fracture mechanics based life assessment … · – develop generic residual stress profiles for...

49
FRACTURE MECHANICS BASED LIFE ASSESSMENT PROCEDURES FOR FRACTURE IN WELDMENTS Kamran Nikbin http://www3.imperial.ac.uk/mestructuralintegrity

Upload: others

Post on 24-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • FRACTURE MECHANICS BASED LIFE ASSESSMENT PROCEDURES FOR

    FRACTURE IN WELDMENTS

    Kamran Nikbin

    http://www3.imperial.ac.uk/mestructuralintegrity

  • Objectives in VAMAS TWA31 and ASTM

    o A collaborative effort of testing inhomogeneous weldments or pre-cracked specimens

    o Weldment crack growth testing – Round Robino Weldment crack growth testing – Round Robin

    o Consider 316H, P22, P91, P92

    o Consider different geometries

    o Weldment modelling

    o Measurement and evaluation the effects of residual stressstress

    o Probabilistic considerations to treat scatter

    o Validating correlating parameters for weldment test

    Based on the results make recommendation for Standards and codes development

  • What needs to be considered in VAMAS TWA312

    • Geometry, load and weld configuration

    • Failure mechanism, -Fracture, Fatigue or Creep

    • Should residual stress be taken into account• Should residual stress be taken into account

    • Appropriate correlation parameters

    - K, J, C*• Treatment of crack initiation and growth rate

    • Profiling and quantifying residual stresses in • Profiling and quantifying residual stresses in specimens and components

    • Predictive models for Crack Growth

    recommendation for Standards and Codes

  • What is needed for Fracture Based Assessment

    • Parameters appropriate for Fracture and Fatigue

    – Eta factors for welds mismatch

    – Residual stress effects on K– Residual stress effects on K

    • Model and quantify

    – residual stresses

    – Weld properties

    • Quantify Residual stress in components• Quantify Residual stress in components

    – Develop generic residual stress profiles for welded components

    – Implement in Standards and Life assessment Codes

  • ASTM E1457 schematic of weldment CT specimen

    b) Thin section testing HAZ region a) Weld/HAZ/Base

    c)Thin section testing weld region d) Electron beam type thin weld/HAZ region

    Weld region HAZ region Base region

  • For Fracture Toughness

    Fracture, creep, fatigue cracking mechanisms

    ( , )r

    mat

    K P aK

    K

    PL

    =

    =For Fatigue :Paris Law

    For Creep Time dependent parameter

    φ*/ DCdtda =

    mKCdNda ∆=/

    ( , )r

    L y

    PL

    P a σ=

    and creep Fatigue can be added linearly giving

    φ*/ DCdtda =

    m*KCf/DCdN/da ∆φ +=

  • Evaluation of Fracture Mechanics Parameters for

    Welded Compact Tension Specimens

    ηP∆

    =dP1 L−=η

    J derivation is given as Where

    • Using FEM for J Estimation Methods, η Factor

    for Weldments can be obtained

    • To cover

    ηHaWB

    PJ

    N )( −∆

    =d(a/W)

    dP

    P

    1 L

    L

    −=η

    • To cover

    – Crack Length and work hardening effects

    – Weld Width effects

    – Mismatch Ratio Effects7

  • Mismatch factors in welds

    � Mismatch factor, M, ratio of the weld metal (WM) to the

    homogeneous base metal’s (BM) yield strength

    WMMσ

    =

    � Weldments are often in an over-matched condition

    � The yield strength of the weld metal is higher than that of

    the base material

    � Promotes gross section yielding of the base metal

    � Facilitate a shift of plastic zone from the weld to the base

    WM

    BM

    Mσσ

    =

    8

    � Facilitate a shift of plastic zone from the weld to the base

    materials

    � Therefore reduces the probability of structural failure

    originating from an undetected weld defect in operation

  • J Estimation Methods• Experimentally, non-linear (plastic) component

    of J (and C*) determined using the η factor

    ( )

    2p

    e p

    AKJ J J η= + = +

    ′ −η : Geometry dependent function

    ( )e pJ J J

    E B W aη= + = +

    ′ −

    � Power-law hardening materials may be represented by the Ramberg-Osgood material model

    0

    0

    N

    E E

    σσ σε α

    σ

    = +

    E : Elastic Modulus

    N : Power law hardening exponent

    : Normalising (yield) stress

    : Yield offset

    α

    η : Geometry dependent function

    9

    0

    � For power-law hardening materials of C(T) specimen

    1 ( )

    p

    p

    PNJ

    N B W aη

    ∆=

    + − 1p p

    NA P

    N= ∆

    +

    Ce

    Ce

    P

    ∆p∆

  • η Factor for Weldments• Previous work to determine the η factors mainly

    for homogenous materials

    • Limited work has been performed on • Limited work has been performed on

    weldments.

    • Aim of this work was to determine the η factor

    on C(T) specimen geometries for a range of:

    – Crack lengths, a

    Mismatch ratios,

    PW2

    LLD∆

    – Mismatch ratios, M

    – Weld widths, h

    – Stress states : Plane Stress and Plane Strain

    – Power-law hardening exponents, N10

    P

    a

    2H 2h

    2

    LLD∆

  • Finite Element Model

    • Half (2D) symmetry model

    • Bi-material model (no material property gradient to represent HAZ)represent HAZ)

    • Focused crack tip mesh design

    � Ramberg-Osgood material model

    � N = 5 and N = 10

    � E = 200 GPa

    � = 1

    � Weld Metal = 629 MPaα

  • Analysis Matrix

    Weld Metal Base metalCrack length

    a/W

    Weld Width h and

    (2h/2H)

    Stress State(MPa) N (MPa) N

    WM

    BM

    Mσσ

    =

    • Review of literature solutions for the η factor have

    0.5

    6295

    10

    1258

    510

    0.350.400.45

    0.500.600.70

    1.25 (0.04)2.50 (0.08)5.00 (0.16)

    Plane strain

    &

    Plane stress

    1.0 619

    1.5 417

    2.0 314

    • Review of literature solutions for the η factor have been performed

    – Compared to the results obtained from this work

    12

    P

    a

    PW

    2H 2h

    2

    LLD∆

    2

    LLD∆

  • Specimen Geometries DefinitionSEN(T) M(T) DEN(T)

    C(T) CS(T)SEN(B)

    13P

    a

    PW

    2H 2h

    2

    LLD∆

    2

    LLD∆

  • C(T): Best fits ηLLD

    2.2

    2.4

    2.6

    � For a given a/W and M for the conditions examined, η values found

    to differ by a maximum of 12% of

    0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.751.4

    1.6

    1.8

    2.0

    2.2

    a/W

    ηL

    LD

    M=0.5

    M=1.0

    M=1.5

    M=2.0

    to differ by a maximum of 12% of

    the mean value

    � Mean values can describe

    � a/W dependency of η

    � influence of M for a given a/W

    • ηmay be considered to be somewhat insensitive to

    crack length for 0.4 ≤ a/W ≤ 0.7, for all M values

    • For a given a/W , η decreases as M increases

    14

  • CS(T): Best fits ηLLD and ηCMOD

    2.6

    2.8

    3.0

    L/W=2, h=2.5 mm

    Plane stress and plane strain

    with N= 5, 10, 20 M=0.5

    M=1.0

    M=1.5

    M=2.0 4.2

    4.4

    4.6

    4.8

    5.0L/W=2, h=2.5 and 5 mm

    Plane stress and plane strain

    with N= 5, 10, 20 M=0.5

    M=1.0

    M=1.5

    M=2.0

    0.2 0.3 0.4 0.5 0.6 0.7

    1.6

    1.8

    2.0

    2.2

    2.4

    ηLLD

    a/W

    M=2.0

    0.2 0.3 0.4 0.5 0.6 0.7

    2.6

    2.8

    3.0

    3.2

    3.4

    3.6

    3.8

    4.0

    4.2

    ηC

    MO

    D

    a/W

    15

    • The investigations do not consider the different weld width.

    • For a given crack length, the η solutions of the under-matched and over-

    matched conditions show a less than 10% variation to homogeneous

    material.

    • Due to the good trends on both ηLLD and ηCMOD , both methods can be used to evulate J and C*.

  • SEN(B) : Best fits for ηLLD and ηCMOD

    1.0

    1.2

    1.4

    L/W=2, h=2.5 mm

    Plane stress and plane strain

    with N= 5, 10, 20

    1.0

    1.2

    1.4

    1.6L/W=2, h=2.5 mm

    Plane stress and plane strain

    with N= 5, 10, 20

    • The data are not same as Catrin’s

    0.1 0.2 0.3 0.4 0.5 0.6 0.7

    0.2

    0.4

    0.6

    0.8

    ηC

    MO

    D

    a/W

    M=0.5

    M=1.0

    M=1.5

    M=2.0

    M=1.0 Catrin's

    0.1 0.2 0.3 0.4 0.5 0.6 0.7

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    M=0.5

    M=1.0

    M=1.5

    M=2.0

    M=1.0 Catrin's

    ηLLD

    a/W

    16

    • The data are not same as Catrin’s

    • The investigations do not consider the different weld width.

    • For a given crack length, the η solutions of the under-matched and

    over-matched conditions show a less than 10% variation to

    homogeneous material.

    • it is recommended that J or C* values for the SENB specimen are

    evaluated using the crack mouth opening displacement, CMOD due

    to the limited deviations.

  • SENT: Best fits for ηLLD and ηCMOD

    • In Load control

    3.5 1.25

    1.30

    L/W=2, h=5 mm

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    L/W=2, h=2. 5 and 5 mm

    with N= 5, 10, 20

    in Plane stress and Plane strain

    ηLLD M=0.5

    M=1.0

    M=1.5

    M=2.0

    0.75

    0.80

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    1.20

    1.25L/W=2, h=5 mm

    with N= 5, 10, 20

    in Plane stress and Plane strain

    ηC

    MO

    D

    M=0.5

    M=1.0

    M=1.5

    M=2.0

    17

    0.1 0.2 0.3 0.4 0.5 0.6 0.70.0

    0.5

    a/W

    0.1 0.2 0.3 0.4 0.5 0.6 0.70.70

    0.75

    a/W

    M=2.0

    • When a/W0.4, both ηCMOD and ηLLD can be used.

    • For a given crack length and weld width, the η solutions of the under-

    matched and over-matched conditions examined show a variation of 15%

    from the mean value.

  • Results –put in ASTM E1457

    hFLD

    a/W C(T) baseUnder-match

    (M=0.5)

    Over-match

    (M=1.5)Over-match (M=2)

    error (±0.08) error (±0.12) error (±0.08) error (±0.12)

    0.4 2.15 2.41 2.05 1.94

    0.42 2.21 2.46 2.09 2.040.42 2.21 2.46 2.09 2.04

    0.44 2.23 2.47 2.1 2.06

    0.46 2.24 2.48 2.12 2.07

    0.48 2.26 2.49 2.14 2.08

    0.5 2.26 2.48 2.13 2.08

    0.52 2.26 2.475 2.13 2.08

    0.54 2.27 2.47 2.12 2.09

    0.56 2.27 2.465 2.12 2.09

    2.28 2.47 2.12 2.10.58 2.28 2.47 2.12 2.1

    0.6 2.27 2.45 2.1 2.08

    0.62 2.26 2.43 2.1 2.06

    0.64 2.25 2.41 2.1 2.04

    0.66 2.24 2.39 2.1 2.02

    0.68 2.23 2.39 2.1 2.02

    0.7 2.23 2.39 2.1 2.02

  • Quantitative measurements of residual stress

    in Compact Tension specimens

    • Examples of residual stress in CT and

    welded components welded components

    • Implications for

    – Fracture parameters– Fracture parameters

    – Life assessment

    – Codes of practice

  • Inducing residual stress by pre-compression

    800

    -600

    -400

    -200

    0

    200

    400

    600

    800

    Str

    ess (

    MP

    a)

    x = 2.3 mm , y = z = 0

    x

    σ

    normal stress, σ 22

    relaxation

    heat up

    precompress

    � Modelled sequence of loading and relaxation

    -1000

    -800

    -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

    log10time (hours)

  • Residual stress due to welding

    Starter Crack

    Parent Metal

    W

    P

    W

    P

    HAZ

    a) b)

    � 316L Weld Metal, P22, P91, P92 HAZ and weld test

    � EDM notch located in Heat Affected Zone (HAZ)

    Weld Metal

    a

    P

    a

    P

    � EDM notch located in Heat Affected Zone (HAZ)

    � EDM or Pre-fatigued starter crack

    � As-welded condition (non-stress relieved)

    � Size and geometry effects

  • Example of weld 316 specimen and test rig

    a) b)

    Complications of fabrication due to insufficient material

    -EB welding

    -Specimen size, geometry

  • Measurement Details

    Parent

    2 mm 4 mm

    EB WeldScan II EB Weld

    (a)(b)

    Slice cut line

    62.5 mm Scan IV

    � Specimen EB1 � Specimen EB2

    Parent

    x 11

    x 22

    x 33

    EB Weld

    x 11 = 0

    Scan I

    Scan II

    Parent

    EB Weld

    x 11 = 0

    Scan III

    Parent

    EDM 1

    EDM 2

    Slice cut line

    MMA Weld MMA Weld

    60 m

    m

    • Specimen EB1 unslit

    • EDM slit in specimen EB2

    – EDM1 : a/W = 0.5

    – EDM2 : a/W = 0.57

    • Measurement along expected crack path 23

    x 11 = 0 x 11 = 0

  • Residual Stress in welded CT

    600

    800

    σ22

    σ33

    σ11

    EB1(b)

    σ 22

    σ 33

    σ 11400

    600

    800

    σ22

    σ33

    σ11

    EB2 EDM1(b)

    σ 22

    σ 33

    σ 11

    -400

    -200

    0

    200

    400

    Str

    ess

    (MP

    a)

    -400

    -200

    0

    200

    400

    -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0

    Str

    ess

    (MP

    a)

    24

    -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0

    Distance from EB Weld (mm)

    -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0

    Distance from EB Weld (mm)

    • Significant stress relaxation with EDM slit introduction 30-50 % reduction

  • Effect of Residual Stress

    400

    600

    800

    Re

    sid

    ual

    Str

    ess (

    MP

    a)

    s22 Stress-Spec no crack

    s22 Stress-Spec crack

    s22 Stress-Spec crack 2

    Crack 1

    EB Weld

    Weld multipass region (see Fig. 5.1)

    σ22: no crackσ22: crack 1σ22: crack 2

    Measurement line

    x

    -400

    -200

    0

    200

    0 10 20 30 40 50 60

    Position (mm)

    Re

    sid

    ual

    Str

    ess (

    MP

    a)

    Crack 2

    HAZ

    a

    12.5 mm

    � residual stress profiles before testing in a weldment

    � Large effect due to the EB weld reduces with crack growth

    � Most of the residual stress is removed when crack is extended

  • Measured residual stresses

    1,0

    1,5

    0,0

    0,5

    1,0

    0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

    CT1: pre-compress +

    thermal soak,1000 hrs

    yσσ22

    26-1,5

    -1,0

    -0,5

    x / W

    ∆a= 4

    W

    σ22σ22x

  • Measured residual stresses

    1,0

    1,5

    CT2: Pre-compress + EDM 2 mm crack

    0,0

    0,5

    1,0

    0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

    yσσ22

    27-1,5

    -1,0

    -0,5

    x / W

    ∆a= 2

    W

    σ22σ22x

  • Measured residual stresses

    1,0

    1,5

    CT2: Pre-compress + EDM 2 mm crack +

    primary load, 650°C, 1000 hrs

    0,0

    0,5

    1,0

    0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

    yσσ22

    primary load, 650°C, 1000 hrs

    28-1,5

    -1,0

    -0,5

    x / W

    ∆ a = 15W

    σ22σ22x

  • Measured residual stresses

    1,0

    1,5

    0,0

    0,5

    1,0

    0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

    yσσ22

    29-1,5

    -1,0

    -0,5

    x / W

    W

    σ22σ22x

  • Measured residual stresses

    1,0

    1,5

    � An upper-bound linear distribution can be used to envelope the measured

    residual stress

    Uniform membrane stress

    0,0

    0,5

    1,0

    0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

    yσσ22

    Uniform membrane stress

    Upper-bound linear

    distribution

    30-1,5

    -1,0

    -0,5

    x / W

    ∆ a = 15W

    σ22σ22x

  • Measured residual stresses

    1,0

    1,5

    � Upper-bound linear distribution to envelope the measured residual stress

    � Upper-bound uniform membrane stress- no stress relaxation

    Uniform membrane stress

    0,0

    0,5

    1,0

    0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

    yσσ22

    Uniform membrane stress

    Upper-bound linear

    distribution

    31-1,5

    -1,0

    -0,5

    x / W

    ∆ a = 15W

    σ22σ22x

  • Upper-bound linear profile

    σ22σ22x

    σy

    W

    x/W

    32

    a/W = 0.4

    x/W0.4 0.7

  • Upper-bound linear profile

    σ22σ22x

    σy

    W

    x/W

    0.67σy

    33

    a/W = 0.5

    x/W

    0.5 0.7

  • Upper-bound linear profile

    σ22σ22x

    σy

    W

    x/W

    0.67σy

    0.33σy

    34

    a/W = 0.6

    x/W

    0.6 0.7

  • Introduction of residual stress� Residual stress introduced as an initial stress distribution using the

    SIGINI subroutine in Abaqus

    � Arbitrary ‘balancing’ stress required to give force and moment equilibrium

    0,6

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    σ2

    2 /

    σy

    35� Two-dimensional elastic 2D elastic analysis performed

    -0,3

    -0,2

    -0,1

    0

    0,5 0,6 0,7 0,8 0,9 1

    σ

    x/W

  • Introduction of crack in FE model� Crack is introduced by releasing boundary constraint on nodes

    over a distance of x/W = 0.02 of crack tip

    0,6

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    σ2

    2 /

    σy

    x/W = 0.02

    36

    -0,3

    -0,2

    -0,1

    0

    0,5 0,6 0,7 0,8 0,9 1

    x/W

  • Results: Residual stress alone

    ��� 0

    ) ��

    ������

    /(�

    � ���

    ��

    37

    � Upper-bound linear profile gives significant reduction in SIF compare to

    membrane yield stress, for long cracks

  • Residual stress + primary load

    F =14.5 kN

    � Residual stress combined with primary load of 14.5 kN,

    corresponds to Kp =15 MPa √m for a/W = 0.4

    F =14.5 kN

    38

    � using upper-bound linear profile is too conservative

    when residual stress is combined with primary load

  • Quantitative measurements of residual stress

    ion components

    • Examples of residual stress in various

    components and methods of Residual components and methods of Residual

    Stress measurement

    • Implications on • Implications on

    – K and C* parameters

    – Life assessment

    – Codes of practice

  • Residual stress determination in componentsEffect on K and C*

    (a) T-plate (b) Tubular-T joint (c) Tubular-Y joint

    (d) Pipe butt weld (e) Tube-on-plate (f) Bent pipe (g) Repair weld

  • Comparison of measured distributions

    with chosen profiles

    T-plate 1

    1.2

    ∪⊥∅

    ∪ y

    data (S E 702)

    data (S 355)

    R6 / B S 7910(2)re

    sid

    ual str

    ess,

    σ

    σ

    σ σ /

    σσ σσy

    0

    0.2

    0.4

    0.6

    0.8

    norm

    alis

    ed r

    esid

    ual str

    ess, ∪

    ⊥∅R6 / B S 7910(2)

    B S 7910 (1)

    B ilinear [3]

    a

    No

    rmalised

    resid

    ual str

    ess,

    -0.4

    -0.2

    0 0.2 0.4 0.6 0.8 1y /W

    norm

    alis

    ed r

    esid

    ual str

    ess,

    No

    rmalised

  • Residual Stress Measurement on T-plate

    1

    1.5

    Force balanced data (average)As received data (average)Bi-linear approximation of averageBi-linear approximation of average +0.25

    No

    rma

    lise

    d R

    esid

    ua

    l S

    tre

    ss (

    σre

    s/σ

    YP)

    -0.5

    0

    0.5

    No

    rma

    lise

    d R

    esid

    ua

    l S

    tre

    ss (

    MeanMean + 2sdv

    yW

    � Upper bound distribution is less conservative than current

    BS7910 and R6 level 1 and 2 distributions

    -0.5

    0 0.2 0.4 0.6 0.8 1

    Normalised Position (y/w)

  • Dataset (Transverse residual

    stresses)

    � Measurement methods

    � Neutron diffraction

    � X-ray diffraction 0.4

    0.8

    1.2

    norm

    alis

    ed r

    esid

    ual s

    tress

    T-butt

    Pipe on plateTubular T

    Tubular Y

    Pipe ButtCold Bent tube

    Repair (pipe girth)

    Treatment of Residual Stress Data (Measured)

    � X-ray diffraction

    � Hole drilling & sectioning

    � Block removal

    � Trepanning etc.

    � Materials : ferritic, austenitic, Cr-Mo, C-

    Mn steel.

    Geometries included

    -0.8

    -0.4

    0

    0.4

    0 0.2 0.4 0.6 0.8 1

    normalised position, y / W

    norm

    alis

    ed r

    esid

    ual s

    tress

    � Geometries included

    � Weld repair data(a) T-plate (b) Tubular-T joint (c) Tubular-Y joint

    (d) Pipe butt weld (e) Tube-on-plate (f) Bent pipe (g) Repair weld

  • 0.8

    1.2

    norm

    alis

    ed r

    esid

    ual s

    tress

    T-butt

    Pipe on plateTubular T

    Tubular Y

    Pipe ButtCold Bent tube

    Repair (pipe girth)

    Caution: Scatter in Experimental and FEM results

    -0.8

    -0.4

    0

    0.4

    0 0.2 0.4 0.6 0.8 1

    normalised position, y / W

    norm

    alis

    ed r

    esid

    ual s

    tress

    Caution should be exercised in Life Assessment

    Analysis in FEM of Measurements of

    in Residual stress in Residual stress

  • Residual Stress Profiling

    1

    1.2

    no

    rma

    lise

    d r

    esi

    du

    al

    stre

    ss

    Mean + 2SD

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    no

    rma

    lise

    d r

    esi

    du

    al

    stre

    ss

    Master curve

    Mean

    Master curve

    � Transverse residual stresses for a range of welded geometries

    including a mean, ± 1 SD and ± 2 SD upper and lower bound fit to the data

    -0.2

    0 0.1 0.2 0.3 0.4 0.5

    normalised position, y / W

  • 0.8

    π↑°�

    y

    Linear Upper Bound

    Linear Lower Bound

    Proposed Linear (0.75)

    resid

    ual str

    ess,

    σσ σσ/ σσ σσ

    y

    2data (S355)Linear Upper BoundLinear Lower Bound σ σ σ σ

    y√π√π √π√

    πa

    Effect of Residual profile on Stress Intensity Factors

    linear profile (T-plate)

    -0.8

    -0.4

    0

    0.4

    no

    rma

    lise

    d r

    esid

    ua

    l str

    ess

    , π↑° Proposed Linear (0.75)

    Linear (0.6)

    No

    rma

    lis

    ed

    resid

    ual str

    ess,

    0.4

    0.8

    1.2

    1.6

    Linear Lower BoundProposed Linear (0.75)Linear (0.6)R6

    No

    rma

    lis

    ed

    SIF

    ,K

    I /

    σ σ σ σ

    -1.2

    0 0.2 0.4 0.6 0.8 1

    normalised position, y / WNo

    rma

    lis

    ed

    00.1 0.2 0.3 0.4 0.5

    normalised crack length, a/WN

    orm

    ali

    se

    d

    2

    ..*

    =

    ref

    refref

    KC

    σεσ ɺ

  • Proposed linear profile (Tube)

    1.3

    data (crown)

    BS7910

    Linear Upper Bound

    Effect of Residual profile on Stress Intensity Factors

    0.8

    y

    Linear Upper Bound

    Linear Lower Bound

    res

    idu

    al s

    tre

    ss

    , σσ σσ

    / σσ σσy

    0.3

    0.5

    0.7

    0.9

    1.1

    Linear Upper Bound

    Proposed linear (0.75)

    Linear (0.6)

    No

    rma

    lis

    ed

    SIF

    ,K

    I /

    σ σ σ σy

    √π√π √π√πa

    -0.8

    -0.4

    0

    0.4

    0.8

    no

    rma

    lise

    d r

    esid

    ua

    l str

    ess

    , π↑°�

    y

    Linear Lower Bound

    Proposed Linear (0.75)

    Linear (0.6)

    No

    rma

    lis

    ed

    res

    idu

    al s

    tre

    ss

    ,

    0.1

    0.1 0.2 0.3 0.4 0.5normalised crack length, a / WN

    orm

    ali

    se

    d-1.2

    0 0.2 0.4 0.6 0.8 1

    normalised position, y / W

    No

    rma

    lis

    ed

    2

    ..*

    =

    ref

    refref

    KC

    σεσ ɺ

  • To Improve Testing and Assessment Codes for Welds

    • Provide comprehensive and validated data

    • Provide improved parameters to assess cracks• Provide improved parameters to assess cracks

    • Development of predictive numerical tools for

    welds

    • Validation and verification of modelling, testing • Validation and verification of modelling, testing

    for component

  • Standards that need to be updated

    • ASTM E1457-2012 ‘Creep Crack Growth testing Standard’,

    • Nikbin, K. M, ‘Creep Crack Growth Life Assessment’, • Nikbin, K. M, ‘Creep Crack Growth Life Assessment’, PVRC Document’, 2007

    • ISO/TTA 2007(E) – ‘Creep/Fatigue Crack growth

    Testing of Components’

    • ASTM E2670 ‘Creep/Fatigue Crack Growth Testing• ASTM E2670 ‘Creep/Fatigue Crack Growth Testing

    • Under the auspices of VAMAS TWA31- Committee for Creep/Fatigue Cracking in Weldments