epo and pre-service science education astronomical society of the pacific annual conference

30
EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference Pinky Nelson, Western Washington University September 18, 2006

Upload: livia

Post on 02-Feb-2016

22 views

Category:

Documents


0 download

DESCRIPTION

EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference Pinky Nelson, Western Washington University September 18, 2006. Introduction / Outline Why me? Affirmation of EPO people and progress! Needs and of preservice Teachers - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

EPO and Pre-service Science Education

Astronomical Society of the Pacific Annual Conference

Pinky Nelson, Western Washington University

September 18, 2006

Page 2: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

Introduction / Outline

• Why me?• Affirmation of EPO people and progress!• Needs and of preservice Teachers • Comments about preservice education• WWU elementary preservice program as an example• A suggestion for a significant EPO contribution

Page 3: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

Needs of Preservice TeachersTwo recent views: Lillian McDermott, Leo Kadanoff• Deep enough content knowledge of science disciplines that they will be teaching• Deep understanding of scientific inquiry• Deep understanding of learning research and theories• Content Specific Pedagogical Knowledge• Knowledge of and experience with effective materials • Knowledge of children (ed psych stuff)• Knowledge of how to function in a professional learning community• School knowledge (rules, classroom management)• Commitment to equity and useful tools• Confidence in their own ability to learn

Page 4: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

Comments on Preservice Education• Current model is failing (sustaining the status quo)• Elementary students enter with severe deficits

– 75% are not proportional reasoners– Science knowledge is at ~ grade 6-8 standards

• Secondary students have weak conceptual understandings, poor (traditional) teaching models

• Students are not “dumb”, they have been grossly underserved by the system

• Preservice reform must include K-12 reform• Any reform should plan to evolve

– If we are successful, students will change over time

Page 5: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

An example from Western Washington University (K-8 endorsement program)

NCOSP Partners• University with a large teacher preparation

program• Four neighboring two-year colleges• 28 school districts• Washington State LASER

One of the goals• Help WWU and CC transfer preservice

students become confident science learners

Page 6: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

New Requirements for El Ed major

Five Science Content Classes (quarters)• 3 quarter sequence--phys, biol, geol• 1 quarter capstone--Inquire science (chemistry)• 1quarter nature of science--Science and Society

Two Science Pedagogy Classes• Science Methods• Science practicum

Page 7: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

Development Stucture

•GUR Working Group ~ 25 Faculty, 2-3 Teachers on Special Assignment

•3 Sub-groups Phys, Biol, Geol

•No hierarchy

Page 8: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

Guiding Documents:How People LearnUnderstanding by DesignPhysics Education for Teachers

Learning Cycle Model•Purpose•Initial Ideas•Collecting and Interpreting Evidence•Summarizing Questions (Reflection)

Page 9: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

Developing the courses

Issues that we faced:• Staff Development• Survey course vs. Depth• Integrated vs. Discipline-based• Innovated vs. Research-based• Academic freedom vs. Common Course

(including assessments)• University vs. Two-year faculty• Full-time faculty vs. Part-time faculty• Existing vs. Home-grown

Page 10: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

InserviceTeachers

PreserviceTeachers

Physical Science

Summer 2004 Fall 2005

Life Science Summer 2005 Winter/Spring 2005-06

Earth Science Summer 2006 Winter/Spring 2005-06

Initial Course Implementation

Page 11: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

K-16 Reform-Based Science Instruction

New Physical Science GUR Course at a Glance

• Participating Institutions (Fall 2005): EVCC, SVCC, WCC & WWU• PET curriculum• Constructivist: based on experiences, investigations, and discussions in the

classroom • No textbook• Part of a science sequence for elementary education students• Approximately 80 students participated in Fall 2005• Data, data, data

content assessmentsstudent surveys of students’ beliefsteacher interviewsstudent interviewsobservations

Page 12: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

PET Student AssessmentsN=53

Preservice Elementary Teacher Performance (PET Course)

0102030405060708090

100

Pretest Posttest

Pe

rcen

t C

orr

ect

(%)

EvCC

WWU

SVC

Page 13: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Students’ Views of the Nature of Science

The main skill I expect to get out of this course is to learn how to reason logically about the physical world.

Logical Reasoning

0

10

20

30

40

50

Stronglydisagree

somewhatdisagree

neutral somewhatagree

stronglyagree

pre

post

“… a lot of the things that I just take for granted I had to question and then realize that I was wrong on a lot of the things I thought and the good thing is that because we did

experiments… we had to figure out how to learn it ourselves and the teacher didn’t just tell us how to think, it counteracted what I thought that was wrong so it forced me to

realize what was wrong and not go back to what I was thinking before”.

-WWU student

Page 14: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Learning science made me change some of my ideas about how scientific phenomena can be used to understand the world around me.

Science Phenomena are Related to the Real World

010203040506070

Str

ongl

ydi

sagr

ee

som

ewha

tdi

sagr

ee

neut

ral

som

ewha

tag

ree

stro

ngly

agre

e

pre test

post test

Page 15: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

When learning science people can understand the material better if they relate it to their own ideas.

Understanding Science Relates to Personal Experience

010203040506070

Stronglydisagree

somew hatdisagree

neutral somew hatagree

stronglyagree

pre

post

“…I just learn information like for a test, then I forget it, then I’ll just return back to what I thought before but this way I remember it better”.

-WWU student

Page 16: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Observations:Using HRI Observation Protocol

Foci of Observation:

• Design

• Implementation

• Content Experienced by Students

• Classroom Culture

Capsule Ratings of Quality of the Lesson

Level 1: Ineffective InstructionHighly Unlikely to contribute to students’ understanding.

Level 2:Elements of Effective Instruction Some evidence of learning but serious problems in design,

implementation, or content.

Level 3:Beginning stages of Effective InstructionSomewhat limited in its ability to contribute to students’

understanding.

Level 4:Accomplished Effective InstructionQuite likely to contribute to the majority of students’

understanding.

Level 5:Exemplary InstructionHighly likely to contribute to all or most students’ understanding

and develop capacity to do science.

Page 17: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Rating Averages

Standard GUR Design: 4 Implementation: 3.7 Content: 3.7 Culture: 3.8

Capsule: 3.2

New GUR Design: 4.4 Implementation: 3.8 Content: 4.1 Culture: 3.9

Capsule: 3.9

Standard Physics GUR: 6 observations of three courses

New Physics GUR: 8 observations of four courses

Page 18: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Content As Experienced by Students

• Quotes from Students in Physics Class– “Although it was less than a year ago that I completed a

Physics AP class in High School, I was surprised by how often my own ideas were challenged and changed by the basic ideas taught through this elementary curriculum”

– “…of all the courses I took this quarter, I believe I showed the most growth in SCED 201. It is amazing to look at the initial ideas in my binder and see how much progress my ideas and thoughts have made over just a unit in the curriculum. I also noted a lot about my own thought processes and the way that I learn”

Page 19: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Content As Experienced by Student

“I believe that this course will be extremely useful for me in the future. Even though I am not going to be a science teacher, I am planning on being a Spanish teacher. Before taking this course, I thought that the science GURs would be useless for my major, and that all science courses were lecture-based. But, rather than just teach me something about science in a new way, this course taught me about how I learn, and showed me that there are different approaches to go about teaching materials that can be carried across the disciplines, which I will be able to bring into the classroom as a Spanish teacher.

Page 20: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Classroom Culture

“At the beginning I was very nervous about it because I don’t feel like I’m a strong science thinker. I was really afraid to

verbalize and vocalize my opinions and what I was thinking on a topic, but after a week or so I began to become really

comfortable because I realized that the reason everyone’s talking about it is to help everyone learn. And when someone

would say something that was incorrect, no one would care because we all just wanted to help them understand what was

actually going on so…I was very comfortable by then.”

- WWU Student

Page 21: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

Example: Selecting the Biology “Big Ideas”

Taken from:

Washington State Standards

National Science Education Standards

AAAS Benchmarks for Science Literacy

Page 22: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

Content: Life Systems “Big Ideas”• Food serves as fuel and building materials for an organism.

Sugars are an example of food, but water, carbon dioxide, and oxygen are not.

• Using the energy from light, plants make their own food - in the form of sugars - from carbon dioxide (in the air) and water. Nothing else is required for this process

• Plants transform the energy from light into chemical energy in the sugars.

• Animals cannot make their own food, but must acquire it by consuming plants or other animals that have consumed plants.

More…

Page 23: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

Content: Life Systems “Big Ideas” (cont.)• Organisms grow by breaking down the food and assembling

the breakdown products into their body structures.

• Organisms gain energy for their life processes breaking down energy-rich food into simpler substances with less energy. The energy is used for growth and body functions. Other energy is released as heat.

• If not used immediately for fuel or building structures, the breakdown products can become part of body structures that serve as energy storage for later use.

Page 24: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

Overarching Scientific Process “Big Ideas”

• The Universe is Understandable• Scientific Ideas Are Subject to Change• Scientific Knowledge is Durable• Science Explains and Predicts• Science Cannot Provide Complete Answers to All

Questions• Science Demands Evidence • Science is a Blend of Logic and Imagination• Science is not Authoritarian

Page 25: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Data from summer pilot 2005Investigating the Flow and Matter

and Energy in Living SystemsFour Cycles

• What is food for living organisms?

• How do plants get food?

• How do organisms use food?

• How does matter and energy cycle in living systems?

Page 26: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Overall

67

84*

0

20

40

60

80

100

Pre Post

Sco

re

* Post-test scores significantly greater than pre-test score (p < 0.05), 1-tailed paired samples t-test. Effect size = 1.39 standard deviations. Gain score= .51. N=165

HRI Life Science Assessment: Pre and Post Scores

Page 27: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

59

737979

8691

0

20

40

60

80

100

Elementary Middle High

Sco

re

Pre Post

Comparisons by Grade Level

Controlling for pre-test scores and other demographics, high school teachers scored significantly higher than elementary and middle school teachers (effect sizes of 0.45 and 0.31 standard deviations, respectively). However, no significant differences between gain scores (ES=.49, MS=.48, HS=.57). N = 87, 42, 36

Page 28: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Gender

72

64

8782

0

20

40

60

80

100

Male Female

Sco

re

Pre Post

No significant differences by gender. Gain scores: M=.54 F=.50

Comparisons by Gender

Page 29: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

What have we learned?• Less is more• Initial perceptions of “academic freedom” must be

addressed (student- vs. faculty-centered)• Implementing reformed courses is material, staff, and

faculty intensive w/ implications for sustainability • Team teaching helps• Lesson Study helps• Staff development is key• Interpersonal relationships are critical• Course revisions being made based on student and

faculty feedback--methods course.• Can’t do it all – where is the place for chemistry,

astronomy, environmental science….?

Page 30: EPO and Pre-service Science Education Astronomical Society of the Pacific Annual Conference

Sponsored by the National Science Foundation under Grant No. HER-0315060

A Suggestion for EPOers• Assemble teams to develop and test three or more one-semester

astronomy content courses for future teachers• Solar System and Stars for Elementary • The Universe for Secondary

• Copy the Physics for Elementary Teachers format (for example)• Pilot these materials so you know how they function

• Include an instructor’s guide and staff development• Use proven development protocols (UBD)

• Start by choosing learning goals (Benchmarks 6-8)• Create and test assessments• Design inquiry-based activities• Include cool simulations and data where it makes sense

• Build in a robust evaluation plan from the start and pay attention• Don’t worry about missions or even NASA--worry about students

learning important ideas