einführung in die genetik - tum

48
Einführung in die Genetik Prof. Dr. Kay Schneitz (EBio Pflanzen) http://plantdev.bio.wzw.tum.de [email protected] Prof. Dr. Claus Schwechheimer (PlaSysBiol) http://wzw.tum.de/sysbiol [email protected] Thursday, January 31, 13

Upload: others

Post on 15-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Einführung in die Genetik - TUM

Einführung in die Genetik

Prof. Dr. Kay Schneitz (EBio Pflanzen)http://[email protected]

Prof. Dr. Claus Schwechheimer (PlaSysBiol)http://wzw.tum.de/[email protected]

Thursday, January 31, 13

Page 2: Einführung in die Genetik - TUM

Einführung in die Genetik - InhalteEinführung in die Genetik - InhalteEinführung in die Genetik - Inhalte1 Einführung 16. 10. 12 KS2 Struktur von Genen und Chromosomen 23. 10. 12 KS3 Genfunktion 30. 10. 12 KS4 Transmission der DNA während der Zellteilung 06. 11. 12 KS5 Vererbung von Einzelgenveränderungen 13. 11. 12 KS6 Genetische Rekombination (Eukaryonten) 20. 11. 12 KS7 Genetische Rekombination (Bakterien/Viren) 27. 11. 12 KS8 Rekombinante DNA-Technologie 04. 12. 12 CS9 Kartierung/Charakterisierung ganzer Genome 11. 12. 12 CS

10 Genmutationen: Ursache und Reparatur 18. 12. 12 CS11 Veränderungen der Chromosomen 08. 01. 13 CS12 Genetische Analyse biologischer Prozesse 15. 01. 13 CS13 Transposons bei Eukaryonten 22. 01. 13 CS14 Regulation der Genexpression 29. 01. 13 KS15 Regulation der Zellzahl - Onkogene 05. 02. 13 CS

Thursday, January 31, 13

Page 3: Einführung in die Genetik - TUM

Regulation of Gene Expression

Genetics 14

Thursday, January 31, 13

Page 4: Einführung in die Genetik - TUM

Summary• Cells respond to intrinsic and extrinsic signals by modulating

transcriptional control of certain genes

• Gene activity is the result of the function of cis- and trans-acting factors

• Trans-acting proteins react to environmental signals by using built-in sensors that continually monitor cellular conditions

• Coordinated gene regulation in bacteria

• genes are often clustered into operons on the chromosome and transcribed together as multigenic mRNAs

• one cluster of regulatory sites per operon is sufficient to regulate expression of several genes

• Negative vs positive regulation

• repressor proteins bind to DNA at operator site thereby blocking transcription (e.g., lac operon)

• activator proteins activate transcription by binding to DNA at the promoter region (e.g., cAMP/CAP regulation of lac operon)

• Molecular anatomy of genetic switch

• regulatory proteins have DNA-binding domains (e.g., HLH) and protein-protein interaction domains (modular

• specificity of gene regulation depends on specific protein-DNA interactions mediated by the chemical interactions between aa side chains and chemical groups of DNA bases

Thursday, January 31, 13

Page 5: Einführung in die Genetik - TUM

Summary• Eukaryotic gene regulation resembles bacterial gene regulation

• trans-acting factors binding to cis-regulatory elements on the DNA

• this regulatory factors determine the level of transcription by regulating the binding of RNA pol II to the promoter of a gene

• Enhancers/UAS

• cis-regulatory elements, possibly located quite far away (>10-50kb) from promoter

• combinatorial interactions among different transcription factors

• enhanceosome: complexes of regulatory proteins that interact in cooperative and synergistic fashion --> high levels of transcription through recruitment of RNA pol II

• Gene regulation and chromatin

• eukaryotic genes are packed in chromatin

• activation/repression requires specific modifications to chromatin

• genes are mostly turned off and kept silent in part by nucleosomes and condensed chromatin

• histone code: pattern of posttranslational modifications of histone tails (acetylation, methylation, phosphorylation etc).

• histone code is an epigenetic mark involved in nucleosome positioning and chromatin condensation that can be altered by TFs

• TFs recruit for example ATP-dependent chromatin remodelers (e.g., SWI-SNF)

Thursday, January 31, 13

Page 6: Einführung in die Genetik - TUM

Control of cell number - oncogenes

Genetics 15

Thursday, January 31, 13

Page 7: Einführung in die Genetik - TUM

Tumors

The cell cycle

Apoptosis

Cancerogenesis

The ubiquitin-proteasome system

Thursday, January 31, 13

Page 8: Einführung in die Genetik - TUM

Tumors

malignant vs. benign tumors

uncontrolled cell divisions and growth

invasion and colonization of tissue

metastasis

Thursday, January 31, 13

Page 9: Einführung in die Genetik - TUM

Tumor types

carcinoma - epithelial cell cancer

sarcoma - connective tissue or muscle cancer

leukemia or lymphoma - blood cell cancers

others

Thursday, January 31, 13

Page 10: Einführung in die Genetik - TUM

Tumors - incidence rates

Thursday, January 31, 13

Page 11: Einführung in die Genetik - TUM

Tumors - types and distribution

Thursday, January 31, 13

Page 12: Einführung in die Genetik - TUM

The cell cycle

Thursday, January 31, 13

Page 13: Einführung in die Genetik - TUM

FACS sorting (fluorescence activated cell sorting)

Cell cycle studies

Thursday, January 31, 13

Page 14: Einführung in die Genetik - TUM

Cell cycle studiesNorthern blot

Western blot

Thursday, January 31, 13

Page 15: Einführung in die Genetik - TUM

Cell cycle mutants of yeast

Thursday, January 31, 13

Page 16: Einführung in die Genetik - TUM

Temperature sensitive mutants in cell cycle analysis

Thursday, January 31, 13

Page 17: Einführung in die Genetik - TUM

Major check points in cell cycle control

Thursday, January 31, 13

Page 18: Einführung in die Genetik - TUM

Cell cycle studiesNorthern blot

Western blot

Thursday, January 31, 13

Page 19: Einführung in die Genetik - TUM

Cyclins and cyclin-dependent kinases are differentially transcribed throughout the cell cycle

Thursday, January 31, 13

Page 20: Einführung in die Genetik - TUM

Cyclins and cyclin-dependent kinases (CDKs)

Cyclin-CDK ! Vertebrates ! ! Yeast!Complex !Cyclin ! Cdk ! !Cyclin ! Cdk!

G1-Cdk ! !Cyclin D Cdk4, Cdk6 !Cln3 ! Cdk1!G1/S-Cdk !Cyclin E! Cdk2 ! !Cln1,2 ! Cdk1!S-Cdk ! !Cyclin A ! Cdk2 ! !Clb5,6 ! Cdk1!M-Cdk ! !Cyclin B! Cdk1 ! !Clb1,2,3,4 Cdk1!

Thursday, January 31, 13

Page 21: Einführung in die Genetik - TUM

Cyclin-CDK complexes control the cell cycle

Thursday, January 31, 13

Page 22: Einführung in die Genetik - TUM

Mitosis promoting factor and cyclins

Thursday, January 31, 13

Page 23: Einführung in die Genetik - TUM

Cell cycle control by Cyclin-CDKs

Thursday, January 31, 13

Page 24: Einführung in die Genetik - TUM

Cell cycle control by Cyclin-CDKs

Thursday, January 31, 13

Page 25: Einführung in die Genetik - TUM

Cyclins and CDKs in cell cycle control

Thursday, January 31, 13

Page 26: Einführung in die Genetik - TUM

Mitotic cyclins and protein phosphorylation

Thursday, January 31, 13

Page 27: Einführung in die Genetik - TUM

The ubiquitin-proteasome systemand protein degradation

Thursday, January 31, 13

Page 28: Einführung in die Genetik - TUM

The ubiquitination machinery

E1 ubiquitin activating emzyme

E2 ubiquitin conjugating emzyme

E3 ubiquitin ligase

Thursday, January 31, 13

Page 29: Einführung in die Genetik - TUM

The ubiquitination machinery

Thursday, January 31, 13

Page 30: Einführung in die Genetik - TUM

The 26S proteasome

Thursday, January 31, 13

Page 31: Einführung in die Genetik - TUM

Mitotic cyclins and protein degradation

Thursday, January 31, 13

Page 32: Einführung in die Genetik - TUM

The anaphase promoting complex (APC)

Thursday, January 31, 13

Page 33: Einführung in die Genetik - TUM

Cancerogenesis

Thursday, January 31, 13

Page 34: Einführung in die Genetik - TUM

Major check points in cell cycle control

Thursday, January 31, 13

Page 35: Einführung in die Genetik - TUM

Examples for receptors in signaling

Thursday, January 31, 13

Page 36: Einführung in die Genetik - TUM

Receptor tyrosine kinases

JAK/STAT pathwayThursday, January 31, 13

Page 37: Einführung in die Genetik - TUM

Receptor tyrosine kinases

Growth factors (EGF, TGF etc.)

Thursday, January 31, 13

Page 38: Einführung in die Genetik - TUM

Ras

Thursday, January 31, 13

Page 39: Einführung in die Genetik - TUM

Ras

Thursday, January 31, 13

Page 40: Einführung in die Genetik - TUM

The Retinoblastoma (RB) tumor suppressor

Thursday, January 31, 13

Page 41: Einführung in die Genetik - TUM

Retinoblastoma protein (Rb) blocks E2F

Thursday, January 31, 13

Page 42: Einführung in die Genetik - TUM

Prelavance of p53 tumour-suppressor mutations

Thursday, January 31, 13

Page 43: Einführung in die Genetik - TUM

p53 is phosphorylated in responseto DNA damage

Thursday, January 31, 13

Page 44: Einführung in die Genetik - TUM

p53 phosphorylation blocks the cell cycle

Thursday, January 31, 13

Page 45: Einführung in die Genetik - TUM

p53 phosphorylation blocks the cell cycle

p53 +/+

daysThursday, January 31, 13

Page 46: Einführung in die Genetik - TUM

Mutations can induce cancer

RasRb

p53

Thursday, January 31, 13

Page 47: Einführung in die Genetik - TUM

Summary• Tumours are the result of uncontrolled

and invasive cell divisions and cell growth

• The cell cycle is governed by cyclins and cyclin-dependent kinases

• Cyclins and cyclin-dependent kinases are under transcriptional control

• Cyclins are degraded by the UPS

• E1, E2, E2 enzymes and ubiquitin

• 26S proteasome

• Apoptosis regulated cell number

• Apoptosis is a controlled process

• p53, RB and Ras are important cell cycle regulators

Thursday, January 31, 13

Page 48: Einführung in die Genetik - TUM

The end

Thursday, January 31, 13