foundation engineering lecture (english) - ceprofs - texas a&m

80
1 Jean Louis BRIAUD 1 TEXAS A&M UNIVERSITY Deeyvid SAEZ BARRIOS 2 1. President of ISSMGE, Professor and Holder of The Buchanan Chair, Texas A&M University 2. PhD Graduate Student and Research Assistant, Texas A&M University April 2010 THEORY PRACTICE 1. Load Resistance Factors Design (LRFD) Approach 2. Site Investigation 3. Design of Shallow Foundation for Vertical Loads 4 P I CONTENT OUTLINE 4. Pile Instalation 5. Design of Single Piles for Vertical Loads 6. Design of Pile Group for Vertical Loads 7. Design of Piles for Horizontal Loads 8. Special Cases (Shrink-Swell Soils, Downdrag and Scour) 9 The Role of Load Testing 9. The Role of Load Testing 10. Conclusion Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Upload: others

Post on 03-Feb-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

1

Jean Louis BRIAUD1

TEXAS A&M UNIVERSITY

Deeyvid SAEZ BARRIOS2

1. President of ISSMGE, Professor and Holder of The Buchanan Chair, Texas A&M University

2. PhD Graduate Student and Research Assistant, Texas A&M University

April 2010THEORY PRACTICE

1. Load Resistance Factors Design (LRFD) Approach

2. Site Investigation

3. Design of Shallow Foundation for Vertical Loads

4 P I

CONTENT OUTLINE

4. Pile Instalation

5. Design of Single Piles for Vertical Loads

6. Design of Pile Group for Vertical Loads

7. Design of Piles for Horizontal Loads

8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

9 The Role of Load Testing9. The Role of Load Testing

10. Conclusion

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

1

2

LOAD RESISTANCE FACTOR DESIGN (LRFD)

→ WORKING STRESS DESIGN

RL FS 2 0 3 0

→ LOAD RESISTANCE FACTORS DESIGN (LRFD)

γ = 1.0 to 2.0RL

FSL = FS ≈ 2.0 to 3.0

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

L= Load γ = Load Factor

R= Resistance Φ = Resistance Factor ϕγ

=FS

γ 1.0 to 2.0Φ = 0.30 to 0.90

RL ϕγ =

→ IMPORTANT LOAD FACTORS IN FOUNDATION ENGINEERING

∑ ∑=n n

iiii RL ϕγ

LOAD RESISTANCE FACTOR DESIGN (LRFD)

∑ ∑= =i i

iiii1 1

Σγi Li= 1.25DL + 1.75LL For Ultimate Load

Σγi Li= 1.0DL + 1.0LL For Settlement in Sand & Immediate Settlement in Clays

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Σγi Li= 1.0DL Long Term Settlement in Clays

Σγi Li= 1.25DL + γEQLL+1.0EQ For Earthquake Analysis

2

3

→ IMPORTANT RESISTANCE FACTORS FOR SHALLOW FOUNDATION

∑ ∑= =

=n

i

n

iiiii RL

1 1ϕγ

LOAD RESISTANCE FACTOR DESIGN (LRFD)

Σφi R= 0.35R For Friction Angle Approach ---SANDS

Σφi R= 0.45R For SPT Approach ---SANDS

Σφi R= 0.55R For CPT Approach---SANDS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Σφi R= 0.60R For Su Approach---CLAYS

Σφi R= 0.50R For CPT Approach---CLAYS

Su= Undrained Shear Strength

→ IMPORTANT RESISTANCE FACTORS FOR DRIVEN PILESUNDER COMPRESSION LOADS

∑ ∑=n n

RL ϕγ

LOAD RESISTANCE FACTOR DESIGN (LRFD)

∑ ∑= =

=i i

iiii RL1 1

ϕγ

Σφi R= 0.56R to 0.70R (Verif.) For αSu Method---CLAYS

Σφi R= 0.36R to 0.45R (Verif.) For SPT Method ---SANDS

Σ R 0 44R 0 55R (V if ) F CPT M h d SANDS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Σφi R= 0.44R to 0.55R (Verif.) For CPT Method---SANDS

Use 0.85φ(compression) for φ(uplift)

Su= Undrained Shear Strength

3

4

→ IMPORTANT RESISTANCE FACTORS FOR BORED PILESUNDER COMPRESSION LOADS.

∑ ∑=n n

RL ϕγ

LOAD RESISTANCE FACTOR DESIGN (LRFD)

∑ ∑= =

=i i

iiii RL1 1

ϕγ

Σφi R= 0.65R For αSu Method---CLAYS SIDE

Σφi R= 0.55R For 9Su Method ---CLAY POINT

Σφ R= 0 65R For βσ’ Method SANDS SIDE

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Σφi R= 0.55R For 0.057N Method---SANDS POINT

Use 0.85φ(compression) for φ(uplift)

Su= Undrained Shear Strength

Σφi R= 0.65R For βσ V Method---SANDS SIDE

1. Load Resistance Factors Design (LRFD) Approach

2. Site Investigation

3. Design of Shallow Foundation for Vertical Loads

4 P I

CONTENT OUTLINE

4. Pile Instalation

5. Design of Single Piles for Vertical Loads

6. Design of Pile Group for Vertical Loads

7. Design of Single Pile for Horizontal Loads

8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

9 The Role of Load Testing9. The Role of Load Testing

10. Conclusion

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

4

5

http://www.earth-engineers.com/DSC01903.JPG

SITE INVESTIGATION – WHY IS BORING IMPORTANT?

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002).

SITE INVESTIGATION – STANDARD PENETRATION TEST (SPT)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

5

6

Advantages

1) Sampling Is Possible

MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002)

SITE INVESTIGATION – STANDARD PENETRATION TEST (SPT)

2) Simple

3) Suitable in many soil types

Disadvantages

1) Sample Disturbance

2) Not applicable for very soft or very loose soils

3) High Variability

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002)

SITE INVESTIGATION – CONE PENETRATION TEST (CPT)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

6

7

Advantages1) Fast and continuous

profile

Disadvantages1) Required skill

operator to run

MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002)

SITE INVESTIGATION – CONE PENETRATION TEST (CPT)

profile.

2) Applicable for soft soils.

3) Strong Theoretical basis in interpretation.

operator to run

2) No soil sample can be obtained.

3) Unsuitable for very hard or dense soils and large particles.

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002)

SITE INVESTIGATION – SEISMIC PIEZOCONE TEST

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

7

8

MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002).

SITE INVESTIGATION – PRESSUREMETER TEST (PMT)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Advantages

1) Theoretically sound in determination of soil parameters

MAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002)

SITE INVESTIGATION – PRESSUREMETER TEST (PMT)

soil parameters.

2) Applicable for larger zone of soil mass than any other in-situ test.

3) Develop complete stress vs strain curve

Disadvantages

1) It requires trained personel .

2) Time consuming (8 tests per day).

3) Delicate equipment.

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

8

9

1. Clays and Silts:

LABORATORY TESTS

• Classification Tests,

• Undrained Shear Tests,

• Drained Shear Tests,

• Consolidation Tests

2. Sands and Gravels:• Classification Tests

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

1. Load Resistance Factors Design (LRFD) Approach

2. Site Investigation

3. Design of Shallow Foundation for Vertical Loads

4 P I

CONTENT OUTLINE

4. Pile Instalation

5. Design of Single Piles for Vertical Loads

6. Design of Pile Group for Vertical Loads

7. Design of Single Pile for Horizontal Loads

8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

9 The Role of Load Testing9. The Role of Load Testing

10. Conclusion

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

9

10

→ BEHAVIOR OF SANDS AND CLAYS UNDER LOAD CONDITIONS

DESIGN OF SHALLOW FOUNDATION

FSQu Qu Q (Load)

CLAYS

FSQu

SANDS

Q(Load)Qu

allSS >FS Q

allSS <

0.1B 0.1B

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

B=Foundation WidthS(Settlement)

Ultimate Load Controls Settlement Controls

S(Settlement)

Q

D1γD1γ D

GENERAL BEARING CAPACITY EQUATION (G.B.C.E)

2γfs

fs Pp Pp

B

qqccu DNSBNScNSP 121 γγ γγ ++=

Sc, Sγ, Sq= Correction Factors (shape, inclination, eccentricity and inclined loads)Nc, Nγ, Nq= Bearing Capacity Factors (function of the friction angle, φ)

qqccu 122γγ γγ

THE G.B.C.E RARELY WORKS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

10

11

THE STATIC LOAD TEST FOR THE FOOTINGS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

LOAD SETTLEMENT CURVE RESULTS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

11

12

G.B.C.E vs STRENGTH EQUATION

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

THE STRENGTH EQUATION ALWAYS WORKS

IN SANDS

From The Pressuremeter Test (PMT)

K 1 0 f f iDpKP Lpu γ+=

Kp = 1.0 for square footing

From The Cone Penetrometer Test (CPT)

Kc ≈ 0.20 for sands.

From The Standard Penetration Test (SPT)

K 75

DqKP ccu γ+=

DNKP NkPau γ+=)(

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Pl= Limit Pressure from PMT

N=blows/ft from the SPT

qc= Cone Point Resistance

KN = 75

12

13

THE STRENGTH EQUATION ALWAYS WORKS

IN CLAYS

From the Undrained Shear Strength, Su

N ≈ 6 0 for square footingu c uP N S Dγ= +

Nc ≈ 6.0 for square footing.

From The Pressuremeter Test (PMT)

Kp = 1.0 for square footing

From The Cone Penetrometer Test (CPT)

Kc ≈ 0.40 for clays .

DpKP Lpu γ+=

DqKP ccu γ+=

Pl= Limit Pressure from PMT N=blows/ft from the SPT

qc= Cone Point ResistanceSu= Undrained Shear Strength

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

c f y

From The Standard Penetration Test (SPT)

KN=40DNKP NkPau γ+=)(

ZONE OF INFLUENCE IN SHALLOW FOUNDATION

BZi B

Zi

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

SQUARE FOOTING STRIP FOOTING RECTANGULAR FOOTING

BLBZ i ⎟⎠⎞

⎜⎝⎛ −=

24BZ i 2= BZ i 4=

13

14

NEWMARK’S INFLUENCE CHART(MURTHY, 2002)

STRESS INCREASED UNDER THE FOUNDATION

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

(SOWER, G. 1961 ; MURTHY, 2002)

PRESSURE BULB CHART

STRESS INCREASED UNDER THE FOUNDATION

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

14

15

2:1 METHODQ

STRESS INCREASED UNDER THE FOUNDATION

∆σ2

12

1

B

z

Strip Footing

( )BzQ+

=Δ'σ

Square Footing

( )2BzQ+

=Δσ

Rectangular Footing

( )( )LzBzQ

++=Δσ

Circular Footing

( )24

DQ

=Δσ∆σ(2:1)

B z/2z/2

( )Bz + ( )2Dz +π

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

(2:1)

Q’ = load per unit of length ∆σ=actual pressure distribution∆σ(2:1)= average pressure from the 2:1 method

σ'

σ'+∆σ’

σ' Stress-Strain Curve from a suitable test

SETTLEMENT OF SHALLOW FOUNDATION

--GENERAL METHOD--

Hi σv uo σ'v ∆σ’ εb εa ∆H=∆εxHi

H1

εεb εa

a suitable test

∑ =Δ=

n

i iT HH1

H2

H3

H4

Zi

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

15

16

--CONSOLIDATION THEORY--

σ'eo

e

σvo' σvo

'+∆σ'

C

Normally Consolidated Clays

SETTLEMENT OF SHALLOW FOUNDATION

σp'

⎞⎛ ΔH ''e1

e2

Cr1

Overconsolidated Clays If σ’

vo+Δσ’ < σ’p

⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ++

=o

o

v

vvcc e

HCs '

0

0 log1 σ

σσ

⎟⎟⎞

⎜⎜⎛ Δ+

=o vv

rcHCs '

''0 log

1

σσ

e

Cc

1

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

If σ’vo+Δσ’ > σ’

p

σ'p=maximum past pressure experience by the soil

⎟⎠

⎜⎝+ ov

rc e '0

g1 σ

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛ Δ++⎟⎟⎠

⎞⎜⎜⎝

+=

p

vvc

v

prc

oCCe

Hs '

''

'

'

0

0 loglog1

σσσσ

--TIME RATE OF SETTLEMENT--SETTLEMENT OF SHALLOW FOUNDATION

v

drv

CHTt

2

= ( )

maxHH

U tave Δ

Δ=

H1

H2

HZi

50% 90% Time, t

Hdr=Smallest Drainage Path

Uave= Average Degree of Consolidation

H3

H4

Settlement, ΔH

∆Hmax

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

16

17

--ELASTIC SOLUTION--Q

SETTLEMENT OF SHALLOW FOUNDATION

( )21;

I q BS

Eν−

= BLQq =

B

E≈100 Su for clays E≈750 N(SPT) for clean sands E≈450 N(SPT) for silty sands

I=0.88 I=π/45.0

88.0 ⎟⎠⎞

⎜⎝⎛=

BLI

SHAPE FACTOR

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

⎠⎝ B

PLAN VIEWB

B B

L D

--LOAD SETTLEMENT CURVE METHOD--SETTLEMENT OF SHALLOW FOUNDATION

PMT

P

2Ro

∆R

P P

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

∆R/Ro

PL

Limit Pressure

17

18

0 . 2 4

O

s RB R

Δ=

SETTLEMENT OF SHALLOW FOUNDATION

--LOAD SETTLEMENT CURVE METHOD--

pdeBLf PffffP .... ,/ Γ= βδ

( )Bef e /33.01 −= Eccentricity

( ) 1.0, /18.0 BDf DB += Slope Proximity

( )LBf BL /2.08.0/ += Shape

( ) 21

90/tan1 ⎥

⎤⎢⎣

⎡−=

−vh FFf δ Inclination

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

SETTLEMENT OF SHALLOW FOUNDATION

--LOAD SETTLEMENT CURVE METHOD--

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

18

19

SETTLEMENT OF SHALLOW FOUNDATION

--LOAD SETTLEMENT CURVE METHOD--

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

19

20

FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

LABORATORY TESTS

→Water Content & Unit Weight

→Atterberg Limits

IN-SITU TESTS

→Borehole Shear Test & Cross-Hole

Wave Tests

FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

→Atterberg Limits

→Relative Density

→Triaxial Test

→Resonant Column Test

→PiezoCone Penetration Test

→Dilatomer Test

→Pressuremeter Test

→Step Blade Test

→Standard Penetration Test & Cone

Penetration TestPenetration Test

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

20

21

FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

21

22

FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

n

tt

SS

⎟⎟⎠

⎞⎜⎜⎝

⎛=

11

Creep Model

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

22

23

FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

IMPORTANT FINDING

Pu (kPa) = 75 N

THE GENERAL BEARING CAPACITY DOES NOT WORK IN THIS CASE

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

DEVELOP ED THE LOAD SETTLEMENT CURVE METHOD

23

24

Comparison between Bearing Capacity Predictions and Measured Pressure at 150 mm of Se.

FIVE LARGE SPREAD FOOTINGS TESTS IN SANDS

Comparison between Predicted and Measured Load at 25 mm of Settlement

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

San Jacinto Monument Houston (1936)

LOADING:

Gross Pressure = 224 kPa

Max Pressure (Dead + Wind) = 273 kPa

EXAMPLE - SAN JACINTO MONUMENT

Excavation= - 83 kPa

Net Pressure=141 kPa

Net Pressure after Mat Poured = 10 kPa

Pressure from Terraces = 34 kPa & 84 kPa

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

24

25

STRATIGRAPHY - SAN JACINTO MONUMENT

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

SOIL INDEX PROPERTIES

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

25

26

CONSOLIDATION CHARACTERISTICS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

STRESS DISTRIBUTION

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

26

27

CONSOLIDATION CHARACTERISTICS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

ACTUAL SETTLEMENT

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

27

28

ACTUAL SETTLEMENT

DESCRIPTION S(m)

CASE 8 (I l di R b d) 0 607CASE 8a (Including Rebound) 0.607

CASE 7a (Not including rebound) 0.370

DAWSON’S PREDICTION 0.187

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

MEASURED SETTLEMENT 0.329

1. Load Resistance Factors Design (LRFD) Approach

2. Site Investigation

3. Design of Shallow Foundation for Vertical Loads

4 P I

CONTENT OUTLINE

4. Pile Instalation

5. Design of Single Piles for Vertical Loads

6. Design of Pile Group for Vertical Loads

7. Design of Single Pile for Horizontal Loads

8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

9 The Role of Load Testing9. The Role of Load Testing

10. Conclusion

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

28

29

BORED PILES → Concrete (dry drilling

or mud drilling), timberor steel piles.

Use in harder soils or

DRIVEN PILES → Timber , Concrete, and

Steel.

→ Use in softer soils.

DESIGN OF DEEP FOUNDATION-TYPES OF PILES

→ Use in harder soils orfor high loads.

→ Nominal diametersranging from 0.40 to 4.0m.

→ Typical length rangingfrom 3 m to 45 m.

→ Nominal diametersranging from 0.30 to 3.0m.

→ Typical length rangingfrom 3.0 m to 60 m.

END BEARING PILES FRICTION PILES

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

WW

DRIVING ANALYSISN (bpf)

Set-Up

ΣN (bpf)

W

I-II-

s

s

III-

End of Driving

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

29

30

http://www.vibropile.com.auhttp://www.coastalcaisson.com

DRILL DRY

INSTALATION OF BORED PILES

DRILL DRY

DRILL WET

USING CAISINGUSING CAISING

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

http://www.moretrench.com/~moretren/cmsAdmin/uploads/thumb2/Drilled_Shafts_001.jpg

DRILL DRY - BORED PILE INSTALLATION

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

30

31

http://www.kbtech.com/images/photos/Anderson%2022%20Cobble%20on%20Auger%20Pilot.jpg

DRILL WET - BORED PILE INSTALLATION

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

INSTALLATION OF BORED PILE WITH CAISING

http://www.agrafoundations.ca/images/large/3.0-Bored-Piles/Thumb-2.jpg

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

31

32

WAK

BULB, STRONG LAYER ≈ FIXED END

V

NON-DESTRUCTIVE TESTING FOR BORED PILES

time

cLt 2

=

at A

FL

A

COMP. COMP.

time

cLt 2

=

at A

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

NECKING, WEAK LAYER ≈ FREE END

VWAK

NON-DESTRUCTIVE TESTING FOR BORED PILES

F

time

cLt 2

=

at A

L

A

COMP. TENS.

time

cLt 2

=

at A

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

32

33

PILE DRIVINGhttp://images.google.com/imgres?imgurl=http://www2.dot.ca.gov/hq/esc/geotech/projects/t

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

h

W

PILE DRIVING ANALYSIS FOR DRIVEN PILES

( )3 0 0( ) 2

U De W h m mR c

N b p f

=+

L R

st

st

Load, Q

sb

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Settlement, s

33

34

PILE DRIVING ANALYSIS FOR DRIVEN PILES

RUD

RUD

RUDTotal

EnergyElastic Energy

max( )

2.5UDeWh mmR =

Np(bpf)75e=efficiency of the hammerW= hammer weight

Scs

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

gh= drop heightNp= number of blow per footC= elastic compression (5mm?)RUD= ultimate resistance of the pileat the end of driving.

( )3 0 0( ) 2

U De W h m mR c

N b p f

=+

WAVE EQUATION ANALYSIS

2

2

2

2

tU

ER

AED

zU

∂∂

=−∂∂ ρπ

Ecρ

= Wave Velocity

WAK

ρ

RUD

ρ=mass density of the pile

E=elastic modulus

A=cross sectional area of the pile

RUD= ultimate resistance of the pile at the end ofdriving

D

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Np

L

34

35

WAVE EQUATION ANALYSIS

WAK WAK

D D

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

L L

+-

+

+

Soft Hard

Software: CAPWAP

Driving ProcessPile CapacityPil I i

PILE DRIVING ANALYZER

h

W

Pile IntegrityStresses along the Pile

STRAINL R

Strain and

AccelerationTransducers

st

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

ACCELERATIONsb

time

35

36

1. Load Resistance Factors Design (LRFD) Approach

2. Site Investigation

3. Design of Shallow Foundation for Vertical Loads

4 P I

CONTENT OUTLINE

4. Pile Instalation

5. Design of Single Piles for Vertical Loads

6. Design of Pile Group for Vertical Loads

7. Design of Single Pile for Horizontal Loads

8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

9 The Role of Load Testing9. The Role of Load Testing

10. Conclusion

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

pufuu QQQ +=

ApAfQ +

Qu

Qu

Working

ULTIMATE BEARING CAPACITY OF A SINGLE PILE

pusuu ApAfQ +=

fu= Ultimate Skin Friction (kPa)

As= Surface Area

L fu Qfu

Ultimate Load

Working Load

pu= Ultimate Point Pressure (kPa)

Ap= Point Areapu Qpu

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

36

37

Short and Long TermULTIMATE POINT RESISTANCE FOR DRIVEN PILES

For Clays -Short Term.uSq 9max =

For Clays Long TermN'

( ) ( ) 5.0max 1000 NkPaq = For Sands (Short & Long Term)

For Clays -Long Term (Nq from API)

For Sands -Short & Long Term

qvo Nq max σ=

qvo Nq 'max σ=

Others Methods are based on Pressuremeter and Cone Penetration Test

Frank, R. (1997), Calcul des Fondations Superficielles et Profondes, Presses de L’Ecole Nationale des Ponts et Chaussees, pp141

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

(Nq from API)

Short and Long TermULTIMATE FRICTION FOR DRIVEN PILES IN CLAY

uu Sf α=max'

max vuf βσ=

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

37

38

ULTIMATE FRICTION FOR DRIVEN PILES IN SAND

For Piles in Sand

Short and Long Term'

max vuf βσ=

( ) ( ) 7.0max 5 NkPafu =

N=SPT blow count

For Bored Piles Usefumax=0.75fumax (Driven)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

For Clays:KPaSSuf 275550 ≤=

Reese & O’NeilNc

S

Square

ULTIMATE BEARING CAPACITY OF A BORED PILE

KPaSSuf uu 27555.0 ≤=

92.016; ≤⎥⎦

⎤⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛+==

bcucu B

LNSNP

0.5' ; 1 .5 0.135( ( )) ;f z ftβσ β= = −

D/B

Strip

For Sands:; 1 .5 0.135( ( )) ;

0.25 1.2; 200u v

u

f z ftf kPa

βσ ββ≤ ≤ ≤

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Pu(kPa)=57 NSPT for 0≤ NSPT≤75 blows per foot

Pu= 4300 kPa for NSPT≥ 75 blows per foot

38

39

FOR MORE INFORMATION ON DOWNDRAG VISIT:

PILNEG, free software

http://ceprofs.tamu.edu/briaud/

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

http://ceprofs.tamu.edu/briaud/

Briaud J.-L., Tucker L.M., 1998, “Design guidelines for downdrag on uncoated and bitumen coated piles”, NCHRP Report 393, National Academy of Sciences.

Qu

Qu

CRITICAL DEPTH OF A SINGLE PILE

Nc

St i

Square9.0

SKEMPTON’S CHART

L1 fu

Dc=4B

LAYER 1

D/B

Strip7.0

4.0Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

pu

B

4B LAYER 2

39

40

Qtop

Stop

SETTLEMENT FOR SINGLE PILES

GENERAL APPROACH

L

Stop

fu

AELPSS ave

bottomtop +=

0 .6 (? )a v e to pP Q=

q Sbottom

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

( )EBpIs bottom

21 υ−=

Qtop

QQwT f1

1111 21

sp AfAqP += AEPLww += 12

SETTLEMENT FOR SINGLE PILES

P3

Qtop

P2

L1 f1

L2

w3

wT

f2

w

f

f2

w

w q1

P1

q

L3

w1

w2

f3f1

w

q

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

40

41

1. Load Resistance Factors Design (LRFD) Approach

2. Site Investigation

3. Design of Shallow Foundation for Vertical Loads

4 P I

CONTENT OUTLINE

4. Pile Instalation

5. Design of Single Piles for Vertical Loads

6. Design of Pile Group for Vertical Loads

7. Design of Single Pile for Horizontal Loads

8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

9 The Role of Load Testing9. The Role of Load Testing

10. Conclusion

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Qusingle

Qugroup

ULTIMATE LOAD CAPACITY OF A PILE GROUP

L L

Zone of Influence

gleuugroup enQQ sin=

e=overall efficiency factor ≈1.0Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

41

42

BLOCK FAILUREANALYSIS OF A PILE GROUP FOR CLAYEY SOILS

Qugroup

L

D

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

( ) BLSNDLBSQ ucuublock ++= 2

( )min ,ugroup usingle ublockQ nQ Q=

B L

LOAD TRANSFER FOR A PILE GROUP ANALYSIS

Qugroup Qugroup

2/3L L L

Hard Layer

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Transfer the Load to 2/3 L if the Soil is uniform (Friction Piles)

Transfer the Load to the bottom if there is a hard layer

(End Bearing Pile)

42

43

CASE HYSTORY – NEW ORLEANS HOSPITAL10000 Timber Piles0.3 m diameter (average)16 Story-Building15 m Long

1500 MN

15 m LongSoft Clay at the top2m thick dense sand at 14.5 m

Su=20 kPa

H

H=2 m

H=14.5 m

SandLOAD

Load Test for a Single Pile

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Su=30 kPa

H1

H2

H3

H4

H=83.5 m

H5

L

Weight of the Hospital=1500 MN

Ru for one pile = 300 kN

10000 x Ru=3000 MN ----FS=2.0 ok.1500 MN

CASE HYSTORY – NEW ORLEANS HOSPITAL

Hi σv ∆σ Uo ∆σ’ εb εa ∆H=∆εxHi

Ultimate Block Capacity= 1200 MN (PROBLEM)

∆Htotal = 0.50 m

H

H=2 m

H=14.5 m

H1

H2

H3

H4

H=83.5,

H5

43

44

1. Load Resistance Factors Design (LRFD) Approach

2. Site Investigation

3. Design of Shallow Foundation for Vertical Loads

4 P I

CONTENT OUTLINE

4. Pile Instalation

5. Design of Single Piles for Vertical Loads

6. Design of Pile Group for Vertical Loads

7. Design of Single Pile for Horizontal Loads

8. Special Cases (Shrink-Swell Soil, Downdrag andScour)

9 The Role of Load Testing9. The Role of Load Testing

10. Conclusion

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

44

45

DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

45

46

DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

ULTIMATE HORIZONTAL LOAD

oov lLforlD 34

>⎟⎠⎞

⎜⎝⎛=π

DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

vlou BDpH43

=ov lLforLD <=

34/14

⎟⎠⎞

⎜⎝⎛=

KEIl o

Pl = limit pressure from PMT L=length of the pile

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

l p

B = projected pile width

E = modulus of the pile material

I = moment of inertia

K = 2.3 Eo

L length of the pile

Dv=(π/lo) with Io=(4EI/K)1/4 for l>3lo

Dv=L/3 for l<lo.

Hou=ultimate horizontal load

lo =transfer length

46

47

FIXED HEAD BEHAVIOR FREE HEAD BEHAVIOR

Hou

yo

M

Hou

yo

M

DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

Ly'o=0

L

0' ≠oy

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

L =length pile

Hou =ultimate horizontal load

M =moment at the top of the pile

yo = horizontal displacement at the top of the pile

y'o =deflection at the top of the pile

HORIZONTAL DISPLACEMENT @Hou/3

DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

GENERAL CASE

oo lLfMH 322 L d Fl ibl

P li it f PMT

yo

oEK 3.2=

oo

o

o

oo lLfor

klKly 32 >+=

( )2

2 2 3o oo o

H L My for L l

KL− +

= <

Long and Flexible

Short and Rigid

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Pl = limit pressure from PMT

B = projected pile width

E = modulus of pile material

I = moment of inertia

M = moment at the top

L = length pile

Hou = ultimate horizontal load

lo = transfer length

Ho = applied horizontal load

47

48

HORIZONTAL DISPLACEMENT @Hou/3

DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

FREE HEAD

o lLforHy 32>= L d Fl ibl

P li it f PMT

oo

o lLforKl

y 3>=

oo

o lLforLKHy <−=

4

oEK 3.2=

yo

Long and Flexible

Short and Rigid

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Pl = limit pressure from PMT

B = projected pile width

E = modulus of pile material

I = moment of inertia

K =2.3 Eo

L = length pile

Dv = (π/lo) with Io=(4EI/K)1/4 for l>3lo

Dv = L/3 for l<lo.

Hou = ultimate horizontal load

lo = transfer length

HORIZONTAL DISPLACEMENT @Hou/3

DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

FIXED HEADo lLforHy 3>= L d Fl ibl

P li it f PMT

yo

oEK 3.2=

oo

o lLforKl

y 3>=

oo

o llforKLHy <−= 2

Long and Flexible

Short and Rigid

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Pl = limit pressure from PMT

B = projected pile width

E = modulus of pile material

I = moment of inertia

L = length pile

Hou = ultimate horizontal load

lo = transfer length

Ho = applied horizontal load

48

49

DESIGN OF SINGLE PILE FOR HORIZONTAL LOADS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

( )( )

n

ooou

ou

tt

tHtH

⎟⎟⎠

⎞⎜⎜⎝

⎛=

( )( )

n

ooo

o

tt

tyty

⎟⎟⎠

⎞⎜⎜⎝

⎛=

LONG TERM LATERAL LOAD

n=0.01 to 0.03 in sands

n=0.02 to 0.08 in clays

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Hou= ultimate horizontal load at time t

Hou= ultimate horizontal load at time to

yo = lateral deflection at time t

yo = lateral deflection at time to

49

50

( )( )

n

tt

tRtR

⎟⎟⎠

⎞⎜⎜⎝

⎛=

ΔΔ

( )( )⎞⎛

⎟⎟⎠

⎞⎜⎜⎝

⎛ΔΔ

−= o

ttRtR

nlog

“n” VALUES FROM THE PRESSUREMETER TEST

n=0.01 to 0.03 in sandsn=0.02 to 0.08 in clays

( ) oo ttR ⎟⎠

⎜⎝Δ

⎟⎟⎠

⎞⎜⎜⎝

ottlog

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

∆R(t)= change in the radius of the cavity at time t

∆R(t0)= change in the radius of the cavity at time to

“n” VALUES FROM THE PRESSUREMETER TEST

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

50

51

aN Nyy 1=

a averages 0.1 for clays (one way and two way)

CYCLIC LATERAL LOADING

a averages 0.08 for sands under one way loading

a averages 0 for sands under two way loading

Ho

ONE WAY CYCLIC Ho

TWO WAY CYCLIC

y

LOADING

y

TWO WAY CYCLIC LOADING

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

aN NRR

RR

a

Nlog1⎟⎟⎠

⎞⎜⎜⎝

⎛ΔΔ

“a” FROM THE PRESSUREMETER TEST

PMT ONLY APPLICABLE FOR ONE WAY

R 1 ( )Na

log⎠⎝=

CYCLIC LOADING

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

51

52

THE PRESSUREMETER TEST

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

THE PRESSUREMETER TEST

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

52

53

LATERAL LOAD NEAR A TRENCH

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

trenchnotrench HH λ=LATERAL LOAD NEAR A TRENCH

λ

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

53

54

FUTURE WORK IN RETAINING WALLS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

EARTH PRESSURE COEFFICIENT VS MOVEMENT/HEIGHT

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

54

55

Hou Hou

FIXED HEAD BEHAVIOR

DESIGN OF PILE GROUP FOR HORIZONTAL LOADS

L L

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

( ) ( )gleougroupou enHH sin=n= number of piles

e=efficiency factor

Direction of the Load

4 DIAMETER PENETRATION AND 0.5- DIAMETER CLEAR SPACING

GROUP EFFICIENCY FOR HORIZONTALLY LOADED PILES

0.33 0.360.31

Fraction of the Load

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

55

56

0.20 0.18 0.14 0.20 0.28

8 DIAMETER PENETRATION AND 0.5 DIAMETER CLEAR SPACING

GROUP EFFICIENCY FOR HORIZONTALLY LOADED PILES

8 DIAMETER PENETRATION AND 1.0- DIAMETER CLEAR SPACING

0.21 0.17 0.17 0.18 0.26

8 DIAMETER PENETRATION AND 2.0- DIAMETER CLEAR SPACING

0.19 0.19 0.19 0.19 0.24

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

1. Load Resistance Factors Design (LRFD) Approach

2. Site Investigation

3. Design of Shallow Foundation for Vertical Loads

4 P I

CONTENT OUTLINE

4. Pile Instalation

5. Design of Single Piles for Vertical Loads

6. Design of Pile Group for Vertical Loads

7. Design of Single Pile for Horizontal Loads

8. Special Cases (Shrink-Swell Soils, Downdrag andScour)

9 The Role of Load Testing9. The Role of Load Testing

10. Conclusion

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

56

57

Soil Movement

FOUNDATION ON SHRINK-SWELL SOILS

h=active zoneShrink Swell Soil ∆w

Water Content Profile

d

w

i

wi

i

i

i wE

wfHH

γγ

εΔ

=33.0

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Shrink-Swell SoilShrinking

Qu

SwellingQu

FOUNDATION ON SHRINK SWELL SOILS

L

h=active zoneLOAD

Qu

Qp

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Shrinking

Swelling )( hLDfL uLOAD −= π

DhfL uLOAD π=

4)(

2DphLDfL uuLOADππ +−=

57

58

STIFFENED SLAB ON PIERS

FOUNDATION ON SHRINK SWELL SOILS

ELEVATED STRUCTURAL SLAB ON PIERS

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

THIN POST TENSIONED SLAB ON GRADE

FOUNDATION ON SHRINK SWELL SOILS

STIFFENED SLAB ON GRADE

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

58

59

DOWNDRAG ON PILES

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

PILE POINT BEHAVIOR

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

59

60

2(1 )4

ppunch

s

Q Dv

AEπω = −

PILE POINT BEHAVIOR

ωpunch = Pile point movement

ν = Poisson’s ratio

Qp= Point resistance

A= Area of pile pointA= Area of pile point

D= Diameter of pile point

Es= Soil modulusFor clays = Es = 100 Su = EPMT

For sands=Es (kPa) = 750 N = 2 EPMT

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

EXAMPLE OF DOWNDRAG ON SINGLE PILES

Pile Ultimate Capacity

Qu = 706 + 1000

Q = 1706 kNQu 1706 kN

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

60

61

EXAMPLE OF DOWNDRAG ON SINGLE PILES

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Qfn(group)Qfn(single)

DOWNDRAG FOR A GROUP OF UNCOATED PILES

LL

s s sCorner Piles

Side Piles

Internal Piles

( ) ( )glefngroupfn QQ sin5.0=

( ) ( )glefnsidefn QQ sin40.0=

( ) ( )glefnernalfn QQ sinint 15.0=

5.2=dsfor

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

61

62

SCOUR TYPES

Probable Flood Levelys(Abut) Applies ys(Cont) Applies

CL

Normal Water Level

ys(Abut)

y s(pier)y s(Cont)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

is Abutment Scour Depthis Contraction Scour Depthis Pier Scour Depth

Where, ys(Abut)

y s(Cont)

y s(pier)

( )0.7( )1 ( ) ( )2.2 2.6

's Pier

w L sp pier c pier

yK K K K Fr Fr

a= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −

0.331 10.89 , for 1.43' 'w

y yK a a

⎧ ⎛ ⎞ <⎪ ⎜ ⎟= ⎨ ⎝ ⎠⎪

MAXIMUM PIER SCOUR (Oh, 2009)

Where,1.0 , else⎪⎩

1

1.0 , for 30Value in following Table , else

Kθ > °⎧

= ⎨⎩1.0, for whole range of /LK L a=

0.91

2.9 , for 3.42' '

1 0 elsesp

S SK a a

−⎧ ⎛ ⎞ <⎪ ⎜ ⎟= ⎨ ⎝ ⎠⎪⎩1.0 , else⎩

Shape of pier nose Shape of pier noseSquare nose 1.1 Circular cylinder 1.0Round nose 1.0 Sharp nose 0.9

1K1K

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

62

63

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Case 1 - Big Scour Hole

26% Observed Occurrence

Case 2 – Settlement of Pier

32% Observed Occurrence

Case 3 - Loss of Deck

5% Observed Occurrence

Case 4 - Loss of Pier

37% Observed Occurrence Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

126

Case 1 - Big Scour Hole

26% Observed Occurrence

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

63

64

Courtesy of the University of Kentucky at Louisville

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

64

65

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

129

Case 2 – Settlement of Pier

32% Observed Occurrence

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

65

66

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

66

67

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

134

Case 3 - Loss of Deck

5% Observed Occurrence

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

67

68

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

Hatchie River Bridge, Tennessee

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

68

69

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

138

Case 4 - Loss of Pier

37% Observed Occurrence

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

69

70

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

70

71

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

71

72

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

72

73

OBSERVED FAILURE MODES OF BRIDGE DUE TO SCOUR(based on failure photos in Briaud’s files)

This distance should be made larger to decrease

the risk of collapse

145Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

STRUCTURAL

and

GEOTECHNICAL

THE ROLE OF SOIL STRUCTURE-INTERACTION

Qu Q

S

k1

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

73

74

1. Load Resistance Factors Design (LRFD) Approach

2. Site Investigation

3. Design of Shallow Foundation for Vertical Loads

4 P I

CONTENT OUTLINE

4. Pile Instalation

5. Design of Single Piles for Vertical Loads

6. Design of Pile Group for Vertical Loads

7. Design of Single Pile for Horizontal Loads

8. Special Cases (Shrink-Swell Soils and Downdrag)

9. Example Problems

0 T T10.The Role of Load Testing

11. Conclusion

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

→Laboratory testing brings the problem of sampledisturbance . However, its application is valuable for theunderstanding of some properties that can not bedetermined using In-Situ Tests.

THE ROLE OF LABORATORY TESTING

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

74

75

THE ROLE OF IN-SITU TESTINGMAYNE, P., CHRISTOPHER, B., & DEJONG, J. (2002).

→In-situ testing gives a good estimation of the soil properties byreducing the problem of sample disturbance.

→Its application depends on the project magnitude and importance.

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

http://images.google.com/imgres?imgurl=http://

THE ROLE OF LOAD TESTING: SONIC INTEGRITY TEST

→SONIC-INTEGRITY: is an in-situ test that helps to locatepotential problems in bored piles.

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

75

76

Hydraulic

Jack and Gauges

Q(Load)

Qu Qu

LOAD

RXRX

THE ROLE OF LOAD TESTING: STATIC LOAD TEST FOR PILES

Q(Load)

0.1B

QuQu

AEL

L

RX

SANDS

S(Settlement)

CLAYS

AEQLBS e += 1.0

L

Reaction Piles

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

http://www.earth-engineers.com/Pile%20Load%20Test%20%281%29.jpg

THE ROLE OF LOAD TESTING: STATIC LOAD TEST FOR PILES

→ It provides the load curve of an installed pile. From that,the ultimate load resistance of the pile can be determined.

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

76

77

STATIC LOAD TEST FOR SHALLOW FOUNDATION(Texas A&M University Load Tests)

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

THE ROLE LOAD TESTING: STATNAMIC TEST

www.statnamiceurope.com/

→ The Statnamic is another load test that provides a loadSettlement curve of an installed pile.

Jean Louis BRIAUD – TEXAS A&M UNIVERSITY

77