enamine catalysis: fifty years in the making · 2016. 12. 24. · enamine catalysis: fifty years in...

138
Enamine Catalysis: Fifty Years in the Making ! Stork's landmark 1954 publication outlines benefits of enamines vs enolates Stork, G.; Terrell, R.; Szmuszkovicz, J. J. Am. Chem. Soc. 1954, 76, 2029.

Upload: others

Post on 31-Jan-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

  • Enamine Catalysis: Fifty Years in the Making

    ! Stork's landmark 1954 publication outlines benefits of enamines vs enolates

    N

    O

    O

    O

    Me

    Ph

    CN

    O

    Ph

    O

    Alkylation

    Acylation

    Michael

    Addition

    Stork, G.; Terrell, R.; Szmuszkovicz, J. J. Am. Chem. Soc. 1954, 76, 2029.

  • Enamine Catalysis: Fifty Years in the Making

    ! Stork's landmark 1954 publication outlines benefits of enamines vs enolates

    N

    O

    O

    O

    Me

    Ph

    CN

    O

    Ph

    O

    Alkylation

    Acylation

    Michael

    Addition

    Stork, G.; Terrell, R.; Szmuszkovicz, J. J. Am. Chem. Soc. 1954, 76, 2029.

  • Enamine Catalysis: Inspiration from Biology

    ! Mechanism of class I aldolases is proposed to involve enamine intermediates

    Fructose bisphosphate aldolase

    NH2

    NH

    O

    OPO32–OH

    HO

    H

    OPO32–

    N

    OH

    OH

    OH

    OPO32–

    O

    HOPO3

    2–

    OH

    2–O3PO

    O

    OH

    OH

    OH

    OPO32–

    2–O3PO

    Rutter, W. J. Fed. Proc. Am. Soc. Exp. Biol. 1964, 23, 1248Lysine reside is required for catalytic activity

  • Enamine Catalysis: Early Adoption in Total Synthesis

    ! Woodward-Wieland-Miescher enamine cyclization for steroid synthesis

    Wieland, P.; Miescher, K. Helv. Chim. Acta 1950, 33, 2215

    O

    Me

    MeOH

    OH

    HH5IO6

    O

    Me

    MeO

    O

    H NH

    HOAcbenzene O

    Me

    Me

    H

    CHO

    Woodward, R. B.; Sondheimer, F.; Taub, D.; Heusler, K.; McLamore, W. M. J. Am. Chem. Soc. 1952, 74, 4223

    O O

    Me

    O

    Me

    O

    OH

    O

    HH

    NH

    NaOH OOH

    OMe

    O

    HOOH

    O

    O

    OMe

  • Hajos-Parrish-Eder-Sauer-Wiechart: Asymmetric Breakthrough

    ! Use of proline to deliver the Weiland-Miescher ketone in an asymmetric fasion

    O

    O

    Me

    OMe

    proline

    (200 mol%)

    MeCN, HClO480 ºC

    Me O

    O

    proline

    (3 mol%)

    DMF

    Me O

    OOH

    98% ee 67% ee

    J. Org. Chem. 1974, 39, 1615. Angew. Chem. Int. Ed. 1971, 10, 496.

    German Patent DE2102623 (July 29, 1971) German Patent DE2014757 (Oct 7, 1971)

  • Hajos-Parrish-Eder-Sauer-Wiechart: Asymmetric Breakthrough

    ! Use of proline to deliver the Weiland-Miescher ketone in an asymmetric fasion

    O

    O

    Me

    OMe

    proline

    (200 mol%)

    MeCN, HClO480 ºC

    Me O

    O

    proline

    (3 mol%)

    DMF

    Me O

    OOH

    98% ee 67% ee

    J. Org. Chem. 1974, 39, 1615. Angew. Chem. Int. Ed. 1971, 10, 496.

    German Patent DE2102623 (July 29, 1971) German Patent DE2014757 (Oct 7, 1971)

    97% ee

  • Hajos-Parrish-Eder-Sauer-Wiechart: Asymmetric Breakthrough

    ! Use of proline to deliver the Weiland-Miescher ketone in an asymmetric fasion

    O

    O

    Me

    OMe

    proline

    (200 mol%)

    MeCN, HClO480 ºC

    Me O

    O

    proline

    (3 mol%)

    DMF

    Me O

    OOH

    98% ee 67% ee

    J. Org. Chem. 1974, 39, 1615. Angew. Chem. Int. Ed. 1971, 10, 496.

    German Patent DE2102623 (July 29, 1971) German Patent DE2014757 (Oct 7, 1971)

    97% ee

  • Hajos-Parrish-Eder-Sauer-Wiechart: Asymmetric Breakthrough

    ! Use of proline to deliver the Weiland-Miescher ketone in an asymmetric fasion

    O

    O

    Me

    OMe

    proline

    (200 mol%)

    MeCN, HClO480 ºC

    Me O

    O

    proline

    (3 mol%)

    DMF

    Me O

    OOH

    98% ee 67% ee

    J. Org. Chem. 1974, 39, 1615. Angew. Chem. Int. Ed. 1971, 10, 496.

    German Patent DE2102623 (July 29, 1971) German Patent DE2014757 (Oct 7, 1971)

    97% ee

  • 3210

  • Bifunctional Enamine Catalysis: Generic Induction Platform

    ! Use of proline or proline-type activation a widely exploited mode of ketone activation

    R'

    O

    R

    NH

    O

    OH

    XY

    H

    N

    H

    R

    O O

    ketone

    proline

    Bifunctional

    activation

    N N

    Cbz

    Cbz

    R'

    O

    R

    N

    NHCbz

    Cbz

    Jørgensen JACS 2002, 124, 6254.

    R'

    O

    R

    List Org Lett 2001, 13, 2423.

    O

    H

    Me

    Me

    Me

    O Me

    Me

    OH

    List Org Lett 2001, 3, 573.

    X Y

    Amination

    Cross-Aldol

    R'

    PhNO2

    Nitro-olefin

    addition

    NO2

    Ph

  • Bifunctional Enamine Catalysis: Generic Induction Platform

    ! Use of proline or proline-type activation a widely exploited mode of ketone activation

    R'

    O

    R

    NH

    O

    OH

    XY

    H

    N

    H

    R

    O O

    ketone

    proline

    Bifunctional

    activation

    N N

    Cbz

    Cbz

    R'

    O

    R

    N

    NHCbz

    Cbz

    Jørgensen JACS 2002, 124, 6254.

    R'

    O

    R

    List Org Lett 2001, 13, 2423.

    O

    H

    Me

    Me

    Me

    O Me

    Me

    OH

    List Org Lett 2001, 3, 573.

    X Y

    Amination

    Cross-Aldol

    R'

    PhNO2

    Nitro-olefin

    addition

    NO2

    Ph

  • Bifunctional Enamine Catalysis: Generic Induction Platform

    ! Use of proline or proline-type activation a widely exploited mode of ketone activation

    R'

    O

    R

    NH

    O

    OH

    XY

    H

    N

    H

    R

    O O

    ketone

    proline

    Bifunctional

    activation

    N N

    Cbz

    Cbz

    R'

    O

    R

    N

    NHCbz

    Cbz

    Jørgensen JACS 2002, 124, 6254.

    R'

    O

    R

    List Org Lett 2001, 13, 2423.

    O

    H

    Me

    Me

    Me

    O Me

    Me

    OH

    List Org Lett 2001, 3, 573.

    X Y

    Amination

    Cross-Aldol

    R'

    PhNO2

    Nitro-olefin

    addition

    NO2

    Ph

  • Bifunctional Enamine Catalysis: Generic Induction Platform

    ! Use of proline or proline-type activation a widely exploited mode of ketone activation

    R'

    O

    R

    NH

    O

    OH

    XY

    H

    N

    H

    R

    O O

    ketone

    proline

    Bifunctional

    activation

    N N

    Cbz

    Cbz

    R'

    O

    R

    N

    NHCbz

    Cbz

    Jørgensen JACS 2002, 124, 6254.

    R'

    O

    R

    List Org Lett 2001, 13, 2423.

    O

    H

    Me

    Me

    Me

    O Me

    Me

    OH

    List Org Lett 2001, 3, 573.

    X Y

    Amination

    Cross-Aldol

    R'

    PhNO2

    Nitro-olefin

    addition

    NO2

    Ph

  • Mangion, I. K.; Northrup, A. B.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2004, 43, 6722.

    86%

    5:1

  • TFA

    86% 94%

    Et2OMe

    Me Me

  • 5:1

    97%

  • DMSO

    73%

    64%

  • 97%

    19:1 95%–78 to –40 ºC

    –20 to +4 ºC

    87%

    95%

    >19:1

    >19:1

  • –20 to +4 ºC

    79%

    95%

    OH

    OAc

    OH

    OBn

  • 95%

    95%

  • Predictable Stereochemistry for Aldol and Mannich

    ! Use of proline or proline-type catalysts leads to anti-aldol or syn-Mannich

    XY

    H

    N

    H

    R

    O O

    Bifunctional

    activation

    OH

    N

    H

    R

    O OH

    R'

    O

    H R'

    R

    OHAldol

    anti-selective

    NH

    N

    H

    R

    O OR'

    H

    PMP O

    H R'

    R

    NHPMPMannich

    syn-selective

    ! Maruoka's binaphthyl catalyst is a significant advance to access opposite stereoisomers

    NH

    NHTf

    N

    NTf

    H

    R

    O

    HR'

    N

    NTf

    H

    R

    N

    R'H

    O

    H R'

    R

    OH

    Syn-aldol: ACIEE 2004, 43, 6722

    O

    H R'

    R

    NHPMP

    Anti-Mannich: JACS 2005, 127, 16408

  • Predictable Stereochemistry for Aldol and Mannich

    ! Use of proline or proline-type catalysts leads to anti-aldol or syn-Mannich

    XY

    H

    N

    H

    R

    O O

    Bifunctional

    activation

    OH

    N

    H

    R

    O OH

    R'

    O

    H R'

    R

    OHAldol

    anti-selective

    NH

    N

    H

    R

    O OR'

    H

    PMP O

    H R'

    R

    NHPMPMannich

    syn-selective

    ! Maruoka's binaphthyl catalyst is a significant advance to access opposite stereoisomers

    NH

    NHTf

    N

    NTf

    H

    R

    O

    HR'

    N

    NTf

    H

    R

    N

    R'H

    O

    H R'

    R

    OH

    Syn-aldol: ACIEE 2004, 43, 6722

    O

    H R'

    R

    NHPMP

    Anti-Mannich: JACS 2005, 127, 16408

  • Monofunctional Enamine Catalysis

    ! Bifunctional activation is not absolutely required for selective catalysis

    H

    O

    Me

    10 mol% catalyst

    then, MeOH/CSAMeO

    OMe

    Me

    N

    NH

    MeO

    Bn •TCAMe

    OH

    4:1 (ant:syn)

    94% ee

    ! Imidazolidinone and Jørgensen-type frameworks have been widely applied

    N

    NH

    MeO

    Bn

    N

    NH

    MeO

    Bn

    NH

    Ar

    Ar

    OTMSNH

    Ar

    ArMe

    Me H

  • Enamine Chemistry with Jørgensen's Catalyst

    Ar

    ArOTMS

    NH

    Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kaersgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296.

    O

    H

    R

    O

    H

    Bn

    F

    O

    H

    i-Pr

    Br

    O

    H

    Et

    S Ph

    O

    H

    Et

    N

    HN

    CO2Et

    CO2Et

    O

    H

    Et

    HN

    CO2Et

    PMP

    O

    H

    Et

    O

    Me

    74%, 94% ee

    74%, 93% ee

    83%, 93% ee

    83%, 94% ee, 4:1 dr

    79%, 90% ee

    83%, 96% ee

    Ar

    ArOTMS

    N

    RE

    O

    H

    Et

    NBn2

    84%, 90% ee

    Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804.

    O

    H

    Bn

    OH

    70%, 87% ee

    Ibrahem, I.; Zhao, G.-L.; Sunden, H.; Córdova, A. Tettrahedron Lett. 2006, 47, 4659.

  • Enamine Chemistry with Jørgensen's Catalyst

    Ar

    ArOTMS

    NH

    Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kaersgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296.

    O

    H

    R

    O

    H

    Bn

    F

    O

    H

    i-Pr

    Br

    O

    H

    Et

    S Ph

    O

    H

    Et

    N

    HN

    CO2Et

    CO2Et

    O

    H

    Et

    HN

    CO2Et

    PMP

    O

    H

    Et

    O

    Me

    74%, 94% ee

    74%, 93% ee

    83%, 93% ee

    83%, 94% ee, 4:1 dr

    79%, 90% ee

    85%, 96% ee

    Ar

    ArOTMS

    N

    RE

    O

    H

    Et

    NBn2

    84%, 90% ee

    Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804.

    O

    H

    Bn

    OH

    70%, 87% ee

    Ibrahem, I.; Zhao, G.-L.; Sunden, H.; Córdova, A. Tettrahedron Lett. 2006, 47, 4659.

  • Enamine Chemistry with Jørgensen's Catalyst

    Ar

    ArOTMS

    NH

    Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kaersgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296.

    O

    H

    R

    O

    H

    Bn

    F

    O

    H

    i-Pr

    Br

    O

    H

    Et

    S Ph

    O

    H

    Et

    N

    HN

    CO2Et

    CO2Et

    O

    H

    Et

    HN

    CO2Et

    PMP

    O

    H

    Et

    O

    Me

    74%, 94% ee

    74%, 93% ee

    83%, 93% ee

    83%, 94% ee, 4:1 dr

    79%, 90% ee

    85%, 96% ee

    Ar

    ArOTMS

    N

    RE

    O

    H

    Et

    NBn2

    84%, 90% ee

    Chi, Y.; Gellman, S. H. J. Am. Chem. Soc. 2006, 128, 6804.

    O

    H

    Bn

    OH

    70%, 87% ee

    Ibrahem, I.; Zhao, G.-L.; Sunden, H.; Córdova, A. Tettrahedron Lett. 2006, 47, 4659.

  • Dienamine Activation: !-Amination of Enals

    Ar

    ArOTMS

    NH

    O

    H

    Ar

    ArOTMS

    N

    R

    R

    Ar

    ArOTMS

    N

    R

    –H2O –H+

    E

    Ar

    ArOTMS

    NH

    Ar = 3,5-(CF3)2C6H3

    10 mol % PhCO2H

    toluene

    NN CO2Et

    EtO2C

    O

    H

    Me

    O

    H

    Me

    N

    HN

    CO2Et

    CO2Et

    10 mol %

    56%, 89% ee

    Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.

  • Dienamine Activation: !-Amination of Enals

    Ar

    ArOTMS

    NH

    O

    H

    Ar

    ArOTMS

    N

    R

    R

    Ar

    ArOTMS

    N

    R

    –H2O –H+

    E

    Ar

    ArOTMS

    NH

    Ar = 3,5-(CF3)2C6H3

    10 mol % PhCO2H

    toluene

    NN CO2Et

    EtO2C

    O

    H

    Me

    O

    H

    Me

    N

    HN

    CO2Et

    CO2Et

    10 mol %

    56%, 89% ee

    Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.

  • Dienamine Activation: !-Amination of Enals

    Ar

    ArOTMS

    NH

    O

    H

    Ar

    ArOTMS

    N

    R

    R

    Ar

    ArOTMS

    N

    R

    –H2O –H+

    Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.

    Ar

    ArOTMS

    N

    R

    20.9 kcal/mol

    13.0 kcal/mol

    N

    NEtO2C

    CO2Et

    Ar

    ArOTMS

    N

    R

    N

    NH

    EtO2C

    EtO2C

    S-product

    (not observed)

  • Dienamine Activation: !-Amination of Enals

    Ar

    ArOTMS

    NH

    O

    H

    Ar

    ArOTMS

    N

    R

    R

    Ar

    ArOTMS

    N

    R

    –H2O –H+

    Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.

    Ar

    ArOTMS

    N

    R

    20.9 kcal/mol

    13.0 kcal/mol

    N

    NEtO2C

    CO2Et

    Ar

    ArOTMS

    N

    R

    N

    NH

    EtO2C

    EtO2C

    S-product

    (not observed)

  • Dienamine Activation: !-Amination of Enals

    Ar

    ArOTMS

    NH

    O

    H

    Ar

    ArOTMS

    N

    R

    R

    Ar

    ArOTMS

    N

    R

    –H2O –H+

    Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.

    Ar

    ArOTMS

    N

    R

    20.9 kcal/mol

    13.0 kcal/mol

    N

    NEtO2C

    CO2Et

    Ar

    ArOTMS

    N

    R

    N

    NH

    EtO2C

    EtO2C

    S-product

    (not observed)

  • Dienamine Activation: !-Amination of Enals

    Ar

    ArOTMS

    NH

    O

    H

    Ar

    ArOTMS

    N

    R

    R

    Ar

    ArOTMS

    N

    R

    –H2O –H+

    Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.

    Ar

    ArOTMS

    N

    R

    7.5 kcal/mol

    Ar

    ArOTMS

    N

    R

    Ar

    Ar

    OTMSN

    R

    NCO2Et

    NCO2Et

    6.7 kcal/mol

    –23.5 kcal/mol0 kcal/mol

    H2O

    –cat

    O

    R

    N

    H NH CO2Et

    CO2Et

    R–product

  • Dienamine Activation: !-Amination of Enals

    Ar

    ArOTMS

    NH

    O

    H

    Ar

    ArOTMS

    N

    R

    R

    Ar

    ArOTMS

    N

    R

    –H2O –H+

    Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.

    Ar

    ArOTMS

    N

    R

    7.5 kcal/mol

    Ar

    ArOTMS

    N

    R

    Ar

    Ar

    OTMSN

    R

    NCO2Et

    NCO2Et

    6.7 kcal/mol

    –23.5 kcal/mol0 kcal/mol

    H2O

    –cat

    O

    R

    N

    H NH CO2Et

    CO2Et

    R–product

  • Dienamine Activation: !-Amination of Enals

    Ar

    ArOTMS

    NH

    O

    H

    Ar

    ArOTMS

    N

    R

    R

    Ar

    ArOTMS

    N

    R

    –H2O –H+

    Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.

    Ar

    ArOTMS

    N

    R

    7.5 kcal/mol

    Ar

    ArOTMS

    N

    R

    Ar

    Ar

    OTMSN

    R

    NCO2Et

    NCO2Et

    6.7 kcal/mol

    –23.5 kcal/mol0 kcal/mol

    H2O

    –cat

    O

    R

    N

    H NH CO2Et

    CO2Et

    R–product

  • Dienamine Activation: !-Amination of Enals

    Ar

    ArOTMS

    NH

    O

    H

    Ar

    ArOTMS

    N

    R

    R

    Ar

    ArOTMS

    N

    R

    –H2O –H+

    Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.

    Ar

    ArOTMS

    N

    R

    7.5 kcal/mol

    Ar

    ArOTMS

    N

    R

    Ar

    Ar

    OTMSN

    R

    NCO2Et

    NCO2Et

    6.7 kcal/mol

    –23.5 kcal/mol0 kcal/mol

    H2O

    –cat

    O

    R

    N

    H NH CO2Et

    CO2Et

    R–product

  • Dienamine Activation: !-Amination of Enals

    Ar

    ArOTMS

    NH

    O

    H

    Ar

    ArOTMS

    N

    R

    R

    Ar

    ArOTMS

    N

    R

    –H2O –H+

    Ar

    ArOTMS

    NH

    Ar = 3,5-(CF3)2C6H3

    10 mol % PhCO2H

    toluene

    NN CO2Et

    EtO2C

    O

    H

    Me

    O

    H

    Me

    N

    HN

    CO2Et

    CO2Et

    10 mol %

    56%, 89% ee

    Bertelsen, S.; Marigo, M.; Brandes, S.; Dinér, P.; Jørgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973.

  • HOMO-Raising Catalysis Beyond Enamine Activation

    N

    OR

    N

    OMe

    Ph

    Ph Ph

    Ph PhFe

    N

    Me2N

    ! Enamine activation is extremely powerful, but does not extend to esters, amides, etc.

    O

    H

    R

    N

    NH

    O Me

    Ph

    N

    N

    O Me

    Ph

    R

    O

    X

    R

    X = OR, NR2

    N

    NH

    O Me

    Ph

    N

    N

    O Me

    Ph

    R

    X

    O

    X

    R1

    R2

    Is there an alternative way to generatechiral ester enolate equivalents?

    Chiral Ammonium Catalysis

    Gaunt, M. J.; Johansson, C. C. C. Chem. Rev. 2007, 107, 5596

    No condensation

  • HOMO-Raising Catalysis Beyond Enamine Activation

    N

    OR

    N

    OMe

    Ph

    Ph Ph

    Ph PhFe

    N

    Me2N

    ! Enamine activation is extremely powerful, but does not extend to esters, amides, etc.

    O

    H

    R

    N

    NH

    O Me

    Ph

    N

    N

    O Me

    Ph

    R

    O

    X

    R

    X = OR, NR2

    N

    NH

    O Me

    Ph

    N

    N

    O Me

    Ph

    R

    X

    O

    X

    R1

    R2

    Is there an alternative way to generatechiral ester enolate equivalents?

    Chiral Ammonium Catalysis

    Gaunt, M. J.; Johansson, C. C. C. Chem. Rev. 2007, 107, 5596

    No condensation

  • Ketenes as Precursors for Ammonium Enolates

    ! Attack of nucleophilic tertiary amine on ketene leads directly to ammonium enolate

    O

    MeH

    *NR3

    O

    Me

    H

    R3N*E+

    O

    R3N*

    Me

    E HNuc

    O

    Nuc

    Me

    E

    Enantioselective ester/amide!-functionalization

    ! First asymmetric example by Wynberg in 1982 (first racemic by Sauer in 1947)

    •O

    H

    H

    H CCl3

    O

    N

    N

    OMe

    OH

    catalyst (4 mol%)

    PhMe, –25 ºC

    O

    O

    Cl3C

    *NR3

    O

    H

    H

    R3N* H CCl3

    O

    Cl3C

    O

    O

    NR3*

    "-Lactone formation: internal nucleophile

    catalyst

    Wynberg, H.; Staring, E. G. J. J. Am. Chem. Soc. 1982, 104, 166

    Sauer, J. C. J. Am. Chem. Soc. 1947, 69, 2444

  • Ketenes as Precursors for Ammonium Enolates

    ! Attack of nucleophilic tertiary amine on ketene leads directly to ammonium enolate

    O

    MeH

    *NR3

    O

    Me

    H

    R3N*E+

    O

    R3N*

    Me

    E HNuc

    O

    Nuc

    Me

    E

    Enantioselective ester/amide!-functionalization

    ! First asymmetric example by Wynberg in 1982 (first racemic by Sauer in 1947)

    •O

    H

    H

    H CCl3

    O

    N

    N

    OMe

    OH

    catalyst (4 mol%)

    PhMe, –25 ºC

    O

    O

    Cl3C

    *NR3

    O

    H

    H

    R3N* H CCl3

    O

    Cl3C

    O

    O

    NR3*

    "-Lactone formation: internal nucleophile

    catalyst

    Wynberg, H.; Staring, E. G. J. J. Am. Chem. Soc. 1982, 104, 166

    Sauer, J. C. J. Am. Chem. Soc. 1947, 69, 2444

  • Ammonium Enolates as Versatile Synthetic Intermediates

    N

    OR

    N

    OMe

    Ph

    Ph Ph

    Ph PhFe

    N

    Me2N

    Gaunt, M. J. Johansson, C. C. C. Chem. Rev. 2007, 107, 5596

    or

    •O

    X

    Y

    O

    Cl

    Y

    X

    H

    O

    R3N*

    Y

    X

    O

    O

    R

    X

    Y

    O

    R

    TsN

    O

    R

    X

    Y

    NTs

    R

    O

    O

    X

    YR

    O

    R

    "Cl+"

    O

    ROCl

    X Y

    [4+2]

    NR

    O O

    X

    Y

    MeOH

    O

    MeOH

    X Y

    France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. Chem. Rev. 2003, 103, 2985

  • Ammonium Enolates as Versatile Synthetic Intermediates

    N

    OR

    N

    OMe

    Ph

    Ph Ph

    Ph PhFe

    N

    Me2N

    Gaunt, M. J. Johansson, C. C. C. Chem. Rev. 2007, 107, 5596

    or

    •O

    X

    Y

    O

    Cl

    Y

    X

    H

    O

    R3N*

    Y

    X

    O

    O

    R

    X

    Y

    O

    R

    TsN

    O

    R

    X

    Y

    NTs

    R

    O

    O

    X

    YR

    O

    R

    "Cl+"

    O

    ROCl

    X Y

    [4+2]

    NR

    O O

    X

    Y

    MeOH

    O

    MeOH

    X Y

    France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. Chem. Rev. 2003, 103, 2985

  • Alternative Methods to Access Ammonium Enolates

    N

    OR

    N

    OMe

    Papageorgiou, C. D.; Cubillo de Dios, M. A.; Ley, S. V.; Gaunt, M. J. Angew. Chem. Int. Ed. 2004, 43, 4641

    Et2N

    O

    Br

    O

    Phcatalyst (10 mol%)

    CsCO3, MeCN, 80 ºC

    ! Alkylation of !-bromocarbonyls lead to chiral ammonium ylides

    PhEt2N

    O O

    94% yield97% ee

    catalyst

    *NR3

    Et2N

    O

    NR3*

    CsCO3

    O

    Ph Et2N

    O

    NR3*

    Ph

    O

    Nucleophilic cyclopropanation –*NR3

    ! Also applicable to Baylis-Hillman type reactivity

  • Asymmetric Ylides Formed from Chalcogenides

    Furukawa, N.; Sugihara, Y.; Fujihara, H. J. Org. Chem. 1989, 54, 4222

    ! Combination with stronger bases/alkyl halides allows for asymmetric epoxide formation

    ! Vast array of structural types allows for epoxide, aziridine, cyclopropane formation, Baylis-Hillman

    SMeOMe

    BnBr

    KOH, MeCN

    SMeOMe

    Ph

    O

    ArH

    O

    Ar

    Ph

    R2S

    O

    Ph Ar

    With 10 mol% sulfide: 23% yield31%ee

    S

    S RR

    S

    N

    Me Ph

    Et

    Et

    S

    O Se MeMe Te EtEt

    McGarrigle, E. M.; Myers, E. L.; Illa, O.; Shaw, M. A.; Riches, S. L.; Aggarwal, V. A. Chem. Rev. 2007, 107, 5841

  • "The Taxol Problem" An illustrative example

    ! Important ovarian, breast cancer treatment worldwide

    ! Originally available from Pacific Yew Taxus Brevifolia

    (extraction killed the source)

    ! Structural core available from European Yew

    Taxus Baccata allows semi synthesis, production

    ! Global demands exceed a metric tonne annually

    ! Now produced via fermentation

    from Taxus Chinensis

    ! Wender, most expeditious, efficient chemical synthesis

    ! What if the European or Chinese Yew did not produce baccatin in the pine needles?

    accomplished in 37 steps and 0.44% overall yield

    OHO

    BzO AcO

    OHAcO

    HO

    O

    11 Chemical steps 7 isolation steps

    10-deacetyl baccatin III (renewable source)

    OHO

    BzO AcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHPh

    Taxol

  • "The Taxol Problem" An illustrative example

    ! Important ovarian, breast cancer treatment worldwide

    ! Originally available from Pacific Yew Taxus Brevifolia

    (extraction killed the source)

    ! Structural core available from European Yew

    Taxus Baccata allows semi synthesis, production

    ! Global demands exceed a metric tonne annually

    ! Now produced via fermentation

    from Taxus Chinensis

    ! Wender, most expeditious, efficient chemical synthesis

    ! What if the European or Chinese Yew did not produce baccatin in the pine needles?

    accomplished in 37 steps and 0.44% overall yield

    OHO

    BzO AcO

    OHAcO

    HO

    O

    11 Chemical steps 7 isolation steps

    10-deacetyl baccatin III (renewable source)

    OHO

    BzO AcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHPh

    Taxol

  • "The Taxol Problem" An illustrative example

    ! Important ovarian, breast cancer treatment worldwide

    ! Originally available from Pacific Yew Taxus Brevifolia

    (extraction killed the source)

    ! Structural core available from European Yew

    Taxus Baccata allows semi synthesis, production

    ! Global demands exceed a metric tonne annually

    ! Now produced via fermentation

    from Taxus Chinensis

    ! Wender, most expeditious, efficient chemical synthesis

    ! What if the European or Chinese Yew did not produce baccatin in the pine needles?

    accomplished in 37 steps and 0.44% overall yield

    OHO

    BzO AcO

    OHAcO

    HO

    O

    11 Chemical steps 7 isolation steps

    10-deacetyl baccatin III (renewable source)

    OHO

    BzO AcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHPh

    Taxol

  • "The Taxol Problem" An illustrative example

    ! Important ovarian, breast cancer treatment worldwide

    ! Originally available from Pacific Yew Taxus Brevifolia

    (extraction killed the source)

    ! Structural core available from European Yew

    Taxus Baccata allows semi synthesis, production

    ! Global demands exceed a metric tonne annually

    ! Now produced via fermentation

    from Taxus Chinensis

    ! Wender, most expeditious, efficient chemical synthesis

    ! What if the European or Chinese Yew did not produce baccatin in the pine needles?

    accomplished in 37 steps and 0.44% overall yield

    OHO

    BzO AcO

    OHAcO

    HO

    O

    11 Chemical steps 7 isolation steps

    10-deacetyl baccatin III (renewable source)

    OHO

    BzO AcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHPh

    Taxol

  • "The Taxol Problem" An illustrative example

    ! Important ovarian, breast cancer treatment worldwide

    ! Originally available from Pacific Yew Taxus Brevifolia

    (extraction killed the source)

    ! Structural core available from European Yew

    Taxus Baccata allows semi synthesis, production

    ! Global demands exceed a metric tonne annually

    ! Now produced via fermentation

    from Taxus Chinensis

    ! Wender, most expeditious, efficient chemical synthesis

    ! What if the European or Chinese Yew did not produce baccatin in the pine needles?

    accomplished in 37 steps and 0.44% overall yield

    OHO

    BzO AcO

    OHAcO

    HO

    O

    11 Chemical steps 7 isolation steps

    10-deacetyl baccatin III (renewable source)

    OHO

    BzO AcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHPh

    Taxol

  • The problem with a 40 step synthesis: Step Economy and Losses

    ! "Stop and Go" isolation can greatly diminsh the overall efficiency of processes with high yielding steps

    50 % yield

    ! For every step (operation) involved = exponential decrease in efficiency

    ! Why is chemical synthesis able to produce complexity on small scale but not large

    40 steps

    ! Problems with taxol production arose from "stop and go" synthesis

    OHO

    BzO AcO

    OHAcO

    HO

    O

    OHO

    BzO AcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHPh

    10-deacetyl baccatin III Taxol

    11 Chemical steps

    7 isolation steps

  • The problem with a 40 step synthesis: Step Economy and Losses

    ! "Stop and Go" isolation can greatly diminsh the overall efficiency of processes with high yielding steps

    50 % yield

    ! For every step (operation) involved = exponential decrease in efficiency

    ! Why is chemical synthesis able to produce complexity on small scale but not large

    40 steps

    ! Problems with taxol production arose from "stop and go" synthesis

    OHO

    BzO AcO

    OHAcO

    HO

    O

    OHO

    BzO AcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHPh

    10-deacetyl baccatin III Taxol

    11 Chemical steps

    7 isolation steps

  • The problem with a 40 step synthesis: Step Economy and Losses

    ! "Stop and Go" isolation can greatly diminsh the overall efficiency of processes with high yielding steps

    50 % yield

    ! For every step (operation) involved = exponential decrease in efficiency

    ! Why is chemical synthesis able to produce complexity on small scale but not large

    40 steps

    ! Problems with taxol production arose from "stop and go" synthesis

    OHO

    BzO AcO

    OHAcO

    HO

    O

    OHO

    BzO AcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHPh

    10-deacetyl baccatin III Taxol

    11 Chemical steps

    7 isolation steps

  • Benchtop Synthesis vs. Biosynthesis : Why is Nature Winning?

    ! Nicolaou Synthesis of Taxol: Tour de force

    OHO

    BzO

    HAcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHBz

    Taxol

    55 Chemical steps

    ! Biology employs enzymatic cascade catalysis: Continuous process assembly lines

    O6P2O

    geranylgeranyl diphosphate

    taxadiene

    synthase

    3 x enzyme benzoyl

    transferasefunctionalizn

    OHO

    BzO

    HAcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHBz

    Taxol

    5 catalytic transformations

    in one cascade process

    H

    OTIPS

    O

    55 isolation steps

  • Benchtop Synthesis vs. Biosynthesis : Why is Nature Winning?

    ! Nicolaou Synthesis of Taxol: Tour de force

    OHO

    BzO

    HAcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHBz

    Taxol

    55 Chemical steps

    ! Biology employs enzymatic cascade catalysis: Continuous process assembly lines

    O6P2O

    geranylgeranyl diphosphate

    taxadiene

    synthase

    3 x enzyme benzoyl

    transferasefunctionalizn

    OHO

    BzO

    HAcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHBz

    Taxol

    5 catalytic transformations

    in one cascade process

    H

    OTIPS

    O

    55 isolation steps

  • Benchtop Synthesis vs. Biosynthesis : Why is Nature Winning?

    ! Nicolaou Synthesis of Taxol: Tour de force

    OHO

    BzO

    HAcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHBz

    Taxol

    55 Chemical steps

    ! Biology employs enzymatic cascade catalysis: Continuous process assembly lines

    O6P2O

    geranylgeranyl diphosphate

    taxadiene

    synthase

    3 x enzyme benzoyl

    transferasefunctionalizn

    OHO

    BzO

    HAcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHBz

    Taxol

    5 catalytic transformations

    in one cascade process

    H

    OTIPS

    O

    55 isolation steps

  • ! Why doesn't the field of chemical synthesis build complexity using cascade catalysis (biomimetic)

    Benchtop Synthesis vs. Biosynthesis : Why is Nature Winning?

    ! Nicolaou Synthesis of Taxol: Tour de force

    OHO

    BzO

    HAcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHBz

    Taxol

    55 Chemical steps

    ! Biology employs enzymatic cascade catalysis: Continuous process assembly lines

    O6P2O

    geranylgeranyl diphosphate

    taxadiene

    synthase

    3 x enzyme benzoyl

    transferasefunctionalizn

    OHO

    BzO

    HAcO

    OHAcO

    O

    O

    Ph

    O

    OH

    NHBz

    Taxol

    5 catalytic transformations

    in one cascade process

    H

    OTIPS

    O

    55 isolation steps

  • Design of Cascade–Catalysis Strategy: LUMO–HOMO Catalyst

    O

    RNH

    R+ N

    R

    R

    +•HCl

    substrate catalyst LUMO–activation

    O

    RNH

    R+ N

    R

    R

    •HCl

    substrate catalyst HOMO–activation

    N

    NH

    O Me

    Ph

    Me

    Me

    imidazolidinone

    generation 1

    N

    NH

    O Me

    Ph

    Me

    Me

    imidazolidinone

    generation 1

    O OLALewis acid (LA)+

    +

    O OLALewis acid (LA)+

  • Design of Cascade–Catalysis Strategy: LUMO–HOMO Catalyst

    O

    RNH

    R+ N

    R

    R

    +•HCl

    substrate catalyst LUMO–activation

    O

    RNH

    R+ N

    R

    R

    •HCl

    substrate catalyst HOMO–activation

    N

    NH

    O Me

    Ph

    Me

    Me

    imidazolidinone

    generation 1

    N

    NH

    O Me

    Ph

    Me

    Me

    imidazolidinone

    generation 1

    O OLALewis acid (LA)+

    +

    O OLALewis acid (LA)+

  • O OLALewis acid (LA)+

    +

    O OLALewis acid (LA)+

    Design of Cascade–Catalysis Strategy: LUMO–HOMO Catalyst

    O

    RNH

    R+ N

    R

    R

    +•HCl

    substrate catalyst LUMO–activation

    O

    RNH

    R+ N

    R

    R

    •HCl

    substrate catalyst HOMO–activation

    N

    NH

    O Me

    Ph

    Me

    Me

    imidazolidinone

    generation 1

    N

    NH

    O Me

    Ph

    Me

    Me

    imidazolidinone

    generation 1

  • Aldehyde aldol

    !-Oxy Aldol

    Imidazolidinone aldol !-Oxyamination

    Epoxidation

    98% ee94% ee

    99% ee

    98% ee

    94% ee

    99% ee

    Enamine activation strategy is useful for a variety of organocatalytic reactions

    !-Chlorination

    Aziridination

    98% ee

    !-Fluorination

    99% ee

    Two step sugars

    JACS 2002, 124, 6798

    Angew Chemie 2004, 43, 2152

    Angew Chemie 2004, 43, 6722

    Science 2004, 305, 1752

    JACS 2004, 126, 4108

    JACS 2003, 125, 10808

    JACS 2005, 127, ASAP

    95% eeH

    Me

    OHO

    Me

    Me

    H

    OBn

    OHO

    OBn

    MeO

    Me

    OHOMe

    Me

    O OHTIPSO

    TIPSO

    OH

    NBOC

    H

    Cl

    O

    HPh

    ONHPh

    O

    HPh

    F

    O

    O

    BnN

  • O OLALewis acid (LA)+

    +

    O OLALewis acid (LA)+

    Design of Cascade–Catalysis Strategy: LUMO–HOMO Catalyst

    O

    RNH

    R+ N

    R

    R

    +•HCl

    substrate catalyst LUMO–activation

    O

    RNH

    R+ N

    R

    R

    •HCl

    substrate catalyst HOMO–activation

    N

    NH

    O Me

    Ph

    Me

    Me

    imidazolidinone

    generation 1

    N

    NH

    O Me

    Ph

    Me

    Me

    imidazolidinone

    generation 1

  • O OLALewis acid (LA)+

    +

    O OLALewis acid (LA)+

    Design of Cascade–Catalysis Strategy: LUMO–HOMO Catalyst

    O

    RNH

    R+ N

    R

    R

    +•HCl

    substrate catalyst LUMO–activation

    O

    RNH

    R+ N

    R

    R

    •HCl

    substrate catalyst HOMO–activation

    N

    NH

    O Me

    Ph

    Me

    Me

    imidazolidinone

    generation 1

    N

    NH

    O Me

    Ph

    Me

    Me

    imidazolidinone

    generation 1

    ! Can we merge LUMO-lowering and HOMO-raising catalysis using the same catalyst

  • N

    N

    O Me

    R

    N

    N

    O Me

    R

    N

    NH

    Ph

    O Me

    X– +

    HX

    N

    NH

    Me

    imidazolidinone

    ! First step:

    Iminium catalysis

    ! Second step:

    Enamine catalysis

    Ph Me

    Merging LUMO-lowering and HOMO-raising with one catalyst

    E+

    O

    MeMe

    Nu O

    Nu

    Nu

    Me

    Me

    Me

    Me

    MeMe

    Me

    Me

    MeR

    N

    N

    O Me

    R

    N

    N

    Ph

    O Me

    R

    HX +

    N

    NH

    Ph

    O Me

    N

    N

    Ph

    O Me

    +X–

    R

    X– +

    Nu–

    Nu O

    Nu

    Nu

    Me

    Me

    Me

    Me

    MeMe

    Me

    Me

    Me

    Me

    MeMe

    R

    N

    N

    Ph

    O Me

    R

    X– +

    Nu

    Me

    MeMe

    Ph

    Ph

    E

    E

    R O Nu O

    R

    E

    First Cycle

    (Im)

    Second Cycle

    (En)

    Ph

    O

    R

    HX +

  • N

    N

    O Me

    R

    N

    N

    O Me

    R

    N

    NH

    Ph

    O Me

    X– +

    HX

    N

    NH

    Me

    imidazolidinone

    ! First step:

    Iminium catalysis

    ! Second step:

    Enamine catalysis

    Ph Me

    Merging LUMO-lowering and HOMO-raising with one catalyst

    E+

    O

    MeMe

    Nu O

    Nu

    Nu

    Me

    Me

    Me

    Me

    MeMe

    Me

    Me

    MeR

    N

    N

    O Me

    R

    N

    N

    Ph

    O Me

    R

    HX +

    N

    NH

    Ph

    O Me

    N

    N

    Ph

    O Me

    +X–

    R

    X– +

    Nu–

    Nu O

    Nu

    Nu

    Me

    Me

    Me

    Me

    MeMe

    Me

    Me

    Me

    Me

    MeMe

    R

    N

    N

    Ph

    O Me

    R

    X– +

    Nu

    Me

    MeMe

    Ph

    Ph

    E

    E

    R O Nu O

    R

    E

    First Cycle

    (Im)

    Second Cycle

    (En)

    Ph

    O

    R

    HX +

  • N

    N

    O Me

    R

    N

    N

    O Me

    R

    N

    NH

    Ph

    O Me

    X– +

    HX

    N

    NH

    Me

    imidazolidinone

    ! First step:

    Iminium catalysis

    ! Second step:

    Enamine catalysis

    Ph Me

    Merging LUMO-lowering and HOMO-raising with one catalyst

    E+

    O

    MeMe

    Nu O

    Nu

    Nu

    Me

    Me

    Me

    Me

    MeMe

    Me

    Me

    MeR

    N

    N

    O Me

    R

    N

    N

    Ph

    O Me

    R

    HX +

    N

    NH

    Ph

    O Me

    N

    N

    Ph

    O Me

    +X–

    R

    X– +

    Nu–

    Nu O

    Nu

    Nu

    Me

    Me

    Me

    Me

    MeMe

    Me

    Me

    Me

    Me

    MeMe

    R

    N

    N

    Ph

    O Me

    R

    X– +

    Nu

    Me

    MeMe

    Ph

    Ph

    E

    E

    R O Nu O

    R

    E

    First Cycle

    (Im)

    Second Cycle

    (En)

    Ph

    O

    R

    HX +

  • N

    N

    O Me

    R

    N

    N

    O Me

    R

    N

    NH

    Ph

    O Me

    X– +

    HX

    N

    NH

    Me

    imidazolidinone

    ! First step:

    Iminium catalysis

    ! Second step:

    Enamine catalysis

    Ph Me

    Merging LUMO-lowering and HOMO-raising with one catalyst

    E+

    O

    MeMe

    Nu O

    Nu

    Nu

    Me

    Me

    Me

    Me

    MeMe

    Me

    Me

    MeR

    N

    N

    O Me

    R

    N

    N

    Ph

    O Me

    R

    HX +

    N

    NH

    Ph

    O Me

    N

    N

    Ph

    O Me

    +X–

    R

    X– +

    Nu–

    Nu O

    Nu

    Nu

    Me

    Me

    Me

    Me

    MeMe

    Me

    Me

    Me

    Me

    MeMe

    R

    N

    N

    Ph

    O Me

    R

    X– +

    Nu

    Me

    MeMe

    Ph

    Ph

    E

    E

    R O Nu O

    R

    E

    First Cycle

    (Im)

    Second Cycle

    (En)

    Ph

    O

    R

    HX +

  • N

    N

    O Me

    R

    N

    N

    O Me

    R

    N

    NH

    Ph

    O Me

    X– +

    HX

    N

    NH

    Me

    imidazolidinone

    ! First step:

    Iminium catalysis

    ! Second step:

    Enamine catalysis

    Ph Me

    Merging LUMO-lowering and HOMO-raising with one catalyst

    E+

    O

    MeMe

    Nu O

    Nu

    Nu

    Me

    Me

    Me

    Me

    MeMe

    Me

    Me

    MeR

    N

    N

    O Me

    R

    N

    N

    Ph

    O Me

    R

    HX +

    N

    NH

    Ph

    O Me

    N

    N

    Ph

    O Me

    +X–

    R

    X– +

    Nu–

    Nu O

    Nu

    Nu

    Me

    Me

    Me

    Me

    MeMe

    Me

    Me

    Me

    Me

    MeMe

    R

    N

    N

    Ph

    O Me

    R

    X– +

    Nu

    Me

    MeMe

    Ph

    Ph

    E

    E

    R O Nu O

    R

    E

    First Cycle

    (Im)

    Second Cycle

    (En)

    Ph

    O

    R

    HX +

  • N

    N

    O Me

    R

    N

    N

    O Me

    R

    N

    NH

    Ph

    O Me

    X– +

    HX

    N

    NH

    Me

    imidazolidinone

    ! First step:

    Iminium catalysis

    ! Second step:

    Enamine catalysis

    Ph Me

    Merging LUMO-lowering and HOMO-raising with one catalyst

    E+

    O

    MeMe

    Nu O

    Nu

    Nu

    Me

    Me

    Me

    Me

    MeMe

    Me

    Me

    MeR

    N

    N

    O Me

    R

    N

    N

    Ph

    O Me

    R

    HX +

    N

    NH

    Ph

    O Me

    N

    N

    Ph

    O Me

    +X–

    R

    X– +

    Nu–

    Nu O

    Nu

    Nu

    Me

    Me

    Me

    Me

    MeMe

    Me

    Me

    Me

    Me

    MeMe

    R

    N

    N

    Ph

    O Me

    R

    X– +

    Nu

    Me

    MeMe

    Ph

    Ph

    E

    E

    R O Nu O

    R

    E

    First Cycle

    (Im)

    Second Cycle

    (En)

    Ph

    O

    R

    HX +

  • Cascade catalysis with imidazolidinones: preliminary results

    Me OOMe

    O

    ClCl

    Cl

    Cl

    Cl

    Cl

    10 mol%

    –50 °C, EtOAc

    N

    NH

    OMe

    Me

    MeMe

    BnIndole OMeO

    Cl

    Me

    substrate electrophilenucleophile 86% yield 14:1 dr 99% ee

  • Cascade catalysis with imidazolidinones: preliminary results

    Me OOMe

    O

    ClCl

    Cl

    Cl

    Cl

    Cl

    10 mol%

    –50 °C, EtOAc

    N

    NH

    OMe

    Me

    MeMe

    BnIndole OMeO

    Cl

    Me

    substrate electrophilenucleophile 86% yield 14:1 dr 99% ee

  • ! Cascade-catalsysis appears general for a range of enal substrates

    ! Diastereoselectivity suggests that catalyst control is dominant in second cycle

    Cascade catalysis with imidazolidinones: preliminary results

    R OOMe

    O

    ClCl

    Cl

    Cl

    Cl

    Cl

    10 mol%

    –50 °C, EtOAc

    N

    NH

    OMe

    Me

    MeMe

    BnIndole OMeO

    Cl

    R

    substrate electrophilenucleophile

    R ee%Yield syn:antiTemp °C

    Me

    Pr

    CO2Et

    CH2OAc

    syn 99% ee

    syn 99% ee

    syn 99% ee

    syn 99% ee

    14:1

    13:1

    22:1

    11:1

    –50

    –50

    –40

    –40

    86%

    74%

    80%

    82%

  • Enantioselective Organo–Cascade Catalysis

    Me O

    Im En syn:anti 25:1

    99% ee

    71% yield

    N

    NH

    OMe

    But Bnindole

    ! With a range of nucleophiles

    OTESO

    Cl

    Cl

    Cl

    Cl

    O

    Cl Cl

    10 mol% catalyst

    •TFA

    O

    Im EnN

    Cl

    Cl

    Cl

    Cl

    O

    Cl Cl

    Me O

    Im Ensyn:anti 9:1

    99% ee

    97% yieldN

    OTIPSOCl

    Cl

    Cl

    Cl

    O

    Cl Cl

    NaBH4;

    NaOH

    Me

    N

    O

    O

    OMe

    Ph

    Me

    Cl

    N

    O syn:anti 12:1

    99% ee

    75% yield

    Rapid development of molecular complexity from simple materials

    ! Processes are highly selective also using thiophenes, nitroalkanes

    Me Me

    Me

    Me

    Me

    Me

    O

    Me

    Cl

    O

    H

    Me

    O

    Me

  • Enantioselective Organo–Cascade Catalysis

    Me O

    Im En syn:anti 25:1

    99% ee

    71% yield

    N

    NH

    OMe

    But Bnindole

    ! With a range of nucleophiles

    OTESO

    Cl

    Cl

    Cl

    Cl

    O

    Cl Cl

    10 mol% catalyst

    •TFA

    O

    Im EnN

    Cl

    Cl

    Cl

    Cl

    O

    Cl Cl

    Me O

    Im Ensyn:anti 9:1

    99% ee

    97% yieldN

    OTIPSOCl

    Cl

    Cl

    Cl

    O

    Cl Cl

    NaBH4;

    NaOH

    Me

    N

    O

    O

    OMe

    Ph

    Me

    Cl

    N

    O syn:anti 12:1

    99% ee

    75% yield

    Rapid development of molecular complexity from simple materials

    ! Processes are highly selective also using thiophenes, nitroalkanes

    Me Me

    Me

    Me

    Me

    Me

    O

    Me

    Cl

    O

    H

    Me

    O

    Me

  • Enantioselective Organo–Cascade Catalysis

    Me O

    Im En syn:anti 25:1

    99% ee

    71% yield

    N

    NH

    OMe

    But Bnindole

    ! With a range of nucleophiles

    OTESO

    Cl

    Cl

    Cl

    Cl

    O

    Cl Cl

    10 mol% catalyst

    •TFA

    O

    Im EnN

    Cl

    Cl

    Cl

    Cl

    O

    Cl Cl

    Me O

    Im Ensyn:anti 9:1

    99% ee

    97% yieldN

    OTIPSOCl

    Cl

    Cl

    Cl

    O

    Cl Cl

    NaBH4;

    NaOH

    Me

    N

    O

    O

    OMe

    Ph

    Me

    Cl

    N

    O syn:anti 12:1

    99% ee

    75% yield

    Rapid development of molecular complexity from simple materials

    ! Processes are highly selective also using thiophenes, nitroalkanes

    Me Me

    Me

    Me

    Me

    Me

    O

    Me

    Cl

    O

    H

    Me

    O

    Me

  • Im En

    Me O

    Ph

    anti:syn 16:1

    99% ee

    81% yield

    NH

    MeMe

    RO2C CO2R

    H H

    O

    H

    F

    PhS

    NS

    Ph

    O O O O

    F

    syn:anti 9:1

    99% ee

    62% yieldO

    H

    F

    catalyst

    combination A

    catalyst

    combination B

    Me

    Me

    Im En

    H

    H

    Cascade Catalysis Towards the Development of Modular Stereocontrol

    N

    NH

    MeO

    Me

    Me

    Me

    catalyst

    N

    NH

    MeO

    catalyst

    Me

    Me

    Ph

    (5S)-iminium (2R)-enamine

    (7.5 mol%) (30 mol%)

    N

    NH

    MeO

    Me

    Me

    Me

    catalyst

    N

    NH

    MeO

    catalyst

    Me

    Me

    Ph

    (5S)-iminium (2S)-enamine

    (7.5 mol%) (30 mol%)

    catalyst combination A catalyst combination B

    enamine catalyst and E

    added after consumption of Nu

    enamine catalyst and E

    added after consumption of Nu

    With Huang, Walji, Larsen. J. Am. Chem. Soc. 2005, 127, 15051

  • Im En

    Me O

    Ph

    anti:syn 16:1

    99% ee

    81% yield

    NH

    MeMe

    RO2C CO2R

    H H

    O

    H

    F

    PhS

    NS

    Ph

    O O O O

    F

    syn:anti 9:1

    99% ee

    62% yieldO

    H

    F

    catalyst

    combination A

    catalyst

    combination B

    Me

    Me

    Im En

    H

    H

    Cascade Catalysis Towards the Development of Modular Stereocontrol

    N

    NH

    MeO

    Me

    Me

    Me

    catalyst

    N

    NH

    MeO

    catalyst

    Me

    Me

    Ph

    (5S)-iminium (2R)-enamine

    (7.5 mol%) (30 mol%)

    N

    NH

    MeO

    Me

    Me

    Me

    catalyst

    N

    NH

    MeO

    catalyst

    Me

    Me

    Ph

    (5S)-iminium (2S)-enamine

    (7.5 mol%) (30 mol%)

    catalyst combination A catalyst combination B

    enamine catalyst and E

    added after consumption of Nu

    enamine catalyst and E

    added after consumption of Nu

    With Huang, Walji, Larsen. J. Am. Chem. Soc. 2005, 127, 15051

  • Cascade Catalysis Towards the Development of Modular Stereocontrol

    N

    NH

    MeO

    Me

    Me

    Me

    catalyst

    N

    NH

    MeO

    catalyst

    Me

    Me

    Ph

    (5S)-iminium (2R)-enamine

    (7.5 mol%) (30 mol%)

    N

    NH

    MeO

    Me

    Me

    Me

    catalyst

    N

    NH

    MeO

    catalyst

    Me

    Me

    Ph

    (5S)-iminium (2S)-enamine

    (7.5 mol%) (30 mol%)

    catalyst combination A catalyst combination B

    enamine catalyst and E

    added after consumption of Nu

    enamine catalyst and E

    added after consumption of Nu

    With Huang, Walji, Larsen. J. Am. Chem. Soc. 2005, 127, 15051

    Im En

    Me O

    Ph

    anti:syn 16:1

    99% ee

    81% yield

    NH

    MeMe

    RO2C CO2R

    H H

    O

    H

    F

    PhS

    NS

    Ph

    O O O O

    F

    syn:anti 9:1

    99% ee

    62% yieldO

    H

    F

    catalyst

    combination A

    catalyst

    combination B

    Me

    Me

    Im En

    H

    H

  • Cascade Catalysis Towards the Development of Modular Stereocontrol

    Im EnMe O

    Ph

    Me O

    Ph

    NH2

    ! Olefin hydroamination

    H

  • Cascade Catalysis Towards the Development of Modular Stereocontrol

    Im En

    anti:syn 17:1 99% ee

    Me O

    Ph

    Me O

    Ph

    NNH

    BOCBOC

    ! Olefin hydroamination

    NH

    MeMe

    EtO2C CO2Et

    H H

    BOCN

    NBOC

    Im En

    H

    6:1

    CbzCbz

  • Cascade Catalysis Towards the Development of Modular Stereocontrol

    Im En

    anti:syn 17:1 99% ee

    Me O

    Ph

    Me O

    Ph

    NNH

    BOCCOB

    Im En Me O

    Ph

    Me O

    Ph

    OH

    ! Olefin hydroamination

    ! Olefin hydrolysis

    H

    6:1

    hydrooxidation

    CbzCbz

  • Cascade Catalysis Towards the Development of Modular Stereocontrol

    Im En

    anti:syn 17:1 99% ee

    Me O

    Ph

    Me O

    Ph

    NNH

    BOCCOB

    Im En

    anti:syn 25:1 99% ee

    Me O

    Ph

    Me O

    Ph

    ONH

    Ph

    ! Olefin hydroamination

    ! Olefin hydrolysis

    H

    NH

    MeMe

    EtO2C CO2Et

    H H

    Im En

    ON

    6:1

    hydrooxidation

    11:1

    CbzCbz

  • Cascade Catalysis Towards the Development of Modular Stereocontrol

    Im En

    anti:syn 17:1 99% ee

    Me O

    Ph

    Me O

    Ph

    NNH

    BOCCOB

    Im En

    anti:syn 25:1 99% ee

    Me O

    Ph

    Me O

    Ph

    ONH

    Im EnMe O

    Ph

    Me O

    OH

    NH2

    ! Olefin hydroamination

    ! Olefin hydrolysis

    ! Olefin aminohydroxylation

    6:1

    hydrooxidation

    11:1

    CbzCbz

  • Cascade Catalysis Towards the Development of Modular Stereocontrol

    Im En

    anti:syn 17:1 99% ee

    Me O

    Ph

    Me O

    Ph

    NNH

    BOCCOB

    Im En

    anti:syn 25:1 99% ee

    Me O

    Ph

    Me O

    Ph

    ONH

    Im En

    anti:syn 15:1 99% ee

    Me O

    Ph

    Me O

    ONH

    Ph

    NBOC OSiR3

    ! Olefin hydroamination

    ! Olefin hydrolysis

    ! Olefin aminohydroxylation

    Im En

    ON

    BOCNH

    OSiR3

    6:1

    hydrooxidation

    11:1

    17:1

    CbzCbz

  • Cascade Catalysis Towards the Development of Modular Stereocontrol

    Im En

    anti:syn 17:1 99% ee

    Me O

    Ph

    Me O

    Ph

    NNH

    BOCCOB

    Im EnMe O

    Ph

    NNH

    BOCBOC

    syn:anti 8:1 99% ee

    Im En

    anti:syn 25:1 99% ee

    Me O

    Ph

    Me O

    Ph

    ONH

    Im EnMe O

    Ph

    O

    syn:anti 10:1 99% ee

    Im En

    anti:syn 15:1 99% ee

    Me OIm EnMe O

    ONH

    Ph

    syn:anti 9:1 99% ee

    NH

    Ph Ph

    NBOC OSiR3

    Me O

    ONH

    Ph

    NBOC OSiR3

    6:1

    11:1

    17:114:1

    CbzCbz

  • Cascade Catalysis: Merging Organo and Organometallic Catalysis

    ! The structural core of aromadendranediol in one step

    Me

    Ru Im En

    O

    86% yield

    8:1 dr

    92% ee

    OTMSO Me

    OO

    HMeOH

    Me

    HO

    O

    ! 4 contiguous

    stereogenic centers

    ! 11 carbon

    framework

  • N

    N

    Ph

    O Me

    X Iminium CycleMe

    MeMeMe O

    O

    Me N

    N

    Ph

    O Me

    Me

    MeMe

    O

    Me

    Me

    H

    O

    O

    O

    Me

    Me

    H

    O

    O

    N

    N

    Ph

    O Me

    XMe

    MeMe

    N

    NH

    Ph

    O Me

    Me

    MeMe

    O

    Me

    Me

    H

    O

    O

    HX

    HX

    NCO2

    Me

    H

    O

    O

    O Me

    H

    OHMe

    Me O

    O

    H

    OH

    Me

    Me

    O

    O

    H

    O

    NH

    CO2H

    + H2O+ H2O

    NCO2

    + H2O + H2O

    Enamine Cycle

    NHO2C

    Cross-Metathesis

    RuLxMe

    LxRu

    Me

    Me

    O

    RuLx

    Me

    Me

    O

    LxRu

    Me

    Me

    O

    O

    H

    Me

    O

    O

    H

    OOTMSMe

    Me

    O

    [2+2]retro[2+2]

    [2+2]retro[2+2]

    Cascade Catalysis:

    Merging Organocatalysis

    and Organometallic Catalysis

    Triple cascade catalysis should allow

    rapid access to complex bicycle

    in one overall transformation

  • N

    N

    Ph

    O Me

    X Iminium CycleMe

    MeMeMe O

    O

    Me N

    N

    Ph

    O Me

    Me

    MeMe

    O

    Me

    Me

    H

    O

    O

    O

    Me

    Me

    H

    O

    O

    N

    N

    Ph

    O Me

    XMe

    MeMe

    N

    NH

    Ph

    O Me

    Me

    MeMe

    O

    Me

    Me

    H

    O

    O

    HX

    HX

    NCO2

    Me

    H

    O

    O

    O Me

    H

    OHMe

    Me O

    O

    H

    OH

    Me

    Me

    O

    O

    H

    O

    NH

    CO2H

    + H2O+ H2O

    NCO2

    + H2O + H2O

    Enamine Cycle

    NHO2C

    Cross-Metathesis

    RuLxMe

    LxRu

    Me

    Me

    O

    RuLx

    Me

    Me

    O

    LxRu

    Me

    Me

    O

    O

    H

    Me

    O

    O

    H

    OOTMSMe

    Me

    O

    [2+2]retro[2+2]

    [2+2]retro[2+2]

    Cascade Catalysis:

    Merging Organocatalysis

    and Organometallic Catalysis

    Triple cascade catalysis should allow

    rapid access to complex bicycle

    in one overall transformation

  • N

    N

    Ph

    O Me

    X Iminium CycleMe

    MeMeMe O

    O

    Me N

    N

    Ph

    O Me

    Me

    MeMe

    O

    Me

    Me

    H

    O

    O

    O

    Me

    Me

    H

    O

    O

    N

    N

    Ph

    O Me

    XMe

    MeMe

    N

    NH

    Ph

    O Me

    Me

    MeMe

    O

    Me

    Me

    H

    O

    O

    HX

    HX

    NCO2

    Me

    H

    O

    O

    O Me

    H

    OHMe

    Me O

    O

    H

    OH

    Me

    Me

    O

    O

    H

    O

    NH

    CO2H

    + H2O+ H2O

    NCO2

    + H2O + H2O

    Enamine Cycle

    NHO2C

    Cross-Metathesis

    RuLxMe

    LxRu

    Me

    Me

    O

    RuLx

    Me

    Me

    O

    LxRu

    Me

    Me

    O

    O

    H

    Me

    O

    O

    H

    OOTMSMe

    Me

    O

    [2+2]retro[2+2]

    [2+2]retro[2+2]

    Cascade Catalysis:

    Merging Organocatalysis

    and Organometallic Catalysis

    Triple cascade catalysis should allow

    rapid access to complex bicycle

    in one overall transformation

  • Cascade Catalysis: Merging Organo and Organometallic Catalysis

    ! The structural core of aromadendranediol in one step

    Me

    Ru Im En

    O

    64% yield

    5:1 dr

    95% ee

    OTMSO Me

    OO

    HMeOH

    Me

    HO

    O

  • Cascade Catalysis: Merging Organo and Organometallic Catalysis

    ! The structural core of aromadendranediol in one step

    MeHO H

    OHMe

    H

    Me Me

    ! Aromadendranediol

    ! Previous synthesis 22 steps

    ! Analgesic in folk medicine

    5 steps

    Me

    Ru Im En

    O

    64% yield

    5:1 dr

    95% ee

    OTMSO Me

    OO

    HMeOH

    Me

    HO

    O

  • Cascade Synthesis of the Sytrchnos Alkaloid Minfiensine

    N

    PMB

    NHBoc

    SMe

    NNBoc

    O

    SMePMB

    O

    Diels!Alder/amine

    cyclization cascade

    NH

    N

    Me

    OH

    minfiensine

    ! Strychnos alkaloid minfiensine and members of the akuammiline alkaloid family

    ! Key strategy for minfiensine involving an organocatalytic Diels!Alder cyclization cascade

    Jones, S. B.; Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606

    minfiensine core

  • Cascade Synthesis of the Sytrchnos Alkaloid Minfiensine

    N

    PMB

    NHBoc

    SMe

    NNBoc

    O

    SMePMB

    O

    Diels!Alder/amine

    cyclization cascade

    NH

    N

    Me

    OH

    minfiensine

    ! Strychnos alkaloid minfiensine and members of the akuammiline alkaloid family

    ! Key strategy for minfiensine involving an organocatalytic Diels!Alder cyclization cascade

    Jones, S. B.; Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606

    minfiensine core

  • Cascade Synthesis of the Sytrchnos Alkaloid Minfiensine

    N

    PMB

    NHBoc

    SMe

    NNBoc

    O

    SMePMB

    O

    Diels!Alder/amine

    cyclization cascade

    NH

    N

    Me

    OH

    minfiensine

    ! Strychnos alkaloid minfiensine and members of the akuammiline alkaloid family

    ! Key strategy for minfiensine involving an organocatalytic Diels!Alder cyclization cascade

    Jones, S. B.; Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606

    minfiensine core

  • Cascade Synthesis of the Sytrchnos Alkaloid Minfiensine

    ! Organocascade catalysis provides rapid access to the core structure of minfiensine

    Jones, S. B.; Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606

    N

    PMB

    BocHN

    SMe

    N

    N

    OMe

    Me

    Me

    MeN

    PMB

    N

    R

    R

    SMe

    NHBoc

    N

    NH

    OMe

    Me

    Me

    Me

    N

    NH

    OMe

    Me

    Me

    Me

    N

    PMB

    O

    SMe

    NHBoc

    N

    PMB

    O

    SMe

    NHBoc

    NNBoc

    PMB

    O

    SMe

    NNBoc

    PMB

    O

    SMe

    O

    R2NH •HX

    N

    NH

    OMe

    Me

    Me

    Me

    = R2NH •HX

    Ar

    Ar

    Ar

    Ar

    N

    N

    OMe

    tBuAr

    H

    •HX

    X–

    X–

    X–

    X–

    X–

    •HX

    Iminium

    Cycle Cycle

    •HX

    H+

    [4+2]

    endo

  • Cascade Synthesis of the Sytrchnos Alkaloid Minfiensine

    ! Organocascade catalysis provides rapid access to the core structure of minfiensine

    Jones, S. B.; Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606

    N

    PMB

    BocHN

    SMe

    N

    N

    OMe

    Me

    Me

    MeN

    PMB

    N

    R

    R

    SMe

    NHBoc

    N

    NH

    OMe

    Me

    Me

    Me

    N

    NH

    OMe

    Me

    Me

    Me

    N

    PMB

    O

    SMe

    NHBoc

    N

    PMB

    O

    SMe

    NHBoc

    NNBoc

    PMB

    O

    SMe

    NNBoc

    PMB

    O

    SMe

    O

    R2NH •HX

    N

    NH

    OMe

    Me

    Me

    Me

    = R2NH •HX

    Ar

    Ar

    Ar

    Ar

    N

    N

    OMe

    tBuAr

    H

    •HX

    X–

    X–

    X–

    X–

    X–

    •HX

    Iminium

    Cycle Cycle

    •HX

    H+

    [4+2]

    endo

  • Cascade Synthesis of the Sytrchnos Alkaloid Minfiensine

    Jones, S. B.; Simmons, B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131, 13606

    NH

    N

    OH

    Me

    (+)-minfiensine

    9 steps, 21% overall

    N

    PMB

    NHBoc

    SMe NNBoc

    PMB

    OH

    SMe87% yield

    96% ee

    cascade3 steps

    NH

    NHBoc

    commercially available

    NN

    OTES

    PMB

    radical

    cyclization2 steps

    NN

    PMB

    OTES

    SMe

    StBu

    2 steps

    Diels!Alder

    63%

    ! Diels!Alder/Bronsted acid cascade provides rapid access to the enantioenriched core of minfiensine

  • Organocascade Catalysis Inspired by Nature

    strychnine

    N

    N

    O O

    H

    H

    H

    H

    O

    OGluc

    CHO

    MeO2C

    secologanin

    NH

    NH2

    tryptamineN

    N

    H Me

    MeO2C CH2OH

    preakuammicine

    NH

    N

    H Me

    CHO

    norfluorocurarine

    NH

    CO2Me

    N

    Et

    didehydrosecodine

    (Strychnos alkaloids)

    Common Intermediate

    NH

    N

    Me

    vincadifformine

    CO2Me

    (Aspidosperma or Kopsia)

    Natures employs transform specific enzymes in continous catalytic cascades to rapidly access common

    biosynthetic intermediates and natural products.

  • Organocascade Catalysis Inspired by Nature

    strychnine

    N

    N

    O O

    H

    H

    H

    H

    O

    OGluc

    CHO

    MeO2C

    secologanin

    NH

    NH2

    tryptamineN

    N

    H Me

    MeO2C CH2OH

    preakuammicine

    NH

    N

    H Me

    CHO

    norfluorocurarine

    NH

    CO2Me

    N

    Et

    didehydrosecodine

    (Strychnos alkaloids)

    Common Intermediate

    NH

    N

    Me

    vincadifformine

    CO2Me

    (Aspidosperma or Kopsia)

    Natures employs transform specific enzymes in continous catalytic cascades to rapidly access common

    biosynthetic intermediates and natural products.

  • Organocascade Catalysis Inspired by Nature

    strychnine

    N

    N

    O O

    H

    H

    H

    H

    O

    OGluc

    CHO

    MeO2C

    secologanin

    NH

    NH2

    tryptamineN

    N

    H Me

    MeO2C CH2OH

    preakuammicine

    NH

    N

    H Me

    CHO

    norfluorocurarine

    NH

    CO2Me

    N

    Et

    didehydrosecodine

    (Strychnos alkaloids)

    Common Intermediate

    NH

    N

    Me

    vincadifformine

    CO2Me

    (Aspidosperma or Kopsia)

    Natures employs transform specific enzymes in continous catalytic cascades to rapidly access common

    biosynthetic intermediates and natural products.

  • Proposed Diels-Alder/Michael Catalytic Cycle

    ! Double cascade would enantioselectively construct a highly functionalized spirocycle

    N

    N

    OMe

    t-BuAr

    N

    NBoc

    PG

    O

    N

    NH

    t-Bu

    Me O

    Ar

    N

    NH

    t-Bu

    Me O

    Ar

    PGN

    BocHN

    X First Cycle

    (Im)

    Second Cycle

    (Im)

    N

    N

    PG

    Boc

    NR2

    N

    N

    PG

    Boc

    NR2

    N

    NH

    PG

    Boc

    NR2

    X

    N

    NH

    PG

    Boc

    NR2

    N

    NHBoc

    PG

    •HA

    A

    A

    A

    N

    PG

    NHBoc

    X

    O

    O

    •HA

    A

    [4+2]

    = HNR2

  • Proposed Diels-Alder/Michael Catalytic Cycle

    ! Double cascade would enantioselectively construct a highly functionalized spirocycle

    N

    N

    OMe

    t-BuAr

    N

    NBoc

    PG

    O

    N

    NH

    t-Bu

    Me O

    Ar

    N

    NH

    t-Bu

    Me O

    Ar

    PGN

    BocHN

    X First Cycle

    (Im)

    Second Cycle

    (Im)

    N

    N

    PG

    Boc

    NR2

    N

    N

    PG

    Boc

    NR2

    N

    NH

    PG

    Boc

    NR2

    X

    N

    NH

    PG

    Boc

    NR2

    N

    NHBoc

    PG

    •HA

    A

    A

    A

    N

    PG

    NHBoc

    X

    O

    O

    •HA

    A

    [4+2]

    = HNR2

  • Proposed Diels-Alder/Michael Catalytic Cycle

    ! Double cascade would enantioselectively construct a highly functionalized spirocycle

    N

    N

    OMe

    t-BuAr

    N

    NBoc

    PG

    O

    N

    NH

    t-Bu

    Me O

    Ar

    N

    NH

    t-Bu

    Me O

    Ar

    PGN

    BocHN

    X First Cycle

    (Im)

    Second Cycle

    (Im)

    N

    N

    PG

    Boc

    NR2

    N

    N

    PG

    Boc

    NR2

    N

    NH

    PG

    Boc

    NR2

    X

    N

    NH

    PG

    Boc

    NR2

    N

    NHBoc

    PG

    •HA

    A

    A

    A

    N

    PG

    NHBoc

    X

    O

    O

    •HA

    A

    [4+2]

    = HNR2

  • Proposed Diels-Alder/Michael Catalytic Cycle

    ! Double cascade would enantioselectively construct a highly functionalized spirocycle

    N

    N

    OMe

    t-BuAr

    N

    NBoc

    PG

    O

    N

    NH

    t-Bu

    Me O

    Ar

    N

    NH

    t-Bu

    Me O

    Ar

    PGN

    BocHN

    X First Cycle

    (Im)

    Second Cycle

    (Im)

    N

    N

    PG

    Boc

    NR2

    N

    N

    PG

    Boc

    NR2

    N

    NH

    PG

    Boc

    NR2

    X

    N

    NH

    PG

    Boc

    NR2

    N

    NHBoc

    PG

    •HA

    A

    A

    A

    N

    PG

    NHBoc

    X

    O

    O

    •HA

    A

    [4+2]

    = HNR2

  • Proposed Diels-Alder/Michael Catalytic Cycle

    ! Double cascade would enantioselectively construct a highly functionalized spirocycle

    N

    N

    OMe

    t-BuAr

    N

    NBoc

    PG

    O

    N

    NH

    t-Bu

    Me O

    Ar

    N

    NH

    t-Bu

    Me O

    Ar

    PGN

    BocHN

    X First Cycle

    (Im)

    Second Cycle

    (Im)

    N

    N

    PG

    Boc

    NR2

    N

    N

    PG

    Boc

    NR2

    N

    NH

    PG

    Boc

    NR2

    X

    N

    NH

    PG

    Boc

    NR2

    N

    NHBoc

    PG

    •HA

    A

    A

    A

    N

    PG

    NHBoc

    X

    O

    O

    •HA

    A

    [4+2]

    = HNR2

  • Proposed Diels-Alder/Michael Catalytic Cycle

    ! Double cascade would enantioselectively construct a highly functionalized spirocycle

    N

    N

    OMe

    t-BuAr

    N

    NBoc

    PG

    O

    N

    NH

    t-Bu

    Me O

    Ar

    N

    NH

    t-Bu

    Me O

    Ar

    PGN

    BocHN

    X First Cycle

    (Im)

    Second Cycle

    (Im)

    N

    N

    PG

    Boc

    NR2

    N

    N

    PG

    Boc

    NR2

    N

    NH

    PG

    Boc

    NR2

    X

    N

    NH

    PG

    Boc

    NR2

    N

    NHBoc

    PG

    •HA

    A

    A

    A

    N

    PG

    NHBoc

    X

    O

    O

    •HA

    A

    [4+2]

    = HNR2

  • Proposed Diels-Alder/Michael Catalytic Cycle

    ! Double cascade would enantioselectively construct a highly functionalized spirocycle

    N

    N

    OMe

    t-BuAr

    N

    NBoc

    PG

    O

    N

    NH

    t-Bu

    Me O

    Ar

    N

    NH

    t-Bu

    Me O

    Ar

    PGN

    BocHN

    X First Cycle

    (Im)

    Second Cycle

    (Im)

    N

    N

    PG

    Boc

    NR2

    N

    N

    PG

    Boc

    NR2

    N

    NH

    PG

    Boc

    NR2

    X

    N

    NH

    PG

    Boc

    NR2

    N

    NHBoc

    PG

    •HA

    A

    A

    A

    N

    PG

    NHBoc

    X

    O

    O

    •HA

    A

    [4+2]

    = HNR2

  • Proposed Diels-Alder/Michael Catalytic Cycle

    ! Double cascade would enantioselectively construct a highly functionalized spirocycle

    N

    N

    OMe

    t-BuAr

    N

    NBoc

    PG

    O

    N

    NH

    t-Bu

    Me O

    Ar

    N

    NH

    t-Bu

    Me O

    Ar

    PGN

    BocHN

    X First Cycle

    (Im)

    Second Cycle

    (Im)

    N

    N

    PG

    Boc

    NR2

    N

    N

    PG

    Boc

    NR2

    N

    NH

    PG

    Boc

    NR2

    X

    N

    NH

    PG

    Boc

    NR2

    N

    NHBoc

    PG

    •HA

    A

    A

    A

    N

    PG

    NHBoc

    X

    O

    O

    •HA

    A

    [4+2]

    = HNR2

  • Proposed Diels-Alder/Michael Catalytic Cycle

    ! Double cascade would enantioselectively construct a highly functionalized spirocycle

    N

    N

    OMe

    t-BuAr

    N

    NBoc

    PG

    O

    N

    NH

    t-Bu

    Me O

    Ar

    N

    NH

    t-Bu

    Me O

    Ar

    PGN

    BocHN

    X First Cycle

    (Im)

    Second Cycle

    (Im)

    N

    N

    PG

    Boc

    NR2

    N

    N

    PG

    Boc

    NR2

    N

    NH

    PG

    Boc

    NR2

    X

    N

    NH

    PG

    Boc

    NR2

    N

    NHBoc

    PG

    •HA

    A

    A

    A

    N

    PG

    NHBoc

    X

    O

    O

    •HA

    A

    [4+2]

    = HNR2

  • Bioinspired Cascade of a Common Intermediate for Indole Alkaloid Synthesis

    N

    NBoc

    PMB

    82%, 97% ee

    N

    PMB

    NHBoc

    SeMe

    O

    PhMe, –40 °C

    to rt20 mol% cat.

    N

    NH

    1-napMe

    Me

    Me

    OMe

    TBA

    akuammicine

    strychnine

    NH

    N

    HMe

    aspidospermidine

    kopsanone

    kopsinine

    NH

    N

    NH

    N

    CO2Me

    O

    N

    N

    O O

    H

    H

    H

    NH

    N

    CO2Me

    H

    H Me NH

    N

    Me

    vincadifformine

    CO2Me

    KopsiaAspidospermaStrychnos

    CHO

  • Bioinspired Cascade of a Common Intermediate for Indole Alkaloid Synthesis

    N

    NBoc

    PMB

    82%, 97% ee

    N

    PMB

    NHBoc

    SeMe

    O

    PhMe, –40 °C

    to rt20 mol% cat.

    N

    NH

    1-napMe

    Me

    Me

    OMe

    TBA

    akuammicine

    strychnine

    NH

    N

    HMe

    aspidospermidine

    kopsanone

    kopsinine

    NH

    N

    NH

    N

    CO2Me

    O

    N

    N

    O O

    H

    H

    H

    NH

    N

    CO2Me

    H

    H Me NH

    N

    Me

    vincadifformine

    CO2Me

    KopsiaAspidospermaStrychnos

    CHO

  • Synthesis of High Profile Alkaloids via Cascade Catalysis

    akuammicine

    strychnine

    aspidospermidine

    kopsanone

    kopsinine

    vincadifformine

    organo-Im

    Imcatalyst

    common intermediate

    NPG

    X

    NHBoc

    NPG

    CHO

    NR1

    NH

    N

    Me

    CO2Me

    NH

    N

    MeH

    NH

    N

    Me

    CO2Me

    O

    NH

    N

    O

    NH

    N

    CO2Me

    MeH

    N

    N

    O O

    HH

    H

    H

    9 steps

    11 steps

    9 steps

    12 steps

    10 steps

    11 steps

  • Synthesis of High Profile Alkaloids via Cascade Catalysis

    akuammicine

    strychnine

    aspidospermidine

    kopsanone

    kopsinine

    vincadifformine

    organo-Im

    Imcatalyst

    common intermediate

    NPG

    X

    NHBoc

    NPG

    CHO

    NR1

    NH

    N

    Me

    CO2Me

    NH

    N

    MeH

    NH

    N

    Me

    CO2Me

    O

    NH

    N

    O

    NH

    N

    CO2Me

    MeH

    N

    N

    O O

    HH

    H

    H

    9 steps

    11 steps

    9 steps

    12 steps

    10 steps

    11 steps

  • Synthesis of High Profile Alkaloids via Cascade Catalysis

    akuammicine

    strychnine

    aspidospermidine

    kopsanone

    kopsinine

    vincadifformine

    organo-Im

    Imcatalyst

    common intermediate

    NPG

    X

    NHBoc

    NPG

    CHO

    NR1

    NH

    N

    Me

    CO2Me

    NH

    N

    MeH

    NH

    N

    Me

    CO2Me

    O

    NH

    N

    O

    NH

    N

    CO2Me

    MeH

    N

    N

    O O

    HH

    H

    H

    9 steps

    11 steps

    9 steps

    12 steps

    10 steps

    11 steps

  • Synthesis of High Profile Alkaloids via Cascade Catalysis

    akuammicine

    strychnine

    aspidospermidine

    kopsanone

    kopsinine

    vincadifformine

    organo-Im

    Imcatalyst

    common intermediate

    NPG

    X

    NHBoc

    NPG

    CHO

    NR1

    NH

    N

    Me

    CO2Me

    NH

    N

    MeH

    NH

    N

    Me

    CO2Me

    O

    NH

    N

    O

    NH

    N

    CO2Me

    MeH

    N

    N

    O O

    HH

    H

    H

    9 steps

    11 steps

    9 steps

    12 steps

    10 steps

    11 steps

  • Synthesis of High Profile Alkaloids via Cascade Catalysis

    akuammicine

    strychnine

    aspidospermidine

    kopsanone

    kopsinine

    vincadifformine

    organo-Im

    Imcatalyst

    common intermediate

    NPG

    X

    NHBoc

    NPG

    CHO

    NR1

    NH

    N

    Me

    CO2Me

    NH

    N

    MeH

    NH

    N

    Me

    CO2Me

    O

    NH

    N

    O

    NH

    N

    CO2Me

    MeH

    N

    N

    O O

    HH

    H

    H

    9 steps

    11 steps

    9 steps

    12 steps

    10 steps

    11 steps

  • Synthesis of High Profile Alkaloids via Cascade Catalysis

    akuammicine

    strychnine

    aspidospermidine

    kopsanone

    kopsinine

    vincadifformine

    organo-Im

    Imcatalyst

    common intermediate

    NPG

    X

    NHBoc

    NPG

    CHO

    NR1

    NH

    N

    Me

    CO2Me

    NH

    N

    MeH

    NH

    N

    Me

    CO2Me

    O

    NH

    N

    O

    NH

    N

    CO2Me

    MeH

    N

    N

    O O

    HH

    H

    H

    9 steps

    11 steps

    9 steps

    12 steps

    10 steps

    11 steps

  • Synthesis of High Profile Alkaloids via Cascade Catalysis

    akuammicine

    strychnine

    aspidospermidine

    kopsanone

    kopsinine

    vincadifformine

    organo-Im

    Imcatalyst

    common intermediate

    NPG

    X

    NHBoc

    NPG

    CHO

    NR1

    NH

    N

    Me

    CO2Me

    NH

    N

    MeH

    NH

    N

    Me

    CO2Me

    O

    NH

    N

    O

    NH

    N

    CO2Me

    MeH

    N

    N

    O O

    HH

    H

    H

    9 steps

    11 steps

    9 steps

    12 steps

    10 steps

    11 steps

  • Synthesis of High Profile Alkaloids via Cascade Catalysis

    akuammicine

    strychnine

    aspidospermidine

    kopsanone

    kopsinine

    vincadifformine

    organo-Im

    Imcatalyst

    common intermediate

    NPG

    X

    NHBoc

    NPG

    CHO

    NR1

    NH

    N

    Me

    CO2Me

    NH

    N

    MeH

    NH

    N

    Me

    CO2Me

    O

    NH

    N

    O

    NH

    N

    CO2Me

    MeH

    N

    N

    O O

    HH

    H

    H

    9 steps

    11 steps

    9 steps

    12 steps

    10 steps

    11 steps

    7700 other alkaloids

  • Synthesis of High Profile Alkaloids via Cascade Catalysis

    akuammicine

    strychnine

    aspidospermidine

    kopsanone

    kopsinine

    vincadifformine

    organo-Im

    Imcatalyst

    common intermediate

    NPG

    X

    NHBoc

    NPG

    CHO

    NR1

    NH

    N

    Me

    CO2Me

    NH

    N

    MeH

    NH

    N

    Me

    CO2Me

    O

    NH

    N

    O

    NH

    N

    CO2Me

    MeH

    N

    N

    O O

    HH

    H

    H

    9 steps

    11 steps

    9 steps

    12 steps

    10 steps

    11 steps

    7700 other alkaloids