finite-element electrical machine simulation · finite-element electrical machine simulation in the...

45
Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de Dr.-Ing. Herbert De Gersem Institut für Theorie Elektromagnetischer Felder Lecture Series Finite-Element Electrical Machine Simulation in the framework of the DFG Research Group 575 „High Frequency Parasitic Effects in Inverter-fed Electrical Drives” http://www.ew.e-technik.tu-darmstadt.de/FOR575 Dr.-Ing. Herbert De Gersem summer semester 2006 Institut für Theorie Elektromagnetischer Felder

Upload: phungtuyen

Post on 08-Sep-2018

261 views

Category:

Documents


3 download

TRANSCRIPT

Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de

Dr.-

Ing.

Her

bert

De

Ger

sem

In

stitu

t für

The

orie

Ele

ktro

mag

netis

cher

Fel

der

Lecture Series

Finite-Element Electrical Machine Simulation

in the framework of the DFG Research Group 575„High Frequency Parasitic Effects

in Inverter-fed Electrical Drives”http://www.ew.e-technik.tu-darmstadt.de/FOR575

Dr.-Ing. Herbert De Gersemsummer semester 2006

Institut für Theorie Elektromagnetischer Felder

2

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rSmall DC Machine (1)

name value unit

output power Pa 50e-3 kW

voltage V 14 V

speed n 6000 rpm

no load speed n0 6240 rpm

efficiency η 75 %

operating temperature

T0 -20 to 100 °C

PM operating point Bm 0.25 T

PM pole arc fraction αm 0.7

3

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

Table 1: Motor data.

Schnitt A-

A

B

Schnitt C-

C

D

D

Lg

lm

dy

L

Lm = Ls

Small DC Machine (2)

4

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

10.018.839.0

6.39

2.7

36.3R3.6

Small DC Machine (3)

5

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rSmall DC Machine (4)

6

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rSmall DC Machine (5)

7

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rDesign Steps

1. current and electromotive force2. rotor diameter3. cross-sectional areas of conductors and slots4. check resistance and temperature5. choice of the magnet segments6. check saturation

8

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rPower Balance

design step 1: current and electromotive force

mechP1.1. electrical power

mechel =

ηPP1.2. mechanical power

elP

mechP

el elη PJouleP

frictionP

el=PIU

1.3. current

el= ηE U1.4. electromotive force

9

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rLook-Up Table

look-up table (values by experience for PMDC motors with ferrites)

Pmech[W]

BL[T]

Ja[A/mm2]

AA[A/cm]

ηel[%]

η[%]

57.5102030405075100150200250

0,2 ... 0,230,2 ... 0,230,240,250,260,270,280,30,310,32 ... 0,350,350,4

9.49.29.08.47.97.57.16.76.46.16.06.0

40455060708090100100110120120

596265697274757778798080

222528354044465053565758

10

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rDesign Steps

1. current and electromotive force2. rotor diameter3. cross-sectional areas of conductors and slots4. check resistance and temperature5. choice of the magnet segments6. check saturation

11

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rElectromotive Force (1)

( ) ( )mˆ, sinφ θ = φ θ + ωt t

( ),φ θ t

mθ + ω t

flux through one winding :

( )( , ) 0, , 0=r r

yB r t B

flux through one windingin horizontal position:

windingφ̂ = yB S

homogeneous magnetic field

windingS

12

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rElectromotive Force (2)

z : number of conductors

2 p : number of poles

2a : number of parallel paths

12 2π

za

: number of conductors perparallel path and per unitcircumference

if all conductors carry the same current

: current load1

2 2πz Ia

I

13

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rElectromotive Force (3)

flux linked with a coil

( ) ( )0

1 , d2 2

πψ = φ θ θ

π∫zt ta

( ) ( )m0

1 ˆ sin d2 2

πψ = φ θ + ω θ

π∫zt ta

( ) ( )m1 ˆ2 cos

2 2ψ = φ ω

πzt ta

14

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rElectromotive Force (4)

( ) ( )( )mˆ, sinφ θ = φ θ + ωt p t

flux linkage for higher numbers of poles

flux linked with one pole

( ) ( )( )m0

1 ˆ sin d2 2

π

ψ = φ θ + ω θπ∫

p zt p ta

( ) ( )m1 2 ˆ cos

2 2ψ = φ ω

πzt p ta p

15

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rElectromotive Force (5)

electromotive force for 1 pole

poleddψ

= −Et

( )pole m m1 2 ˆ sin

2 2= φ ω ω

πzE p p ta p

after commutation

pole ˆˆ 22

= φzE na

pole2 ˆˆ2

= = φpE pE z na

for all poles (connected in series)

16

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

design step 2: rotor diameter

Rotor Diameter (1)

22 δ= φ

pE z na

δ δ δφ = B S

rtrt2δ = βl

DS

rtrt2 2

2

I zA Da

rtrt rtδ

=β πl

E IDB A n p

electromotive force

air-gap flux

magnetic active area

current load

rotor diameter

17

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

DRLR

B 3

HB

design step 2: rotor diameter

Rotor Diameter (2)

Housing HB[mm]

DR[mm]

LR[mm]

45 45 60 4050

56 56 80 4555

63 63 90 4560

71 71 106,5 506580

stator housing length

18

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

design step 2: rotor diameter

Rotor Diameter (3)

standardized rotor diameter

AD

DA[mm]

3030,33131,353232,232,532,73333,233,53434,53535,33636,236,436,53737,538,63939,239,539,7

4040,240,540,84141,241,441,841,94242,242,542,64343,543,64444,54545,245,74646,446,546,94747,14848,248,854949,249,4

5050,250,450,750,951,251,551,85252,252,452,65353,45454,254,55555,4565757,257,557,65858,255959,359,7

6060,260,461,161,561,856262,262,462,56363,656464,46565,265,465,565,7666767,567,86868,268,368,568,768,869,569,7

7070,270,5717272,57373,473,57474,274,57575,575,87676,276,47777,57878,578,679,379,5

8080,380,680,88181,58282,582,88383,283,38484,384,58585,185,2585,48686,486,88787,758888,38989,389,589,889,9

9090,3919292,292,492,7939494,294,494,89595,596,29797,79899,2

100100,2100,5100,9101102103103,7104104,5105106106,2106,5108109109,5

19

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rDesign Steps

1. current and electromotive force2. rotor diameter3. cross-sectional areas of conductors and slots4. check resistance and temperature5. choice of the magnet segments6. check saturation

20

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

design step 3: cross-sectional areas of conductors and slots

Rotor Diameter (3)

wireJ : maximal allowed current density

wirewire

12

=ISa J

: cross-section of a wire

wire wire4

d S : wire diameter oslot

h1r1

r2

h α

b

Sslot

choose standard wire diameter

slot wire slot0.4 0.5≤ ≤zS S SN

choose slot such that

a)

slot wire>o db)

21

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rDesign Steps

1. current and electromotive force2. rotor diameter3. cross-sectional areas of conductors and slots4. check resistance and temperature5. choice of the magnet segments6. check saturation

22

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rResistance

design step 4: check resistance and temperature

rtturn rt

1.33= +l l

Dp

: length of a half a turn

( )( )oturn

path CuCu,20 Cwire1 20

2= ρ + α −

lzR Ta S

: resistance of one path

rt path1

2=R R

a: armature resistance

2Joule rt=P R I : Joule losses

23

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rTemperature Increase (1)

0 500 1000 1500 2000 2500 3000 3500

10

20

30

40

50∆T [°C]

PJoule / Srt [W/m2] Joule losses per unit rotor surface

tem

pera

ture

incr

ease

design step 4: check resistance and temperature

environment= + ∆T T T : rotor temperature

2rt

rt rt rt 22

⎛ ⎞= π + π ⎜ ⎟⎝ ⎠

lDS D : rotor surface

24

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

design step 4: check resistance and temperature

Temperature Increase (2)

temperature increases

→ resistance increases

→ Joule losses increase (under constant current)

→ temperature increases

iteration needed

possibly unstable iteration, convergence ?

check resistive voltage drop

rt ≤ −R I U E

25

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rDesign Steps

1. current and electromotive force2. rotor diameter3. cross-sectional areas of conductors and slots4. check resistance and temperature5. choice of the magnet segments6. check saturation

26

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

design step 5: choice of the magnet segments

Permanent-Magnet Material

Mc Hc Hc *

Br

B [T] J [T]

B = µ0 H

H [A/m] HM

BM

HAR max

27

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

design step 5: choice of the magnet segments

Temperature Dependence

( )( )rr r,25 C 1 25= + α −o BB B T

( )( )cc c,25 C 1 25= + α −o HH H T

( )( )crc c,25 C 1 25= + α −o MM M T

28

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

design step 5: choice of the magnet segments

Magnetic Path

δℜ

rt2

pmℜ

st / 2ℜ

δℜ

rt2

pmℜ

st / 2ℜ

δℜ

rt2

pmℜ

st / 2ℜ

δℜ

pmℜ

δφ

( )pm pm 0δ δ δℜ φ + ℜ φ − φ =

29

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

design step 5: choice of the magnet segments

Magnetic Path

( )pm r 0δ δ δℜ φ + ℜ φ − φ =

δℜ

pmℜ

δφ

r r pmφ = B S

pmpm

pm pm

1ℜ =

µ

hS

0

δ

′′δℜ =

µ S

Fe c,st c,rt′′δ = δk k k

factor accounting for magnetic voltage drop in iron partsCarter factor for the stator

Carter factor for the rotor

pm pm pm= β lS r

rtrt2δ = β l

DS

rtpm 2

= + δDr

30

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rRotor Carter Factor

31

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

design step 5: choice of the magnet segments

Magnetic Path

pmr

δδ

δ

φℜ = ℜ

φ − φ

height of the magnet segments

pm

pm pm 0 r pm

δ δ

δ δ δ

′′δ=

µ µ −

h B SS S B S B S

δℜ

pmℜ

δφ

pmpm

r0pm

δ

δ

µ ′′δ=

µ −h SB

B S

operation point of the PM materialpm

pmpm pm

δφ φ= =B

S S

32

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rOperation Point

Mc Hc Hc *

Br

B [T] J [T]

B = µ0 H

H [A/m] HM

BM

HAR max

33

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rArmature Reaction (1)

worstcasescenario

′′δ

δℜ%pmℜ%

2 2βπ

zIa pmh

path%S

δℜ%pmℜ%

2 2βπ

zIa

pmpm

pm pathℜ =

µ%

%

hS

0 pathδ

′′δℜ =

µ%

%S

armr

H

armφ

armφ

34

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rArmature Reaction (2)

worst case scenario

armpm

12 2 2 2 δ

βφ =

π ℜ + ℜ% %zIa

′′δ

δℜ%pmℜ%

2 2βπ

zIa pmh

path%S

δℜ%pmℜ%

2 2βπ

zIa

armr

H

armφ

armφ

( )armpm rev

12 2 2

β=

π ′′+ µ δ

zIHa h

arm c pm≤ γ −H M M

check

0.83γ =empirical factor

35

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rDesign Steps

1. current and electromotive force2. rotor diameter3. cross-sectional areas of conductors and slots4. check resistance and temperature5. choice of the magnet segments6. check saturation

36

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rRotor Teeth

design step 6: check saturation

concentration factor

teethc

stack teeth

11

π=

− γDf

Nb

magnetic flux density in the teeth

teeth c δ=B f B

37

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rStator Yoke

design step 6: check saturation

magnetic cross-section of the stator yoke

( )yoke stack st yoke1= − γ lS h

yokeyoke

12δφ

=BS

magnetic flux density in the stator yoke

38

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rDesign Steps

1. current and electromotive forcepower balance (experience values)

2. rotor diameterapplication of Faraday-Lenz

3. cross-sectional areas of conductors and slotslimitation on current density

4. check resistance and temperaturelimitation on voltage drop and temperature

5. choice of the magnet segmentsapplication of Ampère

6. check saturationlimitation on magnetic flux density

39

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rQuasi 3D (1)

PM remanent flux : r r pm mg r,2D pm rtφ = β = βl lB r B r

path_in_yoke path_in_yokeyoke

Fe yoke st yoke,2D yoke rtℜ = =

µ µ

l l

l lh hst

yoke,2D Fert

µ = µl

l

yoke reluctance :

modified permeability :

modified remanence : mgr,2D r

rt=

l

lB B

pm pmpm

pm pm mg pm,2D pm rtℜ = =

µ µl l

h hd d

mgpm,2D pm

rtµ = µ

l

l

PM reluctance :

modified permeability :

40

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rQuasi 3D (2)

formulation in terms of the magnetic vector potential

operation point in the saturation characteristicdetermined by B

keep B constant

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2x 104

00.20.40.60.8

11.21.41.61.8

2

magnetic field strength (A/m)

mag

netic

flux

den

sity

(T)

rotorstator

modified permeability :

yoke,2Dyoke,2D

µ = =B BH H

rtyoke,2D

st=

l

lH H

modified field strength :

41

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r2D Model (1)

42

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r2D Model (2)

without armature reaction with armature reaction

43

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

1.9 T

2D Model (3)

44

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r3D Model

Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de

Dr.-

Ing.

Her

bert

De

Ger

sem

In

stitu

t für

The

orie

Ele

ktro

mag

netis

cher

Fel

der

Lecture Series

Finite-Element Electrical Machine Simulation

http://www.ew.e-technik.tu-darmstadt.de/FOR575NEXT LECTURE : THURSDAY May 18th

OTHER ROOM (see website)

Dr.-Ing. Herbert De Gersemsummer semester 2006

Institut für Theorie Elektromagnetischer Felder