flowid presentation cphi workshop 2015 mumbai

48
1

Upload: wouter-stam

Post on 14-Apr-2017

976 views

Category:

Engineering


1 download

TRANSCRIPT

1

Chemicals Production in the Future: Energy, Raw Materials, Capital & Risk

2

Highly variable supply Distributed production Storage/transport inefficient Use for chemicals production Highly variable production rate

Wind Turbines

50 TW

5 TW

Slides by dr.ir. John van der Schaaf TU/e

Chemicals Production in the Future: Energy, Raw Materials, Capital & Risk

3

0.5 MW

Highly variable resources Biomass, recycle, waste Distributed production Safe, robust, efficient, versatile equipment + processes

Slides by dr.ir. John van der Schaaf TU/e

Chemicals Production in the Future: Energy, Raw Materials, Capital & Risk

4

Low CAPEX High ROI Multipurpose, Scalable Robust, Safe Millions vs. Billions

Slides by dr.ir. John van der Schaaf TU/e

Multiphase Systems: Bottlenecks

5

Gas Liquid Solid

agl asCg CL

Gas Liquid Solid

11A

g g gl l gl s s r t s

r H H HC k a k a k a k L aη δ

−$ %−

= + + +& '& '( )

Catalyst concentration/activity

Rea

ctio

n ra

te

mass transfer limited

kinetically limited

δ

Slides by dr.ir. John van der Schaaf TU/e

Rotor-Stator Spinning Disc Technology

6

Rotor-Stator Spinning Disc Technology

Answers demands PI of multiphase systems: • High mass transfer (GL ~10 1/s, LL ~300 1/s, LS ~ 1 1/s)

• High heat transfer (U.A ~ 40 MW/m3/K)

• Short micromixing times (tm ~ 0.1 ms)

• Countercurrent Flow (100-1000 kg/hr)

• Plug Flow (~4 tonnes/hr)

• Low volume ( VR ~ 1 L)

Applications: • Extreme fast and exothermic reactions (nitrification) • Multiphase reactions (sulfonation, halogenation) • Extraction (LL, LS) • Distillation (RPB), Absorption • Crystallization • Electrochemistry, Photochemistry

Slides by dr.ir. John van der Schaaf TU/e

Rotor-Stator Spinning Disc Technology

7

Rotor-Stator Spinning Disc Technology

Special Features: • Alternative construction materials • Specialty coatings, surface treatment • High corrosion resistivity • Membranes, Catalytically active discs • Phase separation (GL, LS) • High pressure, high temperature • High viscosity (Glycerol, 98% H2SO4)

Slides by dr.ir. John van der Schaaf TU/e

ReactorReactor

Chemical Production Process

8

Extractor

Evaporation Crystallizer

A(S) + B(g) ----> C(S)

C(S) + B(g) ----> D(S)

A(S)

B(g)

A(S), C(S), D(S)

D(E)

C(E), D(E)

E

C(s)

E

Crystallizer

D(s)

C(E), D(E)

cat

catSlides by dr.ir. John van der Schaaf TU/e

Multiple Spinning Disc Reactor

9 Slides by dr.ir. John van der Schaaf TU/e

Gas-Liquid Mass Transfer

10

3 -3 -1L G0.5 m m sL GL

G

k aε

Gas-Liquid Mass Transfer

Meeuwse et al., Gas–liquid mass transfer in a rotor–stator spinning disc reactor, CES 65 466-471(2010)

Gas flow: 400 mL/min Liquid flow: 400 mL/min

Slides by dr.ir. John van der Schaaf TU/e

Gas-Liquid Mass Transfer

11

Gas-Liquid Mass Transfer

Van Eeten et al., A theoretical study on gas-liquid mass transfer in the rotor stator spinning disc reactor, CES 129 2015 Slides by dr.ir. John van der Schaaf TU/e

Multiple Spinning Disc Slurry Reactor

12 Slides by dr.ir. John van der Schaaf TU/e

Spinning Disc Electrolysis

13 I (A) Slides by dr.ir. John van der Schaaf TU/e

Photochemical Reactor

14 Slides by dr.ir. John van der Schaaf TU/e

Reactor ExtractorExtractorReactor

Chemical Production Process

15

Evaporation Crystallizer

A(S)

B(g)

A(S), C(S), D(S)

D(E)

C(E), D(E)

E

C(s)

E

Crystallizer

D(s)

C(E), D(E)

A(S) + B(g) ----> C(S)

C(S) + B(g) ----> D(S)Slides by dr.ir. John van der Schaaf TU/e

Cocurrent Liquid-Liquid Flow Rotor-Stator

16Visscher, Ind. & Eng. Chem. Res. 2012; Visscher, Chem. Eng. J. 2012 Slides by dr.ir. John van der Schaaf TU/e

Cocurrent Liquid-Liquid Flow Rotor-Stator

17Visscher, Ind. & Eng. Chem. Res. 2012; Visscher, Chem. Eng. J. 2012 Slides by dr.ir. John van der Schaaf TU/e

Rotor-Rotor Spinning Disc Extractor

18 Slides by dr.ir. John van der Schaaf TU/e

Multiple contacting stages

19 Slides by dr.ir. John van der Schaaf TU/e

Physical separation efficiency

20

500 1000 1500 2000500

1000

1500

2000 Light outlet: Purity (%)

Ωinner rotor [rpm]

Ωou

ter r

otor

[rpm

]

500 1000 1500 2000500

1000

1500

2000 Heavy outlet: Purity (%)

Ωinner rotor [rpm]

Ωou

ter r

otor

[rpm

]

80

82

84

86

88

90

92

94

96

98

100

80

82

84

86

88

90

92

94

96

98

100

5 mL/s heptane, 5 mL/s water

Slides by dr.ir. John van der Schaaf TU/e

Physical separation efficiency

21

5 mL/s heptane, 5 mL/s water

500 1000 1500 2000500

1000

1500

2000

PSE = Purityheavy*Puritylight (-) (Fheavy=5 ml/s and Flight=5 ml/s)

Ωinner rotor

[rpm]

Ωou

ter

roto

r [rpm

]

PSE < 0.850.85 < PSE < 0.99PSE > 0.99

Slides by dr.ir. John van der Schaaf TU/e

Physical separation efficiency

22

5 mL/s heptane, 5 mL/s water

500 1000 1500 2000500

1000

1500

2000

PSE = Purityheavy*Puritylight (-) (Fheavy=5 ml/s and Flight=5 ml/s)

Ωinner rotor

[rpm]

Ωou

ter

roto

r [rpm

]

PSE < 0.850.85 < PSE < 0.99PSE > 0.99

Slides by dr.ir. John van der Schaaf TU/e

500 1000 1500 2000500

1000

1500

2000

PSE = Purityheavy*Puritylight (-) (Fheavy=5 ml/s and Flight=5 ml/s)

Ωinner rotor

[rpm]

Ωou

ter

roto

r [rpm

]

PSE < 0.850.85 < PSE < 0.99PSE > 0.99

Physical separation efficiency

23

5 mL/s heptane, 5 mL/s water

6 mL/s, 6 mL/s

10 mL/s, 10 mL/s

Slides by dr.ir. John van der Schaaf TU/e

Extraction efficiency: kLa

24

5 mL/s heptane, 5 mL/s water, 0-50 g/L benzoic acid in heptane

500 1000 1500 2000500

1000

1500

2000

PSE = Purityheavy*Puritylight (-) (Fheavy=5 ml/s and Flight=5 ml/s)

Ωinner rotor

[rpm]

Ωou

ter

roto

r [rpm

]

PSE < 0.850.85 < PSE < 0.99PSE > 0.99

0.05 1/s

0.35 1/s 0.7 1/s

0.1 1/s

0.13 1/s

Slides by dr.ir. John van der Schaaf TU/e

Extractor

Chemical Production Process

25

Reactor

Evaporation Crystallizer

A(S)

B(g)

A(S), C(S), D(S)

D(E)

C(E), D(E)

E

C(s)

E

Crystallizer

D(s)

C(E), D(E)

A(S) + B(g) ----> C(S)

C(S) + B(g) ----> D(S)Slides by dr.ir. John van der Schaaf TU/e

Multifunctionality

26 Slides by dr.ir. John van der Schaaf TU/e

27

Opportunities for Spinning Disc Technology

Small, Safe, VersatileIntensification of all unit operationsLow CAPEX, High ROI Low Risk 2 Marco

Opportunities for Spinning Disc Technology

Slides by dr.ir. John van der Schaaf TU/e

Flowid Products & Services

FlowFlex

Automated modular platform SpinPro Reactor

Continuous Reactor based on patented Spinning Disc Technology

SpinPro ExtractorCounter current Extractor based on patented Spinning Disc Technology

Process Development & TestingFully to customers specs, testing in house possible on lab and pilot scale

28

Spinning  Disk  ReactorCon2nuous  Reactors

Metric tons/DayFast chemistry

Extremely inert material

High heat transferMulti-stage reactions

Metric tons/DayFast ChemistryExtreme mixing efficiencyHandles gas/liquid/solids

Multi-stage reactions

“Lab to Manufacture” Platforms

Production ScaleSpinning  Disk  ReactorCon2nuous  Reactors

flowid®

Production ScaleSpinning  Disk  ReactorCon2nuous  Reactors

fast and predictable scale up to the most suitable platform

•Multiple modules on one platform•One user interface•Data logging•Available as a service or purchase

FlowFlex With SpinPro R300

Control panel

Pumps

Flow controllers

SpinPro Reactor

32

FlowFlex With Chemtrix MR260

Control panel

MR260

Pumps

Flow controllers

33

SpinPro R300

34

Number of stages: 3

Temperature: -20 - 160 °C

Pressure: 10 bar (g)

Flowrate: 0,1 - 600 l/hr

Reactor volume: 135/230 ml

Body material: SS316 / Hastelloy C

Seal material: PTFE

O-ring material: FFKM

Rotation: 3000 rpm

Heat transfer: up to 1 kW/stage (ΔT=40 °C)

Measurement: thermocouple at each stage

SpinPro R700

35

Number of stages: 7

Temperature: -20-160 °C

Pressure: 10 bar (g) (100bar autoclave)

Flowrate: up to 3600 L/hr

Reactor volume: 430 ml

Body material: Hastelloy-C

Seal material: Teflon (PTFE)

O-ring material: Kalrez (FFKM)

Rotation: 4500 rpm

Heat transfer: tbd (ΔT=70 °C)

Measurement: thermocouple at each stage

SpinPro Reactor

36

Easy to cleanEasy to assemble and inspectEasy to re-machine the surfacesEasy to scale to R700

300 LPH Slurry at 135 degC

37

Oil, water, gas phase and quench

38

Oil and water phase reaction at 160 degC

39

Pharma Pilot Production Plant

Reaction Example: Halogen/Lithium Exchange

Batch

Reaction Example: Halogen/Lithium Exchange

42

Batch Continuous lab97% Yield 97% Yield

-78 C required, slow addition

Scalable, room temp 2.7 Kg/hr @ Feedrates 200+ mL/min

Feed reagent concentrations of 2.0M, lithium products were quenched with TMSCl and analyzed by GC. Tet. Lett., 2010, 51, p. 4793.

Cl

SiMe3

Cl

Br

Li

2.0M

+

Cl

Li

Flow Process:◆ 97,5% Conversion, ◆ Overall combined flow rate = 400 mL/min

Reaction Example: Halogen/Lithium Exchange

Li+

Br

LiS3T1@RT

S3T1@RT

DMF (in THF)O

Cl

Cl

Cl

Set-up production scale Component BBuLi

Quench

Reaction and quench in one system

V = 135 ml. 45 ml per disc

Flow at 100 LPH

Lab to Manufacture Scalability

Tet. Lett., 2010, 51, p. 4793.

15 mL experiments

97.5% 1.1 eq BuLi200 uM gap and 5500 rpm on a 2.5"disk

100 kg finished API/day 97% 1.1 eq BuLi1mm gap and 2500 rpm on a 6" disk

Batch reactor

The SpinPro allows for safe operation at high temperaturesArrhenius law: higher temperature equals a higher production rate

SpinPro reactor

Reaction Example: Halogen/Lithium Exchange

48

Wouter StamManaging Director

[email protected]+316 2467 9774www.Flowid.nl