part of σσ((ωω), ), εε((ωω))

( ) ωωω σ ω

≡ ≈+ + 0

( ) 2( ) 1 ( )

OUT

IN S

Et

E n d Z

Complex transmission coefficientComplex transmission coefficient

( )tE t( )iE t

thin filmthin film

FieldField--resolved Detectionresolved Detection

1 THz = 300 µm = 33 cm-1 = 4.1 meV

ZnTe

ETHz(t) ∝dt2

d2P(t)

near-IR pulse

nonlinear crystal(ZnTe)

Jigang Wang, Feb, 2009

Optical Pump and THz probeOptical Pump and THz probe

Page 38: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

THz probes of THz probes of excitonexciton formation and ionization formation and ionization ∆σ

1(Ω

-1cm

-1) 20

10

∆t (ps)

0

100

200

300

Photon Energy (meV)

0

4 8 4 8

4 8

TL = 6 K 30 K 60 K

T = 6 K T = 6 K ⇒⇒ recombinativerecombinativepopulation decaypopulation decay

High THigh TLL: : ee--hh pairs become conductingpairs become conducting

ExcitonicExcitonic component remainscomponent remains

⇒⇒ excitonexciton ionization (via phonons)ionization (via phonons)

Page 39: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Quantum beatQuantum beat detected by 3detected by 3--Pulse fourPulse four--wavewave--mixingmixing

k2

k3

k1

k1+k2- k3

Δt12

Coherent transient Spectroscopy Coherent transient Spectroscopy

Page 40: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

LL0

LL1ћωcE

ner

gy

Optical excitation mostly on LL1

The LL0 signal is small in comparison to LL1, but with strong oscillations

LL1 signal – no clear oscillations.

Quantum Beats of 2D MagnetoQuantum Beats of 2D Magneto--excitonsexcitons

Page 41: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Coherent Quantum Beats Coherent Quantum Beats

+k2 +k1-k3

∆t12

ks

ω1 phase accumulated

+k2+k1

-k3

∆t12

ks

ω0 phase accumulated

•• k2 create dipole k2 create dipole coherence , k1 & k3 coherence , k1 & k3 probesprobes

•• The oscillations of The oscillations of ΩΩ00--ΩΩ1 will decay as 1 will decay as ΓΓ0+0+ΓΓ1 1

Page 42: 1. Fundamentals of ultrafast optics and laserscanfield.physics.iastate.edu/course/EM2_16and17.pdf · 1. Fundamentals of ultrafast optics and lasers 2. Laser-based static spectroscopy

Jigang Wang, Feb, 2009

Other ultrafast spectroscopic techniquesOther ultrafast spectroscopic techniques

Photon Echo, three pulse photon-echo peak shift

Heterodyne detected four-wave mixing

Transient grating spectroscopy,

Transient Coherent Raman Spectroscopy

Ultrafast electron scattering,

ultrafast X-ray scattering/absorption

Transient Surface SHG Spectroscopy

Transient photo-emission Spectroscopy

Time-resolved fluoresce spectroscopy

Heterodyned ultrafast polarization spectroscopy

……

Almost any physical effect that can be induced and thereby

probed by ultrashort light pulses!