finite-element electrical machine simulation · −im{u 2} 4 t t = re im alternating fields...

93
Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de Dr.-Ing. Herbert De Gersem Institut für Theorie Elektromagnetischer Felder Lecture Series Finite-Element Electrical Machine Simulation in the framework of the DFG Research Group 575 „High Frequency Parasitic Effects in Inverter-Fed Electrical Drives” http://www.ew.e-technik.tu-darmstadt.de/FOR575 Dr.-Ing. Herbert De Gersem summer semester 2006 Institut für Theorie Elektromagnetischer Felder

Upload: others

Post on 30-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    In

    stitu

    t für

    The

    orie

    Ele

    ktro

    mag

    netis

    cher

    Fel

    der

    Lecture Series

    Finite-Element Electrical Machine Simulation

    in the framework of the DFG Research Group 575„High Frequency Parasitic Effectsin Inverter-Fed Electrical Drives”

    http://www.ew.e-technik.tu-darmstadt.de/FOR575

    Dr.-Ing. Herbert De Gersemsummer semester 2006

    Institut für Theorie Elektromagnetischer Felder

  • 2

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rRotor Geometry/Motion

    rotation: rt st mtθ θ ω= −

    static/dynamic eccentricity( )rt mstst rt

    j tj jr e r e deθ ωθ γ+= +

    rt st m skewt zθ θ ω γ= − −skewing

  • 3

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rOverview

    alternating, rotating and elliptical air-gap fields

    classificationsynchronous ↔ asynchronous motionuniform ↔ non-uniform geometriesEuler ↔ Lagrange formulations

    implicitly considering motionEuler formulationstatic/time-harmonic simulationslip transformation technique

    explicitly considering motion (Lagrange)sliding-surface ↔ moving-band techniqueslocked-step approach, polynomial interpolation, mortar-element method, trigonometric interpolation

  • 4

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rAir-Gap Fields (1)

    ( )⎪⎭

    ⎪⎬⎫

    ⎪⎩

    ⎪⎨⎧

    =θ λθ−ωtjtot eata~

    223Re),(

    { }tjju eIei ω°−= 02ReuI

    ( ){ }°−λθ=θ ω°− 0cos~2Re),( 0 tjju eeata

    { }tjjv eIei ω°−= 1202RevI

    ( ){ }°−λθ=θ ω°− 120cos~2Re),( 120 tjjv eeata

    { }tjjw eIei ω°−= 2402RewI

    ( ){ }°−λθ=θ ω°− 240cos~2Re),( 240 tjjw eeata

    alternating fields, detuned in time & space rotating field

    alternating currents, detuned in time

    windings detuned in space

  • 5

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rAir-Gap Fields (2)

    0=t

    { }2Re u

    { }2Im u−

    4Tt =

    re

    im

    rotating fieldalternating fields

    t

    )(tu

    t

    )(tu

    t

    )(ture

    re

    re

    -im

    -im-im

    t

    )(ture

    -im

  • 6

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rAir-Gap Fields (3)

    air gap field

    7-3 5-1 1 3-7 -5

    field spectrum

  • 7

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rAir-Gap Fields (4)

    every stationary air-gap field can be expressed by a series of rotating fields

    ( ),( , )

    j ta t a e+∞ +∞

    ω −λθω λ

    ω=−∞ λ=−∞θ = ∑ ∑

    syn,λω

    ω =λ

    synchronous speed:

    *, ,a a−ω −λ ω λ=

    -2 -10 1

    2-2

    -10

    12

    0

    0.2

    0.4

    angular frequencpole pair number

    mag

    nitu

    de

    wave spectrum ispoint symmetric:

  • 8

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rAir-Gap Fields (5)

    symmetrical variant

    ( ){ },0

    ( , ) Re j ta t a e+∞ +∞

    ω −λθω λ

    ω= λ=−∞θ = ∑ ∑

    -2-1

    01

    2

    -2-1

    01

    2

    0

    0.5

    1

    angular frequencypole pair number

    mag

    nitu

    de

  • 9

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rAir-Gap Fields (6)

    Example 1:rotating field with angular frequency and pole pair number :ω λ

    ( )rot ˆ( , ) cosa t a tθ = ω −λθ−ϕ( ) ( )

    rotˆ ˆ

    ( , )2 2

    j jj t j tae aea t e e

    − ϕ ϕω −λθ −ω +λθθ = +

    { }rot ˆ( , ) Re j ta t ae e− ϕ ω −λθθ =

    -2 -10 1

    2-2

    -10

    12

    0

    0.2

    0.4

    angular frequencpole pair number

    mag

    nitu

    de

  • 10

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rAir-Gap Fields (7)

    Example 2:alternating field with angular frequency and pole pair number :ω λ

    ( ) ( )rot ˆ( , ) cos cosa t a tθ = ω λθ( ) ( ) ( ) ( )

    rotˆ ˆ ˆ ˆ

    ( , )4 4 4 4

    j t j t j t j ta a a aa t e e e eω −λθ −ω +λθ ω +λθ −ω −λθθ = + + +

    -2-1

    01

    2

    -2-1

    01

    2

    00.05

    0.10.15

    0.2

    angular frequencypole pair number

    mag

    nitu

    de

    ( ) ( )rot

    ˆ ˆ( , ) Re

    2 2j t j ta aa t e eω −λθ ω +λθ⎧ ⎫θ = +⎨ ⎬

    ⎩ ⎭

    = +forward

    rotating fieldbackward

    rotating fieldalternatingair gap field

    decompositionω

    λω λ

    ω−

  • 11

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rAir-Gap Fields (8)

    Example 3:elliptical air-gap field with angular frequency and pole pair number :ω λ

    ( ) ( ) ( ) ( )rot ˆˆ( , ) cos cos sin sina t a t b tθ = ω λθ + ω λθ( ) ( ) ( ) ( )

    rotˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

    ( , )4 4 4 4

    j t j t j t j ta b a b a b a ba t e e e eω −λθ −ω +λθ ω +λθ −ω −λθ+ + − −θ = + + +

    -2 -10 1

    2-2

    -10

    12

    0

    0.2

    0.4

    angular frequencpole pair number

    mag

    nitu

    de

    ( ) ( )rot

    ˆ ˆˆ ˆ( , ) Re

    2 2j t j ta b a ba t e eω −λθ ω +λθ

    ⎧ ⎫+ −⎪ ⎪θ = +⎨ ⎬⎪ ⎪⎩ ⎭

    &φ −φ

    elliptical

    = +

    forward rotating field

    backwardrotating field

  • 12

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rOverview

    alternating, rotating and elliptical air-gap fields

    classificationsynchronous ↔ asynchronous motionuniform ↔ non-uniform geometriesEuler ↔ Lagrange formulations

    implicitly considering motionEuler formulationstatic/time-harmonic simulationslip transformation technique

    explicitly considering motion (Lagrange)sliding-surface ↔ moving-band techniqueslocked-step approach, polynomial interpolation, mortar-element method, trigonometric interpolation

  • 13

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r(A)synchronous Operation

    S

    synchronous operation

    mωω = λ

    N

    S

    λω

    S

    asynchronous operation

    mωω ≠ λ

    N

    S

    λω

    rotating field in stator/rotorstatic field in rotor/stator

    rotating field in both stator and rotor

    synchronous machines& DC machines& reluctance motors

    induction (asynchronous) machines& single-phase machines& magnetohydrodynamic pumps

  • 14

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r(Non-)Uniform Configuration

    uniform configuration non-uniform configuration

    mωmω

    v v

    v

    v geometryexcitationsboundary conditions

    with respect to the direction of motionuniform

  • 15

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rEuler Approach

    x

    y

    xv

    φ

    • single (standstill or laboratory) coordinate system

    • current (modified Ohms law)

    • partial differential equation

    ( ) sv A AA Jt+ ×∇×∂

    ∇× ∇× + =∂

    ν σσ

    J E v B= + ×σ σ

  • 16

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rLagrange Approach

    x

    y x~y~ xv

    φ

    • separate coordinate system attached to every solid body• standard Maxwell equations

    • partial differential equation:

    • relation:

    ( ) sAA Jt∂

    ∇× ∇× + =∂

    ν σ

    euler lagrangeE BE v+= ×

  • 17

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rOverview

    alternating, rotating and elliptical air-gap fields

    classificationsynchronous ↔ asynchronous motionuniform ↔ non-uniform geometriesEuler ↔ Lagrange formulations

    implicitly considering motionEuler formulationstatic/time-harmonic simulationslip transformation technique

    explicitly considering motion (Lagrange)sliding-surface ↔ moving-band techniqueslocked-step approach, polynomial interpolation, mortar-element method, trigonometric interpolation

  • 18

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rSolid-Rotor Machines

    10 m/sxv =

  • 19

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rSolid-Rotor Machines

    0 rad/s 1 rad/s

    adap

    tive

    refin

    emen

    t

    10 rad/s 100 rad/s

  • 20

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rHomogenization

    θφI

    θφI

    homogenization

    mωslotσ

    toothσ toothν

    slotν

    slotµ

    toothµ

    )(rθν

    )(rrµ)(rzσ

    ∫τ

    θθστ

    =σz

    zz rr

    0

    d),(1)(

    ∫τ

    θθµτ

    =µz

    zr rr

    0

    d),(1)(

    ∫τ

    θ θθντ=ν

    z

    zrr

    0

    d),(1)(

    simulation of motional eddy currents in one single step

    • anisotropy• non-linearities• external circuit coupling• inaccurate in practice

    torque ofinductionmachine

    293.0 Nm225.7 Nm

    approach

    transientEuler+hom

  • 21

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rCoordinate Transformation

    stator

    rotor rtθ stθcoordinate transformationst rt mtθ = θ +ω

  • 22

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r(Brushless) DC Motors

    mechanical/electronic commutation

    PM

    armaturewinding

    xy

    1. current load seen from stator :( ) ( )( )st st armˆ, cosi t i p≈ −θ θ ϕ

    stθrtθ

    armϕ

    current load seen from rotor :

    ( ) ( )( )st m rt armˆ, cosi t i p t p≈ + −θ ω θ ϕ

    ( ) ( )st r st,B t B≈θ θ

    • attach single coordinate system to the stator

    2. PM field seen from stator :

    • neglects effects at higher spatial and temporal harmonics, e.g., slotting

    • static simulation

  • 23

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rSynchronous Machines

    current load observed from the stator :

    ( ) ( )st stˆ, cosi t i t p≈ −θ ω θ

    2. PM field observedfrom the rotor :

    mωxy

    stθ

    rtθ

    1. current load observed from the rotor :

    ( ) ( )rt r rt,B t B≈θ θ

    • static simulation

    ( ) ( )st rtˆ, cosi t i p≈θ θ

    • attach coordinate systemto the rotor

    • neglects effects at higher spatial and temporal harmonics, e.g., slotting

  • 24

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rSlip Transformation (1)

    stator

    rotor

    ( ) Vj ∇σ−=ωσ+×∇ν×∇ uu

    ( ) ,sj Vλν ω σ σ∇× ∇× + = − ∇u u

    λω

    ( ) ( ){ }stst ˆ, Re j tu t a e −= ω λθθ air gap field= rotating wavecoordinate transformationrtθ stθ

    st rt mtθ = θ +ω

    ,s λω

    ( ) ( )( ){ }rtrt ˆ, Re mj tu t a e − −= ω λω λθθ,s mλω ω λω= −

    slip pulsation

  • 25

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rTorque Computation (1)

    stator

    rotor

    λω

    ( ) ( )ˆ, cosz z aE t A tθ = ω ω −λθ+ ϕ

    θ′ θ

    ,s λω

    ( ) ( )ˆ, cos hH t H tθ θθ = ω −λθ+ ϕ

    ( ) ( ) ( ), , ,r zS t E t H t− θθ = θ θ

    ( )stator ˆ ˆ sinz z a hP R A Hθ= π ω ϕ −ϕ

    ( )rotor , ˆ ˆ sinz s z a hP R A Hλ θ= π ω ϕ −ϕ

    ( )mech ˆ ˆ sinz m z a hP P R A Hθ∆ = = π ω ϕ −ϕmechP

    rotorP

    statorP

    ( )mech ˆ ˆ sinz z a hT R A Hθ= π ϕ −ϕ

  • 26

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rTorque Computation (2)

    machine operation modes

    S

    N

    S

    S

    N

    S

    S

    N

    S

    S

    mωN

    S

    mech 0T > mech 0T

  • 27

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rSlip Transformation (2)

    ( ) Vj ∇σ−=ωσ+×∇ν×∇ uu

    ( ) Vsj ∇σ−=σω+×∇ν×∇ λ uu

    θ′ θmω

    λω

    stator

    rotor

    mechanical speedof the rotor

    speed of the rotatingair gap field

    slip pulsation ≈ speed difference betweenrotating air gap field and rotating rotor

    λω

    λω

    simulation of three-phaseinduction machines incorporating motional eddy current effects in a single computation step

    ωλω−ω

    =λmsslip

  • 28

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r3ph Induction Machines

    ( ) ( ){ }, Re j tu t a e ω −λθθ ≈induced currents

    induced torques

    only approximately:

    butλ1~

    21~λ

    no component with 1−=λ

    time-harmonic FE analysis with external circuit coupling and slip transformation yields acceptable results for 3-ph induction machines

    torque ofinductionmachine293.0 Nm292.6 Nm225.7 Nm

    finite elementformulationtransienttime-harmonicEuler

    treatment ofmotional eddycurrentsmoving bandslip transformation+ homogenization

    negligible

  • 29

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rOverview

    alternating, rotating and elliptical air-gap fields

    classificationsynchronous ↔ asynchronous motionuniform ↔ non-uniform geometriesEuler ↔ Lagrange formulations

    implicitly considering motionEuler formulationstatic/time-harmonic simulationslip transformation technique

    explicitly considering motion (Lagrange)sliding-surface ↔ moving-band techniqueslocked-step approach, polynomial interpolation, mortar-element method, trigonometric interpolation

  • 30

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rModelling Solid-Body Motion

    Modelling rotation in electrical-machine models

    1. sliding-surface techniqueslocked step approachlinear/quadratic interpolationmortar projectiontrigonometric interpolation

    rtΩ

    stΩ

    rt stΓ = Γ

  • 31

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rModelling Solid-Body Motion

    Modelling rotation in electrical-machine models

    1. sliding-surface techniqueslocked step approachlinear/quadratic interpolationmortar projectiontrigonometric interpolation

    2. air-gap modelssingle layer of finite elements(moving-band technique)boundary elementsdiscontinuous Galerkin techniqueair-gap element (spectral elements)

    rtΩ

    stΩ

    agΩ

    stΓ

    rtΓ

  • 32

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rSliding-Surface Technique

    non-matching grids at the interface (e.g. by linear interpolation or mortar elements

    ∆θ

    ( )1− ε ∆θε∆θ

    α

    eccentricityconsistency errortorque ripple

  • 33

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rMoving-Band Technique

    stator moving band

    rotor

    stator moving band

    rotor

    stator moving band

    rotor

    stator moving band

    rotor

    stator moving band

    rotor

    stator moving band

    rotor

    stator moving band

    rotor

  • 34

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rOverview

    alternating, rotating and elliptical air-gap fields

    classificationsynchronous ↔ asynchronous motionuniform ↔ non-uniform geometriesEuler ↔ Lagrange formulations

    implicitly considering motionEuler formulationstatic/time-harmonic simulationslip transformation technique

    explicitly considering motion (Lagrange)sliding-surface ↔ moving-band techniqueslocked-step approach, polynomial interpolation, mortar-element method, trigonometric interpolation

  • 35

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rInterface Conditions

    stΩ

    stΓ

    str

    stustu

    st rt 0+ =g g

    3. continuity of the tangential componentof the magnetic field strength

    fictitious surface currents vanish

    2. continuity of the normal componentof the magnetic flux density

    magnetic vector potential continuous

    st rt=u u

    st st st st

    rt rt rt rt

    ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

    ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    K u g fK u g f

    1. decoupled FE/FIT systems

    select components at the interface:

    st st st=u Q u

    st st stT=g Q g

    prolongate interface components:

    stQ

    stTQ

    nB

    tH

  • 36

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rLocked-Step Approach

    rt stshiftq=u k u

    shift

    0 1 0 00 0 1 00 0 0 11 0 0 0

    ⎡ ⎤⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎣ ⎦

    k

    ∆θ

    qα = ∆θ

    α

    rotation over an integral number of mesh steps

    cyclic permutation

    but: mesh equidistant at the interfacerestriction on the time step

  • 37

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rLinear Interpolation

    rt stshiftq

    ε=u k k u

    shift

    0 1 0 00 0 1 00 0 0 11 0 0 0

    ⎡ ⎤⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎣ ⎦

    k

    1 0 00 1 00 0 1

    0 0 1

    ε

    − ε ε⎡ ⎤⎢ ⎥− ε ε⎢ ⎥=⎢ ⎥− ε ε⎢ ⎥ε − ε⎣ ⎦

    k

    ∆θ

    ( )1− ε ∆θε∆θ

    qα = ∆θ+ ε∆θ

    α

    reduces to the locked-step approach when 0ε =

  • 38

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rCoupled Formulation

    shiftq

    α ε=H k krotation operators forward rotation operator

    shiftqTH T

    αα ε −α= =H k k H backward rotation operator

    saddle-point formulationst stst st st st

    rt rt rt rt rt rt

    st st rt st

    00 00 0 00 0 0 0 0

    T H

    Tddt

    α

    α

    ⎡ ⎤−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥+ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

    K Q HM u u fM u K Q u f

    g H Q Q g

    projected system (eliminate )H Hd

    dt⎛ ⎞+ =⎜ ⎟⎝ ⎠

    P M K Pu P f

    rt st rt rt

    0T T

    α

    ⎡ ⎤= ⎢ ⎥

    −⎢ ⎥⎣ ⎦

    IP

    Q H Q I Q Qwith projector

    rtu

  • 39

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rOverview

    alternating, rotating and elliptical air-gap fields

    classificationsynchronous ↔ asynchronous motionuniform ↔ non-uniform geometriesEuler ↔ Lagrange formulations

    implicitly considering motionEuler formulationstatic/time-harmonic simulationslip transformation technique

    explicitly considering motion (Lagrange)sliding-surface ↔ moving-band techniqueslocked-step approach, polynomial interpolation, mortar-element method, trigonometric interpolation

  • 40

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rMoving-Band Technique (1)

    d

    mrω

    d

    mrω

    small rotation small displacement d

    change of the mesh topology

    classical moving-band discretization is not stablewith respect to rotation and eccentricity

  • 41

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rMoving-Band Technique (2)

    consistent change of the mesh according to eccentricity

    possibly bad meshes

    difficulties when rotation has to be considered

    d+d−

  • 42

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rAir-Gap Element

    Air-gap element (Razek et al. 1982)

    ag, 0 0rt rt rt0

    ( , ) log jzr r rA r er r r

    λ −λ− λθ

    λ λλ≠

    ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟θ = + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠∑a b a b

    0 0 0ag,

    rt rt0( , ) jr rH r e

    r r r r

    λ −λ− λθ

    θ λ λλ≠

    ⎛ ⎞⎛ ⎞ ⎛ ⎞ν ν λ ⎜ ⎟θ = + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠∑b a b

    rtΩagΩ

    rtΓ

    rtr

    α

    rtu

    stΩ

    stΓ

    str

    stustu

    rtu

    harmonic coefficients

  • 43

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rStandard Air-Gap Element

    ddt+M K

    nz=224172

  • 44

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rStandard Air-Gap Element

    ddt+M K

    agddt+ +M K K

    introduce air-gap element

    nz=809040

    nz=224172

    system solution time

  • 45

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rInterface Conditions

    stΩ

    stΓ

    str

    stustu

    st ag, st st( , )2 0H r rθ+ θ π =g

    st ag, st( , )zA r= θu

    st st st st st st

    rt rt rt rt rt rt

    0 00 0

    ddt

    ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

    ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    M u K u g fM u K u g f

    1. decoupled FE systems

    select components at the interface:

    st st st=u Q u

    st st stT=g Q g

    prolongate interface components:

    stQ

    stTQ

    2. continuity of

    magnetic vector potential continuousnB

    3. continuity of

    fictitious surface currents vanishtH

    rt ag, rt( , )zA r= θu

    rt ag, rt rt( , )2 0H r rθ+ θ π =g

  • 46

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rWeak Interface Conditions

    stΩ

    stΓ

    str

    stustu

    ( ) ( )st, ag,( , ) ( , ) d 0z z pA r A r wΓ

    θ − θ θ Γ =∫

    ( ) ( )st, ag,( , ) ( , ) d 0H r H r vθ θ ςΓ

    θ − θ θ Γ =∫

    3. weak form of the interface conditions

    2. additional discretization for st, ( )H θ θ( )st, ( ) q q

    qH x hθ θ = θ∑

    ( ) ( )st

    st,st, , st, , st, st, st,

    ji j i j j i i

    j

    dH N d

    dt θΓ

    ⎛ ⎞+ + θ θ Γ =⎜ ⎟

    ⎝ ⎠∑ ∫

    uM K u f

    1. magnetodynamic weak formulation

    st,ig

    ( )pw∀ θ

    ( )vς∀ θ

  • 47

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rCollocation and FFT

    4. choice of test/trial functions( ) ( )q qh θ = δ θ

    ( ) ( )p pw θ = δ θ

    ( ) jv e ςθς θ =

    = point-wise matchingat the FE nodes(collocation)

    ( )dj pe− λθΓ

    δ θ Γ∫hybrid integrals of the form

    can be carried out using FFT

    but : degenerated convergenceof the consistency error !?

  • 48

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure

    stu

    stu

    rtu

    rtu

  • 49

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure

    stu

    stQ

    stu

    rtu

    rtQ

    rtu

  • 50

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure

    stu

    stQ

    stu

    F

    stc

    F

    rtc

    rtu

    rtQ

    rtu

  • 51

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure

    stu

    stQ

    stu

    F

    F

    rtc

    stc1−

    λT ab

    11

    1 1

    −λ −λ−λ

    ⎡ ⎤ξ ξ= ⎢ ⎥⎢ ⎥⎣ ⎦

    T

    rtu

    rtQ strt

    rr

    ξ =

    rtu

  • 52

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure

    stu

    stQ

    stu

    F

    F

    rtc

    stc

    rtd

    std1−

    λT

    rtu

    rtu

    rtQ

    ab

    λG

    0 1 1

    λ −λ

    λ⎡ ⎤ξ ξ= ν λ ⎢ ⎥−⎢ ⎥⎣ ⎦

    G

  • 53

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure

    stu

    stQ

    stu

    F

    stg

    1−F

    F

    rtc

    stc

    rtd

    std1−

    λT

    rtu

    rtu

    rtQ

    ab

    1−F

    rtg

    λG

  • 54

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure

    rtu

    stu

    stg

    rtg

    stu

    rtd

    std

    1−F

    1−F

    stg

    rtg

    rtg

    stg

    rtTQ

    stTQstQ

    stu

    F

    F

    rtc

    stc1−

    λT

    rtu

    rtu

    rtQ

    ab

    λG

  • 55

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r

    stu

    stu

    rtu

    rtu

    rtQ

    stQ

    F

    F

    rtc

    stc

    ab

    rtd

    std

    1−F

    1−F

    stg

    rtg

    rtg

    stg

    rtTQ

    stTQ

    1−λT λG

    Procedure

    rtu

    stu

    stg

    rtg

    agK

  • 56

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rCoupled System

    1st st st st1

    1rt rtrt rt

    T

    T

    −−

    ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

    g Q Q uF FG T

    g uFQ QF

    Dirichlet-to-Neumann map:

    1 1ag

    T − −=K Q F GT FQAir-gap contribution to the stiffness matrix:

    agddt

    + + =M u Ku K u fSystem to be solved

    reluctance of the air gap

  • 57

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rRotation

    rtu rtu

    rtc

    1−FF

    αRrtc

    , ,je λαα λ λ =R

  • 58

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rExploiting Symmetries

    rtu

  • 59

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rExploiting Symmetries

    rtu

    ⎡ ⎤= ⎢ ⎥−⎣ ⎦

    IW

    I

    rt,extu

  • 60

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rExploiting Symmetries

    rtu

    ⎡ ⎤= ⎢ ⎥−⎣ ⎦

    IW

    I

    rt,extu rt,extg

    1 1− −F GT F

  • 61

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rExploiting Symmetries

    rtgrtu

    ⎡ ⎤= ⎢ ⎥−⎣ ⎦

    IW

    I12

    TW

    rt,extu rt,extg

    1 1− −F GT F

  • 62

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rStator/Rotor Skew (1)

    R

    L R

    LU

    skewγmulti-slice technique

  • 63

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rStator/Rotor Skew (2)

    rtu rtu

    F

    rtc rtc

    1−F

    skewS

    skew

    skew, ,skew

    sin2

    2

    λ λ

    λγ⎛ ⎞⎜ ⎟⎝ ⎠=λγ

    S

  • 64

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rEccentricity (1)

    electrical machines magnetic bearing

    Fnon-centeredrotor position

    unbalancedmagnetic pullvibrationsnoise

  • 65

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rEccentricity (2)

    str

    rtρ

    j j jre e deθ ϕ γρ= +

    rt rt rt

    j j jr de e eθ ϕ γρρ ρ ρ

    = +

    je γε ε=

    insert this transformation into the air-gap elementneglect all terms of order and higher2ε

    modified operators andεT εG

  • 66

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r+Rotation, Skew, Eccentricity

    stu stg

    stTQstQ

    rtd

    std

    1−F

    1−F

    stĝstû

    F

    F

    rtu

    rtû

    rtQ

    rtc

    stc

    ab

    αR

    rtĝ

    1−εT εG

    −αR

    I

    skewS

    I

    skewS

    rtTQ

    rtg

  • 67

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rCoupled System

    ag

    1 1skew skew

    T H Tddt

    − −α ε ε α+ + =

    K

    M u Ku Q F R S G T S R FQ u f

    3. stable discretization of eccentricity and rotationno remeshing requiredapplication for any combination of static/dynamic/whirling motion

    2. accounting for skew even with only 1 slicesmaller “skew discretization error”

    4. stator and rotor models may havedifferent geometrical periodicitydifferent number slices (multi-slice models)

    1. only re-assemble FE systems for non-linearitieschange of rotor position only requires change of αRchange of eccentricity only requires change of andεT εG

    5. accurate force and torque computation

  • 68

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rCoupled System

    System to be solved

    1 1skew skew

    T H Tddt

    − −α ε ε α

    ⎛ ⎞+ + =⎜ ⎟⎝ ⎠M K u Q F R S G T S R FQ u f

  • 69

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rCoupled System

    System to be solved

    represented by an algebraic matrix(compressed row storage)

    represented by an operation

    returning the Neumann data (vector ) for given Dirichlet data (vector )u

    g

    ag⎯⎯⎯→Ku g

    1 1skew skew

    T H Tddt

    − −α ε ε α

    ⎛ ⎞+ + =⎜ ⎟⎝ ⎠M K u Q F R S G T S R FQ u f

    function g=airgap_element(u,alpha,gamma_skew,epsilon,gamma)

    α skewγ ε γ

  • 70

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r

    stu

    stu

    rtu

    rtu

    rtQ

    stQ

    F

    F

    rtc

    stc

    ab

    rtd

    std

    1−F

    1−F

    stg

    rtg

    1−λT λG

    Inverse Procedure

    rtg

    stg

    rtTQ

    stTQ

    -1agK

    -1agK

  • 71

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rPreconditioning

    1 rt agΩ =Ω ∪Ω

    2Ω1Ω

    2 rtΓ = Γ1 stΓ = Γ2 st agΩ =Ω ∪Ω

    1. two overlapping FE models

    2. additive/multiplicative Schwarz

    3. restrictions on andinvolve FFT, rotation, skewand eccentricity operations

    1Γ 2Γ

  • 72

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rCapacitor Motor

    main windingauxiliary windingrotor bar capacitor ~~

    2D-FEM2D-FEMFEM2D-

    2D-FEM

    0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4-10-8-6-4-202468

    10

    time (s)

    cur

    rent

    (A)

  • 73

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r

    TEAM workshop model 30

    1+1− 1− 1+1− 1+

    j∓ϕ∓e

    ϕ±eϕ±2e

    ϕ2∓e

    +=

    2. split the single-phase excitation in two poly-phase excitations (but winding harmonics?!)

    4. air gap flux splitting approach

    3. apply the Eulerian formulation(with homogenization if the rotor is slotted!)

    FeAl

    Air

    Fe

    CuCu

    stator yoke

    rotor

    coil 1. transient FE simulation with FEM-BEM coupling, moving band, ... (expensive!)

    1ph Induction Machines (1)

  • 74

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r1ph Induction Machines (2)

    +=

    +=

    alternating forward rotating backward rotatingre

    al ti

    me

    inst

    ant

    imag

    inar

    y ti

    me

    inst

    ant

  • 75

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r1ph Induction Machines (3)

    Eulerian formulation:only exact for solid-rotor devices

    non-motional formulation with excitation splitting:introduction of non-physical winding harmonics

    analyticalsolution (x)

    0 50 100 150 200 250 300 350 400-0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    forward rotating field

    backward rotating field

    torque (Nm)

    speed (rad/s)

    pull-out speed

    alternating field

  • 76

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rPhasor Fields (2)

    stator

    rotor

    rotor bars

    windings

    contour in the air gap

    Γ

  • 77

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rStatic Field

    Γ

    consider separate stator/rotor models

    first harmonic air gap field higher harmonic air gap field components

    mωΓ

    mω mωΓ Γ

    , 1sω − ,3sω

    rotor model 1,1sω

    rotor model 2 rotor model 3

  • 78

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rAlternating Field (1)

    first harmonicair gap field

    1R

    backward rotatingair gap fields

    R−

    air gap field

    F

    remaining set of forward rotating air gap fields

    R+

    mω mω mω, 1sω − ,3sω

    rotor model 1

    1φ−φ +φ

    1F−1F−1F−

    rotor model 2 rotor model 3,1sω

  • 79

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r

    ~

    stat

    or m

    odel

    forwardrotor model

    sRadd−2

    sRadd

    main winding

    shadingrings

    stator bridgebackwardrotor model

    −φ

    s

    s−2+φ

    FE

    cros

    s-se

    ctio

    n

    FE

    cros

    s-se

    ctio

    n

    endwinding

    voltagesource

    end ring

    end

    ring

  • Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    In

    stitu

    t für

    The

    orie

    Ele

    ktro

    mag

    netis

    cher

    Fel

    der

    Lecture Series

    Finite-Element Electrical MachineSimulation

    http://www.ew.e-technik.tu-darmstadt.de/FOR575NEXT LECTURE : THURSDAY, June 22th 2006

    Dr.-Ing. Herbert De Gersemsummer semester 2006

    Institut für Theorie Elektromagnetischer Felder

  • 81

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rAlternating Field (2)

  • 82

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r

    fundamentalair gap field

    7th harmonicair gap field

    5th harmonicair gap field

    fR

    7R5−Rair gap field

    F&φ

    mω mω7ω

    mω5ω−

    σ σ

    static rotor model dynamic rotor models

    fφ 7φ 5−φ

    1F−1F−1F−

    eddy

    cu

    rren

    tsin

    the

    PM

    s ?

  • 83

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rRotating Field (1)

    fundamentalair gap field

    11th harmonicair gap field

    13th harmonicair gap field

    1R 11R− 13Rair gap fieldF

    , 11sω −

    ,13sω

    dynamicrotor models

    1φ 13φ11φ− 1F−1F−1F−

    mωmωstaticrotor model

  • 84

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r

    &φ −φ

    t

    ( )tAz

    4T

    T{ }2Im u−

    { }2Re u

    { }2Re u

    s

    s−2

    +φ−φ

    mω{ }2Im u−

  • 85

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    r

    ~

    stator modelbackwardrotor model

    forwardrotor

    model

    FE cross-section

    sRadd−2 s

    Radd

    &φ−φ +φ

    ss−2

    main winding auxiliary winding

    capacitor

  • 86

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure 1

    stustu

  • 87

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure 1

    stu

    stQstu stû

  • 88

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure 1

    stu

    stQstu stû

    F

    stc

  • 89

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure 1

    stu

    stQstu stû

    F

    stc

    rtc

    αRskewS

    skew

    skew, ,skew

    sin2

    2

    λ λ

    λγ⎛ ⎞⎜ ⎟⎝ ⎠=λγ

    S, ,je λαα λ λ =R

  • 90

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure 1

    stu

    stQstu stû

    F

    stc

    rtc

    αRskewS

    1−F

    rtû

  • 91

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure 1

    stu

    stQstu stû

    F

    stc

    rtc

    αRskewS

    rtu

    1−F

    rtTQ

    rtûrtu

  • 92

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rProcedure 1

    stu

    rturtu

    stu

    rtTQ

    stQstû

    F

    αHstc

    rtc

    αRskewS

    1−F

    rtû

  • 93

    Dr.-

    Ing.

    Her

    bert

    De

    Ger

    sem

    Inst

    itut f

    ür T

    heor

    ie E

    lekt

    rom

    agne

    tisch

    er F

    elde

    rHybrid Formulation

    1rt skew stT −

    α α=H Q F S R FQrotation operator

    saddle-point formulationstst st st st

    rt rt rt rt rt

    st st

    00 00 0 00 0 0 0 0

    Hddt α

    α

    ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ − =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

    K IM u u fM u K H u f

    g I H g

    projected system( )H Hβ + =P M K Pu P f

    rt rt

    0T

    α

    ⎡ ⎤= ⎢ ⎥

    −⎢ ⎥⎣ ⎦

    IP

    H I Q Qwith projector

    Lecture SeriesFinite-Element Electrical Machine Simulationin the framework of the DFG Research Group 575„High Frequency POverviewOverviewOverviewOverviewModelling Solid-Body MotionOverviewOverviewAir-Gap ElementStandard Air-Gap ElementStandard Air-Gap Element+Rotation, Skew, EccentricityLecture SeriesFinite-Element Electrical Machine Simulationhttp://www.ew.e-technik.tu-darmstadt.de/FOR575NEXT LECTURE : T