evidence of neutrino oscillation from sno

26
Evidence of Neutrino Oscillation from SNO Chun Shing Jason Pun Department of Physics The University of Hong Kong Presented at the HKU Neutrino Workshop 28 November, 2003

Upload: inigo

Post on 11-Jan-2016

128 views

Category:

Documents


0 download

DESCRIPTION

Evidence of Neutrino Oscillation from SNO. Chun Shing Jason Pun Department of Physics The University of Hong Kong Presented at the HKU Neutrino Workshop 28 November, 2003. Outline. The Solar Neutrino Problem (Brief) Descriptions of SNO Results from SNO Future (and present) plans for SNO - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Evidence of Neutrino Oscillation from SNO

Evidence of Neutrino Oscillation from SNO

Chun Shing Jason PunDepartment of Physics

The University of Hong Kong

Presented at the HKU Neutrino Workshop28 November, 2003

Page 2: Evidence of Neutrino Oscillation from SNO

Outline1. The Solar Neutrino Problem

2. (Brief) Descriptions of SNO

3. Results from SNO

4. Future (and present) plans for SNO

* Acknowledgement: This presentation borrows heavily from SNO member, Dr Alan W.P. Poon (LBL).

Page 3: Evidence of Neutrino Oscillation from SNO

1. The Solar Neutrino Problem

• Solar neutrinos provide a unique opportunity to study physics beyond the standard model.

• Huge flux:

• Long baseline: 1 AU = 1.5x108 km• Relatively low neutrino energy (~ MeV)

1210105.6)4)(13(

scmDMeV

L

Page 4: Evidence of Neutrino Oscillation from SNO

7Be+p8B+8B8Be*+e++e

8Be*4He+4He

1. pp chain and Standard Solar Model

p+p2H+e++e p+e+p2H+e

p+2H 3He+

3He+4He7Be+

7Be+ e-7Li+e

7Li+p4He+4He

3He+p4He+ e++e

85% 15%

0.02%

[pp ] [pep ]

[hep ]

[7Be ][8B ]

Overall: 4p + 2e 4He + 2e + 26.7MeV

Page 5: Evidence of Neutrino Oscillation from SNO

Combining with detailed model of solar evolution, we get the Standard Solar Model (SSM)

(cm

-2 s

-

1)

(CC)

SNO(NC)

Page 6: Evidence of Neutrino Oscillation from SNO

1.Solar Neutrino Problem

GALLEX: e71Ga 71Ge e

Ga (e )

SSM (e )0.580.05

SAGE : e71Ga 71Ge e

Ga (e )

SSM (e )0.600.05

Homestake : e37 Cl 37 Are

Cl (e )

SSM (e )0.340.03

Super -K : x e x eSK (x )

SSM (e )0.451 0.015

0.017

Increasing detection energy threshold

The discrepancy suggests either

(a) Solar models are incomplete and/or incorrect(b) Neutrinos undergo flavor-changing transformation

along the way from the Sun to Earth

Page 7: Evidence of Neutrino Oscillation from SNO

1. Astrophysical Solution to the Problem

• Reduce the solar core temperature Tc to lower the predicted flux, e.g. Fn(8B) T25

• BUT: Poor agreement with other parameters

• SSM accurately describes many observations

Speed of sound in solar interior

Page 8: Evidence of Neutrino Oscillation from SNO

1. Neutrino Oscillation mass eigenstates | i (i=1,2,3) flavor eigenstates | l (l= e,

l Ul ,ii i ,

In two flavor mixing

U cos sin sin cos

Probability of e transformation over a distance L

P (e ,L)sin2 2 sin2 1.27 m2[eV

2] L[m]

E [MeV]

,

where m 2 m12 m2

2

May also have resonance enhancement of theoscillation amplitude in dense matter (e.g. solarinterior) Mikheyev-Smirnov-Wolfenstein effect

Page 9: Evidence of Neutrino Oscillation from SNO

• Combination of baseline/neutrino-energy (L/E) probes different regions in the (m2,tan2) parameter space.

• Mikheyev-Smirnov-Wolfenstein (MSW) effect: resonance enhancement of the oscillation amplitude in dense matter (e.g. solar interior)

(Murayama 2003)

Page 10: Evidence of Neutrino Oscillation from SNO

2. The Sudbury Neutrino Observatory (SNO)

1000 tons D2O

• 2km underground in Sudbury, Canada

• 9456 20-cm PMTs in a 12m diameter vessel (56% coverage)

Page 11: Evidence of Neutrino Oscillation from SNO
Page 12: Evidence of Neutrino Oscillation from SNO

2. Neutrino reactions at SNO

CC-epd e p

NCxx

npd

ES -- ee x x

e-

d

p

p

e

Charged Current: • Measurement of e spectrum• Weak directionality: 1-0.340cos

Neutral Current: • Measure total solar 8B flux• flux e

Elastic Scattering: • Low statistics, strong directionality• fluxe≈ ≈

d p

n

xx

xx

e-

e-

Page 13: Evidence of Neutrino Oscillation from SNO

2. Neutrino Oscillation at SNO

• If no oscillation, solar neutrinos would be pure e.• Measure the ratio,

If e transform into other flavors, then

• Alternatively, can also measure the ratio

and detect transformation if

e

eNC

eCC

)(

)(

X

CC (e ) NC (x )

)()(

)(

0.15e

eES

CC

X

e

)()( xe ESCC

Page 14: Evidence of Neutrino Oscillation from SNO

3. Results from SNO• Electron neutrino event recovered from the

Cherenkov radiation of the e-.

e-

42o cone angle

Page 15: Evidence of Neutrino Oscillation from SNO

3. NC measurement at SNO

• Measurement of the NC is the most important for SNO

• Key: Detect high energy neutrons• Three phases of measurements with different

techniques and systematics

• Phase I: Pure D2O (Nov 99 – May 01)

• Phase II: Pure D2O + NaCl (Jul 01 – Sep 03)

• Phase III: D2O + 3He Proportional Counters (Nov 03 – ?)

Page 16: Evidence of Neutrino Oscillation from SNO

3. Phase I (Pure D2O)

• CC, ES, some NCs

• n + 2H → 3H + (6.25 MeV), = 0.5 mb

• Low neutron capture and detection efficiencies (n ~ 14% above threshold)

Page 17: Evidence of Neutrino Oscillation from SNO

3.0

2.5

2.0

1.5

1.0SNO CC SNO ES

SK ES Flux (1 )

3. Phase I, PRL 87 (2001) 071301 • Measured CC(e) and compare with accurate

ES results from Super-K [PRL 86 (2001) 5651]

3.3 1.6

SK ES (1)

Excludes pure esterile at 3.1

Page 18: Evidence of Neutrino Oscillation from SNO

3. Phase I, PRL 89 (2002) 011301, 02 • All pure D2O data used

• Direct measurement of total 8B flux NC(X)

1.6

Page 19: Evidence of Neutrino Oscillation from SNO

3. Main Results (Phase I) A. Exclude = 0 at 5.3s

B. SSM prediction verified (flux in units of 10-6 cm-2 s-1):

e 1.76 0.05

0.05(stat.) 0.09

0.09(syst.)106 cm 2s 1

3.410.45

0.45(stat.) 0.48

0.45(syst.)106 cm 2s 1

SSM (BP01) 5.05 1.01

0.81

SNOconstrained 5.09 0.44

0.43(stat.)

0.46

0.43(syst.)

SNOunconstrained 6.42 1.57

1.57(stat.)

0.55

0.58(syst.)

Bahcall, Pinsonneault & Basu (2001 ) ApJ, 555, 990

Page 20: Evidence of Neutrino Oscillation from SNO

3. Phase II (Pure D2O + NaCl)

• 2 tonnes of NaCl added

• CC, ES, enhanced NCs

• n + 35Cl → 36Cl* + ’s (8.6 MeV), = 44 b

• High neutron capture efficiency with higher energy release (n ~ 40% above threshold)

Page 21: Evidence of Neutrino Oscillation from SNO
Page 22: Evidence of Neutrino Oscillation from SNO

3. Phase II, nucl-ex/0309004

• Spectral distributions of the ES and CC events are not constrained to the standard 8B spectral shape.

• Measured total 8B flux (in units of 10-6 cm-2 s-1):

0.38(syst)0.27(stat)5.21

(syst) 0.10(stat)2.21

(syst)(stat)1.59

0.26

0.31

0.08

0.06

0.07

0.08

SNONC

SNOES

SNOCC

SSM (BP01) 5.05 1.01

0.81Recall

Page 23: Evidence of Neutrino Oscillation from SNO

SNO Only

All Solar experiments +KamLAND

3. Constraints on m2 and tan2

Best fit: m2 = 4.7x10-5,

tan2 = 0.43Best fit: m2 = 6.5x10-5,

tan2 = 0.40

Page 24: Evidence of Neutrino Oscillation from SNO

4. Phase III (Pure D2O + 3He)

• Arrays of 3He proportional counters (Neutral Current Detectors, NCD) inserted

• n + 3He → p + 3H + 760 keV (n ~ 37%)

• Motives:– CC, NC measured in separate data streams– Different systematic uncertainties– Search for direct evidence of MSW effect,

from CC spectral shape distortion.

Page 25: Evidence of Neutrino Oscillation from SNO

4. Phase III (Pure D2O + 3He)

• Nov 2003 – ?• 40 strings on 1-m grid• 440m total active

length.• Installed by a small

remote control submarine

Page 26: Evidence of Neutrino Oscillation from SNO

The SNO Collaboration

T. Kutter, C.W. Nally, S.M. Oser, C.E. WalthamUniversity of British Columbia

J. Boger, R.L. Hahn, R. Lange, M. YehBrookhaven National Laboratory

A.Bellerive, X. Dai, F. Dalnoki-Veress, R.S. Dosanjh, D.R. Grant, C.K. Hargrove, R.J. Hemingway, I. Levine, C. Mifflin, E. Rollin,

O. Simard, D. Sinclair, N. Starinsky, G. Tesic, D. WallerCarleton University

P. Jagam, H. Labranche, J. Law, I.T. Lawson, B.G. Nickel, R.W. Ollerhead, J.J. Simpson

University of Guelph

J. Farine, F. Fleurot, E.D. Hallman, S. Luoma, M.H. Schwendener, R. Tafirout, C.J. Virtue

Laurentian University

Y.D. Chan, X. Chen, K.M. Heeger, K.T. Lesko, A.D. Marino, E.B. Norman, C.E. Okada, A.W.P. Poon,

S.S.E. Rosendahl, R.G. StokstadLawrence Berkeley National Laboratory

M.G. Boulay, T.J. Bowles, S.J. Brice, M.R. Dragowsky, S.R. Elliott, M.M. Fowler, A.S. Hamer, J. Heise, A. Hime,

G.G. Miller, R.G. Van de Water, J.B. Wilhelmy, J.M. WoutersLos Alamos National Laboratory

S.D. Biller, M.G. Bowler, B.T. Cleveland, G. Doucas, J.A. Dunmore, H. Fergani, K. Frame, N.A. Jelley, S. Majerus,

G. McGregor, S.J.M. Peeters, C.J. Sims, M. Thorman, H. Wan Chan Tseung, N. West, J.R. Wilson, K. Zuber

Oxford University

E.W. Beier, M. Dunford, W.J. Heintzelman, C.C.M. Kyba, N. McCauley, V.L. Rusu, R. Van Berg

University of Pennsylvania

S.N. Ahmed, M. Chen, F.A. Duncan, E.D. Earle, B.G. Fulsom,H.C. Evans, G.T. Ewan, K. Graham, A.L. Hallin, W.B. Handler,

P.J. Harvey, M.S. Kos, A.V. Krumins, J.R. Leslie, R. MacLellan, H.B. Mak, J. Maneira, A.B. McDonald, B.A. Moffat,

A.J. Noble, C.V. Ouellet, B.C. Robertson, P. Skensved, M. Thomas, Y.Takeuchi

Queen’s University

D.L. WarkRutherford Laboratory and University of Sussex

R.L. HelmerTRIUMF

A.E. Anthony, J.C. Hall, J.R. KleinUniversity of Texas at Austin

T.V. Bullard, G.A. Cox, P.J. Doe, C.A. Duba, J.A. Formaggio, N. Gagnon, R. Hazama, M.A. Howe, S. McGee,

K.K.S. Miknaitis, N.S. Oblath, J.L. Orrell, R.G.H. Robertson, M.W.E. Smith, L.C. Stonehill, B.L. Wall, J.F. Wilkerson

University of Washington