extensions of hidden markov models for animal telemetry data · 2012-07-09 · showcase of a...

30

Upload: others

Post on 01-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Extensions of hidden Markov models for animal

    telemetry data

    HA Roland Langrock

    HA CREEMHAHAblablabla

    Roland Langrock HMMs for animal telemetry data

  • 1 Some HMM basics

    2 Some possible extensionsSemi-Markovian state processesBiased random walksIncorporation of feedback

    3 Outline of three applicationsBison movementDive paths of whalesCorrelated movement paths/group movement

    Roland Langrock HMMs for animal telemetry data

  • Basic HMM structure

    St−1 0St 0 St+1

    Zt−1 0Zt 0 Zt+1

    . . . . . .

    hidden(behavioural state:

    e.g. foraging)

    observed(movement behaviour:

    directions & step lengths)

    discrete time, continuous space

    includes multi-state random walks �a la Morales et al. (2004):\Extracting more out of relocation data: [...]."

    special case of a state-space model

    Roland Langrock HMMs for animal telemetry data

  • Simulated trajectory (two-state HMM)

    State 1:exploratory1State 2:encamped

    −1500 −1000 −500 0 500 1000 1500

    −15

    00−

    1000

    −50

    00

    500

    1000

    1500

    X

    Y

    ●●

    ●●●●

    ●●●●

    ●●

    ●●

    ●●

    ●●●● ●●

    ●●●●

    ●●

    ●●

    ●●

    ●●●●●●●●

    ●●●●

    ●●●●●●

    ●●●●●●

    ●●

    ●●●●

    ●●●●●●●●

    ●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●

    ●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●

    ●●●●

    ●●

    ●●●●●●

    ●●

    ●●

    ●●

    ●●●●●●●●

    ●●●●

    ●●

    ●●

    ●●●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●●●

    ●●●●●●

    ●●

    ●●

    ●●●●

    ●●

    ●●

    ●●●●

    ●●

    ●●●●

    ●●

    ●●

    ●●

    ●●●●

    ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●

    ●●●●

    ●●

    ●●

    ●●

    ●●●●

    ●●●●●●●●●●●●

    ●●

    ●●●●●●

    ●●

    ●●●●

    ●●

    ●●●●

    ●●●● ●●

    ●● ●●

    ●●

    ●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●

    ●●

    ●●●●●●●●

    ●●●●

    ●●

    ●●

    ●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●

    ●●

    ●●●●

    ●●

    ●●

    ●●●● ●●

    ●●

    ●●●●

    ●●

    ●●●●

    ●●

    ●●

    ●●●●

    ●● ●● ●●

    ●●●●

    ●●

    ●●

    ●●

    ●●

    ●● ●●

    ●●

    ●●

    ●●

    ●●●● ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●● ●● ●●

    ●●●●

    ●●●●●●

    ●●

    ●●●●●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●●●

    ●●●● ●●

    ●● ●●

    ●●

    ●●

    ●●

    ●●●●●●

    ●●●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●●●

    ●●●●●●●●●●

    ●●

    ●●

    ●●●●

    ●●●●●●

    ●●

    ●●●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●● ●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●

    ●●●●●●

    ●●●●

    ●●●●●●

    ●●●●

    ●●●●

    ●●●●

    ●●

    ●●

    ●●

    ●●

    ●●●●

    ●●●●

    ●● ●●●●

    ●●●●

    ●●●● ●●

    ●● ●●●●●●

    ●●

    ●●

    ●●●●

    ●● ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●●●

    ●●

    ●●●●●●●●●●

    ●●

    ●●●●

    ●●

    ●●

    ●●

    ●●●●

    ●●

    ●●●●

    ●●●●

    ●●●●

    ●●

    ●●

    ●●●● ●●

    ●●

    ●●●●

    ●●●●●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●● ●●

    ●●

    ●●

    ●●●●

    ●● ●●●● ●● ●● ●● ●●

    ●●●● ●●

    ●● ●●

    ●●

    ●●●●

    ●●●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●● ●● ●● ●● ●●●● ●●

    ●●●●

    ●●●●●●●●

    ●●

    ●●●●

    ●●●●●●

    ●●

    ●●

    ●●

    ●●

    ●●●●

    ●●

    ●● ●●

    ●● ●● ●●●●●●●●

    ●●●●

    ●●

    ●●●●

    ●●●●

    ●●●●●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●●●

    ●●

    ●●

    ●●●●

    ●●

    ●●●●

    ●●

    ●●

    ●●●●

    ●●●●

    ●●●●

    ●●●●●●●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●●●●●

    ●●

    ●●●●●●

    ●●●●●●

    ●●

    ●●●●

    ●●

    ●●

    ●●

    ●●●● ●● ●●

    ●●

    ●● ●●●● ●● ●●●●●●●●

    ●●●● ●●

    ●●

    ●●

    ●●●●

    ●●●●

    ●●

    ●●

    ●●

    ●●

    ●● ●● ●●●●

    ●● ●● ●● ●● ●●

    ●●

    ●●●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

    ●●●●●●●●●●●●●●

    ●●

    ●●●●

    ●●

    ●●

    ●●

    ●●●●

    ●●●●●●

    ●●●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●●●

    ●●

    ●●●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●●●●●

    ●●

    ●●●●

    ●●

    ●●

    ●●

    ●●

    ●●●●

    ●●

    ●●

    ●●

    ●●

    ●●

    ●●●●●●●●

    ●●●●

    ●●

    ●● ●● ●●

    ●●

    ●●

    ●●●● ●●

    ●● ●●

    ●●

    ●●

    ●●●●

    ●● ●●

    Roland Langrock HMMs for animal telemetry data

  • HMM features

    estimation via numerical maximization of the likelihood:

    L = �P(z1)�P(z2) � : : : � P(zT�1)�P(zT )1t

    or, alternatively, using MCMC

    model checking via residuals feasible

    con�dence intervals can be obtained (Hessian or bootstrap)

    underlying hidden states can be estimated (Viterbi algorithm)

    incorporating covariates/seasonality straightforward { well, intheory...

    Roland Langrock HMMs for animal telemetry data

  • 1 Some HMM basics

    2 Some possible extensionsSemi-Markovian state processesBiased random walksIncorporation of feedback

    3 Outline of three applicationsBison movementDive paths of whalesCorrelated movement paths/group movement

    Roland Langrock HMMs for animal telemetry data

  • Semi-Markovian state processes

    in a basic HMM the statedwell-times are necessarilygeometrically distributed

    ! mode is 1 (often unrealistic)0 10 20 30 40 50

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    geometric

    duration of stay

    prob

    abili

    ty

    hidden semi-Markov modelsrelax this restrictive condition:any distribution on the positiveintegers can be modelled

    ! e.g. negative binomial! estimation a bit more challenging,but any HSMM can be framed as an HMM

    Roland Langrock HMMs for animal telemetry data

  • Semi-Markovian state processes

    in a basic HMM the statedwell-times are necessarilygeometrically distributed

    ! mode is 1 (often unrealistic)0 10 20 30 40 50

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    geometric

    duration of stay

    prob

    abili

    ty

    hidden semi-Markov modelsrelax this restrictive condition:any distribution on the positiveintegers can be modelled

    ! e.g. negative binomial! estimation a bit more challenging,but any HSMM can be framed as an HMM

    0 10 20 30 40 50

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    negative binomial

    duration of stay

    prob

    abili

    ty

    Roland Langrock HMMs for animal telemetry data

  • Biased random walk components

    Biased random walk:! general preference for some direction (e.g., East)! or bias towards some location/centre of attraction

    consider likelihood conditional on initial location

    0

    Roland Langrock HMMs for animal telemetry data

  • Biased random walk components

    Biased random walk:! general preference for some direction (e.g., East)! or bias towards some location/centre of attraction

    consider likelihood conditional on initial location

    St−1 0St 0 St+1

    Zt−1 0Zt 0 Zt+1

    . . . behavioural states

    step lengths

    & directions

    St+1

    St+1

    St+1

    Figure: Basic HMM

    Roland Langrock HMMs for animal telemetry data

  • Biased random walk components

    Biased random walk:! general preference for some direction (e.g., East)! or bias towards some location/centre of attraction

    consider likelihood conditional on initial location

    St−1 0St 0 St+1

    Zt−1 0Zt 0 Zt+1

    Lt−1 0Lt 0 Lt+1

    . . .

    . . .

    behavioural states

    step lengths

    & directions

    locations

    St+1

    St+1

    St+1

    St+1

    St+1

    Figure: HMM including BRW components

    Roland Langrock HMMs for animal telemetry data

  • Biased random walk components

    Biased random walk:! general preference for some direction (e.g., East)! or bias towards some location/centre of attraction

    consider likelihood conditional on initial location

    St−1 0St 0 St+1

    Zt−1 0Zt 0 Zt+1

    Lt−1 0Lt 0 Lt+1

    . . .

    . . .

    behavioural states

    step lengths

    & directions

    locations

    St+1

    St+1

    St+1

    St+1

    St+1

    Figure: HMM including BRW components

    Roland Langrock HMMs for animal telemetry data

  • Feedback models

    basic HMM: state depends only on previous state

    feedback HMM: additional dependence on previous actualobservation (or derived process)

    consider likelihood conditional on initial location

    St−1 0St 0 St+1

    Zt−1 0Zt 0 Zt+1

    . . . behavioural states

    step lengths

    & directions

    St+1

    St+1

    St+1

    Roland Langrock HMMs for animal telemetry data

  • Feedback models

    basic HMM: state depends only on previous state

    feedback HMM: additional dependence on previous actualobservation (or derived process)

    consider likelihood conditional on initial location

    St−1 0St 0 St+1

    Zt−1 0Zt 0 Zt+1

    . . . behavioural states

    step lengths

    & directions

    St+1

    St+1

    St+1

    St+1

    Roland Langrock HMMs for animal telemetry data

  • Feedback models

    basic HMM: state depends only on previous state

    feedback HMM: additional dependence on previous actualobservation (or derived process, e.g. body condition)

    consider likelihood conditional on initial location

    St−1 0St 0 St+1

    Zt−1 0Zt 0 Zt+1

    Dt−1 0Dt 0 Dt+1

    . . .

    . . .

    behavioural states

    step lengths

    & directions

    derived process

    St+1

    St+1

    St+1

    St+1

    St+1

    Roland Langrock HMMs for animal telemetry data

  • 1 Some HMM basics

    2 Some possible extensionsSemi-Markovian state processesBiased random walksIncorporation of feedback

    3 Outline of three applicationsBison movementDive paths of whalesCorrelated movement paths/group movement

    Roland Langrock HMMs for animal telemetry data

  • Bison application

    GPS telemetry data on 9 bison in Prince Albert NationalPark, Canada

    showcase of a hierarchical hidden semi-Markov model

    ! detects switching between \encamped" and \exploratory" state

    ! see our Ecology paper (Langrock, King, Matthiopoulos,Thomas, Fortin & Morales, 2012)

    Roland Langrock HMMs for animal telemetry data

  • Bison application

    GPS telemetry data on 9 bison in Prince Albert NationalPark, Canada

    showcase of a hierarchical hidden semi-Markov model

    ! detects switching between \encamped" and \exploratory" state

    ! see our Ecology paper (Langrock, King, Matthiopoulos,Thomas, Fortin & Morales, 2012)

    0.0 0.1 0.2 0.3 0.4 0.5 0.6

    01

    23

    45

    6

    step length

    dens

    ity

    −3 −2 −1 0 1 2 3

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    turning angle

    dens

    ity

    Roland Langrock HMMs for animal telemetry data

  • Bison application

    GPS telemetry data on 9 bison in Prince Albert NationalPark, Canada

    showcase of a hierarchical hidden semi-Markov model

    ! HSMM outperforms HMM in terms of the AIC

    ! see our Ecology paper (Langrock, King, Matthiopoulos,Thomas, Fortin & Morales, 2012)

    Table: Number of parameters (p), log-likelihood and �AIC values.

    p logL �AIC

    HMM with common parameter 10 -19874.70 57.3

    set for all bison

    HSMM with common parameter 12 -19846.55 5.0

    set for all bison

    HSMM with random e�ects for 14 -19842.06 0

    Weibull scale parameters

    Roland Langrock HMMs for animal telemetry data

  • Bison application

    GPS telemetry data on 9 bison in Prince Albert NationalPark, Canada

    showcase of a hierarchical hidden semi-Markov model

    ! inclusion of random e�ects further improves the AIC

    ! see our Ecology paper (Langrock, King, Matthiopoulos,Thomas, Fortin & Morales, 2012)

    Table: Number of parameters (p), log-likelihood and �AIC values.

    p logL �AIC

    HMM with common parameter 10 -19874.70 57.3

    set for all bison

    HSMM with common parameter 12 -19846.55 5.0

    set for all bison

    HSMM with random e�ects for 14 -19842.06 0

    Weibull scale parameters

    Roland Langrock HMMs for animal telemetry data

  • Bison application

    GPS telemetry data on 9 bison in Prince Albert NationalPark, Canada

    showcase of a hierarchical hidden semi-Markov model

    ! inclusion of random e�ects further improves the AIC

    ! see our Ecology paper (Langrock, King, Matthiopoulos,Thomas, Fortin & Morales, 2012)

    Table: Number of parameters (p), log-likelihood and �AIC values.

    p logL �AIC

    HMM with common parameter 10 -19874.70 57.3

    set for all bison

    HSMM with common parameter 12 -19846.55 5.0

    set for all bison

    HSMM with random e�ects for 14 -19842.06 0

    Weibull scale parameters

    Roland Langrock HMMs for animal telemetry data

  • 1 Some HMM basics

    2 Some possible extensionsSemi-Markovian state processesBiased random walksIncorporation of feedback

    3 Outline of three applicationsBison movementDive paths of whalesCorrelated movement paths/group movement

    Roland Langrock HMMs for animal telemetry data

  • Beaked whale application (current joint work with Marques & Thomas)

    0 2000 4000 6000 8000 10000

    −15

    00−

    1000

    −50

    00

    beaked whale dive profile (data collected by Baird et al./Cascadia Research Collective)

    time

    dept

    h

    state description transition type

    1 ! (at surface) Markov

    2 & (deep dive) feedback from depth

    3 ! (deep dive) semi-Markov

    4 % (deep dive) feedback from depth

    5 & (shallow dive) Markov

    6 ! (shallow dive) Markov

    7 % (shallow dive) feedback from depth

    Roland Langrock HMMs for animal telemetry data

  • Beaked whale application (current joint work with Marques & Thomas)

    0 2000 4000 6000 8000 10000

    −15

    00−

    1000

    −50

    00

    beaked whale dive profile (data collected by Baird et al./Cascadia Research Collective)

    time

    dept

    h

    0 500 1000 1500

    0.0

    0.1

    0.2

    0.3

    0.4

    Switching probability as a function of depth

    depth in metres

    state description transition type

    1 ! (at surface) Markov

    2 & (deep dive) feedback from depth

    3 ! (deep dive) semi-Markov

    4 % (deep dive) feedback from depth

    5 & (shallow dive) Markov

    6 ! (shallow dive) Markov

    7 % (shallow dive) feedback from depth

    Roland Langrock HMMs for animal telemetry data

  • Beaked whale application (current joint work with Marques & Thomas)

    0 2000 4000 6000 8000 10000

    −15

    00−

    1000

    −50

    00

    beaked whale dive profile (data collected by Baird et al./Cascadia Research Collective)

    time

    dept

    h

    0 100 200 300 4000.0

    000.

    002

    0.00

    40.

    006

    0.00

    8

    duration of stay in state 3

    time units

    state description transition type

    1 ! (at surface) Markov

    2 & (deep dive) feedback from depth

    3 ! (deep dive) semi-Markov

    4 % (deep dive) feedback from depth

    5 & (shallow dive) Markov

    6 ! (shallow dive) Markov

    7 % (shallow dive) feedback from depth

    Roland Langrock HMMs for animal telemetry data

  • Beaked whale application (current joint work with Marques & Thomas)

    0 2000 4000 6000 8000 10000

    −15

    00−

    1000

    −50

    00

    beaked whale dive profile (data collected by Baird et al./Cascadia Research Collective)

    time

    dept

    h

    0 2000 4000 6000 8000 10000

    −15

    00−

    1000

    −50

    00

    dive profile simulated from fitted model

    time

    dept

    h

    Roland Langrock HMMs for animal telemetry data

  • 1 Some HMM basics

    2 Some possible extensionsSemi-Markovian state processesBiased random walksIncorporation of feedback

    3 Outline of three applicationsBison movementDive paths of whalesCorrelated movement paths/group movement

    Roland Langrock HMMs for animal telemetry data

  • Group movement model (current joint work with a lot of individuals, includingBlackwell, King, Patterson & Pedersen)

    movement of individuals is driven by some centroid/centre ofgravity (not necessarily a single \leader") of entire group

    each individual can switch between behavioural states such as

    ! \staying in the group" (following the centroid) or! \moving independently of the group" (solitarily exploring)

    for the centroid any model can be used (e.g. HMM)

    using an approximation for the centroid, such a model can be�tted using relatively standard HMM techniques!

    Roland Langrock HMMs for animal telemetry data

  • Group movement (simulation)

    Roland Langrock HMMs for animal telemetry data

  • Langrock, R., Zucchini, W., 2011. Hidden Markov models with arbitrary

    dwell-time distributions. Computational Statistics and Data Analysis, 55,

    pp. 715-724.

    Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D.,

    Morales, J. M., 2012. Flexible and practical modeling of animal telemetry

    data: hidden Markov models and extensions. Ecology, preprint online.

    Morales, J. M., Haydon, D. T., Frair, J. L., Holsinger, K. E., Fryxell, J.

    M., 2004. Extracting more out of relocation data: building movement

    models as mixtures of random walks. Ecology, 85, pp. 2436{2445.

    Patterson, T. A., Basson, M., Bravington, M. V., Gunn, J. S., 2009.

    Classifying movement behaviour in relation to environmental conditions

    using hidden Markov models. Journal of Animal Ecology, 78, pp.

    1113{1123.

    (The slides of this talk will soon be available on my web page at StAndrews' University)

    Roland Langrock HMMs for animal telemetry data

    Some HMM basicsSome possible extensionsSemi-Markovian state processesBiased random walksIncorporation of feedback

    Outline of three applicationsBison movementDive paths of whalesCorrelated movement paths/group movement