frequency domain analysis in ls-dyna_yun huang_jan-2013

80
LS-DYNA Frequency Domain Analysis in LS-DYNA ® Yun Huang, Zhe Cui Livermore Software Technology Corporation 16 January , 20 13 Oasys LS-DYNA UK Users’ Meeting, Solihull 

Upload: puneetbahri

Post on 02-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 1/80

LS-DYNA

Frequency Domain Analysis

in LS-DYNA®

Yun Huang, Zhe Cui

Livermore Software Technology Corporation

16 January, 2013

Oasys LS-DYNA UK Users’ Meeting, Solihull 

Page 2: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 2/80

LS-DYNA

2

Outline

1. Introduction

2. Frequency response functions

3. Steady state dynamics

4. Random vibration and fatigue5. Response spectrum analysis

6. Acoustic analysis by BEM and FEM

7. Conclusion and future developments

Page 3: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 3/80

LS-DYNA

INTRODUCTION

1.

3

Page 4: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 4/80

LS-DYNA

4

*FREQUENCY_DOMAIN_FRF

*FREQUENCY_DOMAIN_SSD

*FREQUENCY_DOMAIN_RANDOM_VIBRATION_ {OPTION}  

*FREQUENCY_DOMAIN_ACOUSTIC_BEM_ {OPTION}

*FREQUENCY_DOMAIN_ACOUSTIC_FEM*FREQUENCY_DOMAIN_RESPONSE_SPECTRUM

Frequency Domain Features in LS-DYNA

New keywo rds for frequency domain analysis

Page 5: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 5/80

LS-DYNA

5

Frequency domain v s. t ime domain

 A time-domain graph shows how a signal changes over time

 A frequency-domain graph shows the distribution of the energy

(magnitude, etc.) of a signal over a range of frequencies

Time domain analysis 

 Transient analysis (penetration)

 Impact (crash simulation) Large deformation (fracture)

 Non-linearity (contact)

Frequency domain analysis

 Harmonic (steady state vibration)

 Resonance Linear dynamics

 Long history (fatigue testing)

 Non-deterministic load (random analysis)

Page 6: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 6/80

LS-DYNA

6

Time domain excitation  Frequency domain excitation 

Fourier Transform

 A given function or signal can be converted between the time and frequency

domains with a pair of mathematical operators called a transform. 

  dt et h H    t i   )()(

     

  d e H t h   t i)(2

1)(

Inverse Fourier

Transform

Page 7: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 7/80

LS-DYNA

7

Vehicle NVH• Interior noise

• Exterior radiated noise

• Vibration

Vehicle Durability

• Cumulative damage ratio• Expected life (mileage)

 Aircraft / rocket / spacecraft vibro-acoustics

Durability analysis of machines and electronic devices

 Acoustic design of athletic products

Civil Engineering•  Architectural acoustics (auditorium, concert hall)

• Earthquake resistance

Off-shore platforms, wind turbine, etc.• Random vibration

• Random fatigue

App l icat ions o f the frequency domain features

Page 8: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 8/80

LS-DYNA

8

App l icat ion of LS-DYNA in automot ive industry  

In automotive, one model for crash, durability, NVHshared and maintained across analysis groups

Manufacturing simulation results from LS-DYNA

used in crash, durability, and NVH modeling.

Crashworthiness

Occupant Safety

NVH

Durability

Page 9: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 9/80

LS-DYNA

9

New Databases in Frequency Domain

Keyword *DATABASE_FREQUENCY_BINARY _{OPTION}

Database lspcode used for

D3SSD 21 Steady state dynamics

D3SPCM 22 Response spectrum analysis

D3PSD 23 Random vibration

D3RMS 24 Random vibration

D3FTG 25 Random fatigue

D3ACS 26 FEM acoustics

 ASCII databases 

FRF: frf_amplitude, frf_angle, frf_real, frf_imag

BEM acoustics: Press_Pa, Press_dB, bepres, fringe_*,

panel_contribution_NID,

SSD: elout_ssd, nodout_ssd, … 

BINARY databases 

Page 10: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 10/80

LS-DYNA

FREQUENCY RESPONSE FUNCTIONS

2

10

Page 11: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 11/80

LS-DYNA

o The concept of Frequency Response Function is the foundation of modern

experimental system analysis and experimental modal analysis

o Keyword *FREQUENCY_DOMAIN_FRF

o Express structural response due to unit load as a function of frequency

o Shows the property of the structure system

o Is a complex function, with real and imaginary components. They mayalso be represented in terms of magnitude and phase angle

o Result files: frf_amplitude, frf_angle

o Support efficient restart

11

Transfer functionH(ω)

Input force 

F(ω) 

Displacement response 

X(ω) 

Introduction: FRF

ωFωHωX      

ωF

ωXωH  

Page 12: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 12/80

LS-DYNA

12

 Accelerance, Inertance Acceleration

Force

Effective MassForce

 Acceleration

Mobility VelocityForce

ImpedanceForce

Velocity

Dynamic Compliance,

 Admittance, Receptance

Displacement

Force

Dynamic StiffnessForce

Displacement

FRF formulat ions

Page 13: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 13/80

Page 14: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 14/80

LS-DYNA

14

Point A

Point B

Mode Damping ratio (0.01)

1 0.450

2 0.713

3 0.386

4 0.328

5 0.3406 0.624

7 0.072

8 0.083

Page 15: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 15/80

LS-DYNA

15

Example: nodal force/resul tant force

Left end of the beam is fixed and subjected

to z-directional unit acceleration

Nodal force and resultant force FRF at the

left end can be obtained

Resultant force FRF

Page 16: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 16/80

LS-DYNA

16

 Nodal force applied and

displacement measuredExample: FRF for a tr immed BIW

Page 17: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 17/80

LS-DYNA

STEADY STATE DYNAMICS

3

17

Page 18: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 18/80

LS-DYNA

18

Harmonic excitation is often encountered in engineering systems. It is

commonly produced by the unbalance in rotating machinery.

The load may also come from periodical load, e.g. in fatigue test.

The excitation may also come from uneven base, e.g. the force on tires

running on a zig-zag road.

May be called as o Harmonic vibration

o Steady state vibration

o Steady state dynamics

Keyword *FREQUENCY_DOMAIN_SSD

Binary plot file d3ssd 

)(sin)( 0         t  F t  F 

Background

Introduction: SSD

Page 19: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 19/80

LS-DYNA

19

Example: a rectangular plate under pressure

X-Stress

Page 20: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 20/80

LS-DYNA

20

Enforced Motion

Relat ive disp lacement method

o base acceleration loading is applied through

inertial force.

o total displacement (velocity, acceleration) is

obtained by adding the relative displacement

(velocity, acceleration) to the base

displacement (velocity, acceleration).

baserelative

baserelative

baserelative

uuu

uuu

uuu

Large mass method

o a very large mass mL, which is usually 105-107 

times of the mass of the entire structure, is

attached to the nodes under excitation

o a very large nodal force pL is applied to the

excitation dof to produce the desired enforced

motion. um p

umi p

um p

 L L

 L L

 L L

 

Page 21: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 21/80

LS-DYNA

21

o the rectangular plate is excited by z -

direction acceleration at one end

o

steady state response at the other endis desired

o the excitation points are fixed inloading dof

o the resulted response is added

with base motion to get total

response

o a large mass with 106 times the originalmass is added to excitation points using

keyword *element_mass_node_set

o to produce desired acceleration, nodal

force is applied to the nodes in loading dof

o

the excitation points are free in loading dof

Relat ive disp . method Large mass method

Page 22: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 22/80

Page 23: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 23/80

LS-DYNA

23

Example: auto model subjected to base acl.

Modal information

Number of nodes:  290k

Number of shells:  532k

Number of solids:  3k

Base acceleration spectrum is applied to

shaker table. 500 modes up to 211 Hz are

used in the simulation. The response is

computed up to 100 Hz.

Point A Point B 

Page 24: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 24/80

LS-DYNA

24

Freq = 15 Hz  Freq =25 Hz 

Freq = 35 Hz 

Page 25: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 25/80

Page 26: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 26/80

LS-DYNA

26

o The loading on a structure is not known in a definite sense

oMany vibration environments are not related to a specific driving frequency

(may have input from multiple sources)

oProvide input data for random fatigue and durability analysis

oExamples:

Fatigue

Wind-turbine

 Air flow over a wing or past a car body

 Acoustic input from jet engine exhaust

Earthquake ground motion Wheels running over a rough road

Ocean wave loads on offshore platforms

Freq (Hz)

   A  c  c  e   l  e  r  a   t   i  o  n     P      S     D 

   (  g   ^   2   /   H  z   )

Freq (Hz)

   S   P   L   (   d   B   )

Loading: PSD or SPL  

Why we need random vibration analysis?

 

  

 

2,

2

df   f  

df   f  

Introduction: Random Vibration

Based on Boeing’s N -FEARA package 

Page 27: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 27/80

LS-DYNA

27

Card 5 1 2 3 4 5 6 7 8

Variable SID STYPE DOF LDPSD LDVEL LDFLW LDSPN CID

Type I I I I I I I I

Default

 Keyword  

*FREQUENCY_DOMAIN_RANDOM_VIBRATION  

The multiple excitations on structure can be

• uncorrelated

•  partially correlated

• fully correlated

(cross PSD function needed)

When SID and STYPE are both < 0, they give the IDs of correlated

excitations

Correlat ion of m ult ip le exci tat ions

Page 28: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 28/80

LS-DYNA

The model is a simple pipe with 83700 elements and 105480 nodes. It is subjected to base

acceleration PSD 1) in x, y and z-directions uncorrelated; 2) in x, y and z-directions correlated.

28

RMS of Von Mises stress(the pipe is subject to x, y, z excitations, uncorrelated)

Example: pipe under base acceleration

Model provided by Parker Hannifin Corp.

 ANSYS  LS-DYNA 

Freq

(Hz)

Acceleration

psd (g^2/Hz)

5 0.01

40 0.01

100 0.04

500 0.041000 0.0065

2000 0.001

Max Von Mises RMS stress (MPa)

ANSYS LS-DYNA

99.4 100.7

Page 29: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 29/80

LS-DYNA

29

RMS of Von Mises stress(the pipe is subject to x, y, z excitations, correlated)

 ANSYS  LS-DYNA 

Max Von Mises RMS stress (MPa)

ANSYS LS-DYNA

140.3 142.4

Page 30: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 30/80

LS-DYNA

30

The tube was fixed to the shaker tables using

aluminum blocks which surrounded the tube

and were tightened using screws.

Shaker table A Shaker table B

CH 6

CH 3 CH 7 CH 5CH 1

x

y

z

CH 1

Tube thickness = 3.3 mm

Example: shaker table

Cou rtesy of Rafael, Israel.

Base accelerat ion PSD load

Page 31: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 31/80

LS-DYNA

31

Page 32: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 32/80

LS-DYNA

32

GRMS=1.63 g^2/Hz 

Hz  g^2/Hz 

10  0.001 

20  0.003 

40  0.003 

80  0.02 

120  0.02 

200  0.0015 

500  0.0015 

Input PSD

 A cluster server is analyzed

by LS-DYNA to understandthe location of vibration

damage under standard

random vibration condition. 

Example: cluster server

Page 33: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 33/80

LS-DYNA

33

1σ  3σ 

U (mm)  0.78 2.34

Sv-m (MPa)  41.2  123.6 

   D   i  s  p   l  a  c  e  m  e  n   t

   S   t  r  e  s  s

It is found that the 3 

Von-Mises stress is less

than the yield stress of

the material (176 Mpa).

Maximum values

Page 34: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 34/80

LS-DYNA

34

 Nodes: 800k

Elements: 660k

Modes: 1000

Model courtesy of Predict ive Engineering

MPP Random Vibration Analysis

Page 35: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 35/80

LS-DYNA

35

• Keyword *FREQUENCY_DOMAIN_RANDOM_VIBRATION_FATIGUE

• Calculate fatigue life of structures under random vibration• Based on S-N fatigue curve

• Based on probability distribution & Miner’s Rule of Cumulative DamageRatio

• Schemes:

Steinberg’s Three-band technique considering the number of stress cyclesat the 1  , 2  , and 3  levels.

 Dirlik method based on the 4 Moments of PSD.

 Narrow band method

Wirsching method

… 

Introduction: Random Fatigue

i   i

i N 

n R

PDF( probability density function)

Typical SN (or Wöhler) curve

Page 36: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 36/80

LS-DYNA

36

S-N fatigue curve definition

• By *define_curve 

• By equation

aS  N    m

)log()log(   N baS   

SNLIMT   Fatigue life for stress lower than the lowest stress on S-N curve.

 EQ.0: use the life at the last point on S-N curve

 EQ.1: extrapolation from the last two points on S-N curve

 EQ.2: infinity.

• Fatigue life of stress below fatigue threshold

Source of information: http://www.efunda.com

 N: number of cycles for fatigue failure

S: stress

Page 37: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 37/80

LS-DYNA

37

Steinberg’s Three Band Technique 

Standard Deviation Percentage of Occurrence Number of cycles for failure

1σ stress  68.3% N1

2σ stress  27.1% N2

3σ stress  4.33% N3

3

3

2

2

1

1][ N n

 N n

 N n D E   

0433.0)0(

271.0)0(

683.0)0(

3

2

1

T  E n

T  E n

T  E n E(0): Zero-crossing frequency with

 positive slope

Reference

Steinberg, D.S., Vibration Analysis for Electronic Equipment (2nd edition), John Wiley & Sons, New

York, 1988.

Page 38: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 38/80

LS-DYNA

38

Time of exposure: 4 hours

Frequency (Hz)

   P   S   D     (

   g   2    /   H   z

    )

Z-acceleration PSD

PSD = 2 g2/Hz

100.0 2000.0

Example: Aluminum bracket

0

5

10

15

20

25

30

35

40

45

50

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

No. of cycles

   S   t  r  e  s  s   (   K  s   i   )

S-N fatigue curve

Nodes constrained to

shaker table

 Aluminum 2014 T6

 = 2800 Kg/m3

E = 72,400 MPa

 = 0.33 

Page 39: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 39/80

LS-DYNA

39

Accumulative damage ratio(by Steinberg’s method) 

RMS of Von-Mises stress (unit: GPa)

(given in d3ftg) (given in d3rms) 

Page 40: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 40/80

LS-DYNA

40Model cou rtesy of CIMES France

 Aluminum alloy 5754

 = 2700 Kg/m3

E = 70,000 MPa

 = 0.33 

 Base acceleration is applied at the edge of the hole

Acceleration PSD(exposure time: 1800 seconds)

Example: beam with predefined notch

Page 41: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 41/80

LS-DYNA

41

RMS Sx = 35.0 MPa at critical point 

Analysis method Expected life Damage ratio

Experiment 7mn 25s -

Steinberg 4mn 10s 7.19

Dirlik 5mn 25s 5.54

Narrow Band 2mn 05s 14.41Wirsching 5mn 45s 5.08

Chaudhury & Dover 6mn 03s 6.03

Tunna 4mn 06s 7.31

Hancock 22mn 18s 1.35

CODE  RMS Sxx 

ANSYS  33.5 MPa 

RADIOSS® BULK 35.7 MPa

LS-DYNA 35.0 MPa

Page 42: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 42/80

LS-DYNA

42Cumulative damage ratio by Dirlik method

Cumulative damage ratio by Steinberg’s method 

Damage ratio = 5.540

Damage ratio = 7.188

Page 43: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 43/80

LS-DYNA

43

Experiment setup 

Failure at the notched point in experiment

Page 44: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 44/80

LS-DYNA

44

Initial failure area

 A model from railway application 

The structure is subjected to base acceleration defined by the International Standard

IEC61373 to simulate the long-life test. This standard intends to highlight any weakness

which may result in problem as a consequence of operation under environment where

vibrations are known to occur in service on a railway vehicle.

Example: support antenna

Page 45: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 45/80

LS-DYNA

45

 Area 1 - damage ratio = 25.5

 Area 2 - damage ratio = 3.45

Area 1

Area 2

Page 46: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 46/80

LS-DYNA

46

Initial Damage Ratio

Card1 1 2 3 4 5 6 7 8

Variable MDMIN MDMAX FNMIM FNMAX RESTRT MFTG RESTRM INFTG

Type I I F F I I I I

Default 1 0.0 0 0 0 0

*FREQUENCY_DOMAIN_RANDOM_VIBRATION_ FATIGUE  

Card7 1 2 3 4 5 6 7 8

Variable FILENAME

Type C

Default d3ftg

Define Card 7 if option FATIGUE is used and INFTG=1.

INFTG Flag for including initial damage ratio.

EQ.0: no initial damage ratio,

EQ.1: read existing d3ftg file to get initial damage ratio.

FILENAME Path and name of existing binary database (by default, D3FTG) for

initial damage ratio.

VARIABLE DESCRIPTION

Page 47: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 47/80

LS-DYNA

47

Time of exposure: 4 hours

0

5

10

15

20

25

30

35

40

45

50

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

No. of cycles

   S   t  r  e  s  s   (   K  s   i   )

S-N fatigue curve

Edge fixed toshaker table.

 Acceleration

PSD = 1g2/Hz

for 1-2000 Hz

RMS - von mises for x-acl PSD RMS -von mises for z-acl PSD

Page 48: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 48/80

LS-DYNA

48

Damage ratio for x-load only

Damage ratio for z-load only

Damage ratio for x+z load

Dirlik method is used (MFTG = 2).

1.152e-01

6.019e-01

7.171e-01

Page 49: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 49/80

LS-DYNA

RESPONSE SPECTRUM ANALYSIS

5

49

Page 50: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 50/80

LS-DYNA

50

Introduction: Response Spectrum

*FREQUENCY_DOMAIN_RESPONSE_SPECTRUM Use various mode combination methods to evaluate peak

response of structure due to input spectrum.

The input spectrum is the peak response (acceleration, velocity

or displacement) of single degree freedom system with different

natural frequencies. The input spectrum is dependent on damping (using

*DEFINE_TABLE to define the series of excitation spectrum

corresponding to each damping ratio).

Output binary database: d3spcm (accessible by LS-PREPOST).

It is an approximate method. It has important application in earthquake engineering, nuclear

 power plants design etc.

Page 51: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 51/80

LS-DYNA

51

Capabilities

o

SRSS methodoNRC Grouping method

oCQC method

oDouble Sum methods Rosenblueth-Elorduy coefficient

Gupta-Cordero coefficient

Modified Gupta-Cordero coefficient

oNRL SUM method

oRosenblueth method

Mode comb inat ion

oBase velocityoBase acceleration

oBase displacement

oNodal force

oPressure

Input sp ectrum

o

LogarithmicoSemi-logarithmic

o Linear

Frequenc y interpolat ion

oBINARY plot file: d3spcm

o ASCII files: nodout_spcm, elout_spcm

Results

oCivil and hydraulic buildings Hydraulic dams

Bridges

High buildings

oNuclear power plants

Appl icat ions

Page 52: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 52/80

LS-DYNA

52

Example: multi story tower

60 m /15 story towerLoading conditionsBase acceleration input spectrum

Mode combination method

SRSS

Damping = 1%

Frequency (Hz) Acceleration (m/s2)

0.1 19.4

5.0 22.23

10.0 24.10

15.0 25.5

20.0 26.6

   6   0   m

 

Page 53: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 53/80

LS-DYNA

53

Z displacement results

Page 54: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 54/80

LS-DYNA

54

Von Mises stress results

Page 55: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 55/80

LS-DYNA

55

Example: arch dam

o 464.88 feet high

o Rigid foundation

o Subjected to x -directional ground acceleration

spectrum

The pseudo-acceleration spectrum of El

Centro earthquake ground motion (=5%)

The 1940 El Centro earthquake (or 1940 Imperial

Valley earthquake) occurred on May 18 in the

 Imperial Valley in Southern California near the

border of the United States and Mexico. It had a

magnitude of 6.9.

X-directional acceleration

Page 56: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 56/80

LS-DYNA

ACOUSTIC ANALYSIS BY BEM/FEM

6

56

Page 57: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 57/80

LS-DYNA

57

*FREQUENCY_DOMAIN_ACOUSTIC_BEM_ {OPTION}

Available options include:

PANEL_CONTRIBUTION

HALF_SPACE 

Introduction: BEM Acoustics

SSD

Structure loading

V (P) in time domain

V (P) in frequency domain

 Acoustic pressure and SPL (dB) at field points

 FFT

 FEM transient analysis

 BEM acoustic analysis

User data

Page 58: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 58/80

LS-DYNA

58

BEM (accurate)

 Indirect variational boundary element method

 Collocation boundary element method

They used to be time consuming

 A fast solver  based on domain decomposition MPP version

Approximate (simplified) methods

 Rayleigh method

 Kirchhoff method Assumptions and simplification in formulation

Very fast since no equation system to solve

Page 59: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 59/80

LS-DYNA

59

 

 

  

 

 N 

 j

 j

 j

 N 

 j

 P  p

d n

G pn

 pG P  p

 j

1

1

)(

)(

real

   i  m  a  g   i  n  a  r  y

 p p

 j

O

Projection in the direction

of the total pressure

 Acoustic Panel Contribution

Page 60: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 60/80

Page 61: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 61/80

LS-DYNA

61

Freq = 11Hz 

Freq = 101 Hz 

6 m 

3 m 

The plate is 0.2 m away from the vehicle 

Sound Pressure Level distribution (dB)

Page 62: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 62/80

LS-DYNA

62

Half-space Problem

r eG

ikr 

 4

e R

eG

r ik 

 H 

ikr 

 H 

   44

Free space Green’s function 

Half space Green’s function 

 pr

r’  

   

  

 

 H  H n   ds

n

G pGvi P  )()(         

Helmholtz integral equation

R H = 1: rigid reflection plane, zero velocity 

-1: soft reflection plane, zero sound pressure (water-air interface in

underwater acoustics) 

The reflection plane is defined by *DEFINE_PLANE. 

Page 63: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 63/80

LS-DYNA

63

Muffler Transmission Loss Analysis

W i

W t

i

W TL 10log10

TL (Transmission loss) is the difference in the sound power level

between the incident wave entering and the transmitted wave

exiting the muffler when the muffler termination is anechoic (no

reflection of sound).

Page 64: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 64/80

LS-DYNA

64

 pi

 pr

 P 1  P 2  P 3 

Muffler  

Anechoic

Termination (Z=c) 

 po

Muffler    P 2

v2

 P 1

v1

Three-point method Four-pole method

Incoming wave is given as 

1

21

12

2

)](sin[2

1   ikxikx

i   e pe p x xk i

 p  

 

  

  

  

 o

i

o

i

 s

 s

 p

 pTL 1010 log10log20

2

2

1

1

v

 p

 DC 

 B A

v

 p

 

 

 

 

 

 

 

 

 

  

 

o

i

 s

 s

 DcC c

 B ATL

10

10

log10

1

2

1log20    

  

Where, si and so are the inlet and outlet tube

areas, respectively 

21

21

21

21

/

/

/

/

vv D

 pvC 

v p B

 p p A

1,0|

1,0|

1,0|

1,0|

12

12

12

12

v p

vv

v p

vv

The four pole parameters A, B, C, D, can

 be obtained from 

Page 65: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 65/80

LS-DYNA

65

1. F. Fahy, Foundations of Engineering Acoustics. Elsevier Academic Press, 2001.

2. Z. Tao and A.F. Seybert, a Review of Current Techniques for Measuring Muffler Transmission Loss.

SAE International , 2003

0

10

20

30

40

0 1000 2000 3000

   T  r  a  n  s

  m   i  s  s   i  o  n

   L  o  s  s   (   d   B   )

Frequency (Hz)

Plane Wave theory [1]

Experiment [2]

LS-DYNA (Three-Point Method)

LS-DYNA (Four-Pole Method)

Cutoff frequency for plane wave theory f =1119 Hz

Muffler transmission loss by different methods

References

Page 66: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 66/80

LS-DYNA

66

Double expansion chamber

Page 67: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 67/80

LS-DYNA

67

Z. Tao and A.F. Seybert, a Review of Current Techniques for Measuring Muffler Transmission

Loss. SAE International , 2003

References

LS DYNA

Page 68: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 68/80

LS-DYNA

68

*BOUNDARY_ACOUSTIC_MAPPING

VARIABLE DESCRIPTION

SSID Set or part ID

STYP Set type:

EQ.0: part set ID, see *SET_PART,EQ.1: part ID, see *PART,

EQ.2: segment set ID, see *SET_SEGMENT.

Card 1 2 3 4 5 6 7 8

Variable SSID STYP

Type I I

Default none 0

*BOUNDARY_ACOUSTIC_MAPPING  

Purpose: Define a set of elements or segments on structure for mapping structural nodal velocity to boundary of acoustic volume.

LS DYNA

Page 69: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 69/80

LS-DYNA

69

Mesh A: 20  30 (600) Mesh B: 15  20 (300) Mesh C: 7  11 (77)

Mesh A 16 min 34 sec

Mesh B 10 min 10 sec

Mesh C 6 min 49 sec

CPU time (Intel Xeon 1.6 GHz)

 Also mesh for structure surface

LS DYNA*FREQUENCY DOMAIN ACOUSTIC BEM ATV

Page 70: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 70/80

LS-DYNA

70

*FREQUENCY_DOMAIN_ACOUSTIC_BEM_ ATV

 Acoustic Transfer Vector can be obtained by including the option ATV in the keyword.  It calculates acoustic pressure (and sound pressure level) at field points due to unit

normal velocity of each surface node.

 ATV is dependent on structure model, properties of acoustic fluid as well as location

of field points.

 When ATV option is included, the structure does not need any external excitation,

and the curve IDs LC1 and LC2 are ignored.

 ATV_DB_FIELD_PT_* (decibel due to unit vn at each node)

 ATV_FIELD_PT_* (complex pressure due to unit vn at each node) ATV_DB_FIELD_PT_FRINGE_* (user fringe plot file for decibel due to unit vn at

each node)

Output files

LS DYNA

Page 71: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 71/80

LS-DYNA

71

ATV is useful if the same structure needs to be studied under multiple

load cases.

  n

 j

nmnm jmmm

ni jiii

n j

n j

m

i

V V 

 P 

 P 

 P  P 

2

1

,,2,1,

,,2,1,

,2,22,21,2

,1,12,11,1

2

1

 Need to be computed only once

 ATV at field points 1-m, due to unit normal velocity at node j

Change from case to case

1 2 m

LS DYNAA i FRF

Page 72: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 72/80

LS-DYNA

72

 Acoustic FRF

Unit force excitation 

Driver ear position 

 A simplified auto body model without any inside details 

 Analysis steps:

1.Modal analysis2.Steady state dynamics

3.Boundary element acoustics 

 All done in one run 

Page 73: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 73/80

Page 74: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 74/80

LS DYNA

Page 75: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 75/80

LS-DYNAPressu re distr ibu t ion

f =100 Hz

f =400 Hz

f =200 Hz

f =500 Hz

75

LS DYNAE l li d

Page 76: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 76/80

LS-DYNA

76

Introduction

Nodal force 0.01N is applied for frequency range of 10-20000 Hz.

Diameter 10mm, length 31.4mmThis edge is

fixed in x, y, z

translation dof.

To solve an interior acoustic problem by variational indirect BEM,collocation BEM and FEM. The cylinder duct is excited by harmonic nodal

force at one end.

*FREQUENCY_DOMAIN_SSD

*FREQUENCY_DOMAIN_ACOUSTIC_BEM

*FREQUENCY_DOMAIN_ACOUSTIC_FEM

or  

Example: cylinder

Page 77: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 77/80

LS DYNA

Page 78: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 78/80

LS-DYNA

78f =20000 Hz

f =5000 Hz

f =15000 Hz

f =10000 Hz

Acoust ic pressure dist r ibut ion(by d3acs)

LS-DYNA

Page 79: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 79/80

LS-DYNA

CONCLUSION &FUTURE DEVELOPMENTS

7

79

LS-DYNA

Page 80: Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

8/11/2019 Frequency Domain Analysis in LS-DYNA_Yun Huang_Jan-2013

http://slidepdf.com/reader/full/frequency-domain-analysis-in-ls-dynayun-huangjan-2013 80/80

LS-DYNA

A set of frequency domain features have been imp lemented,

towards NVH, durabi l i ty analys is of vehicles and other vibrat ion

and acous t ic analysis

 Frequency Response Function

 Steady State Dynamics

 Random Vibration and Fatigue

 BEM & FEM Acoustics Response spectrum analysis

Future wo rk

 SEA method for high frequency acoustics

 Fast multi-pole BEM for acoustics

 Infinite FEM

 Fatigue analysis with strains

 Feedbacks and suggestions from usersTh k !