ee3561_unit 7al-dhaifallah1435 1 ee 3561 : computational methods unit 7 numerical integration dr....

40
EE3561_Unit 7 Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

Upload: zoe-greer

Post on 02-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah14351

EE 3561 : Computational MethodsUnit 7

Numerical Integration

Dr. Mujahed AlDhaifallah

( Term 342)

Page 2: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 2

Lecture 19 Introduction to

Numerical Integration Definitions Upper and Lower Sums Trapezoid Method Examples

Page 3: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 3

IntegrationIntegration

Indefinite Integrals

Indefinite Integrals of a function are functions that differ from each other by a constant.

cx

dxx2

2

Definite Integrals

Definite Integrals are numbers.

2

1

2

1

0

1

0

2

x

xdx

Page 4: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 4

Fundamental Theorem of Fundamental Theorem of CalculusCalculus

for solution form closedNo

for tiveantideriva no is There

) f(x)(x) ' F(i.e. f of tiveantideriva is

, interval an on continuous is If

2

2

b

a

x

x

b

a

dxe

e

F(a)F(b)f(x)dx

F

[a,b]f

Page 5: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 5

The Area Under the The Area Under the CurveCurve

b

af(x)dxArea

One interpretation of the definite integral is

Integral = area under the curve

a b

f(x)

Page 6: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 6

Riemann Sums

Page 7: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 7

Numerical Integration Methods

Numerical integration Methods Covered in this course

Upper and Lower Sums

Newton-Cotes Methods:

Trapezoid Rule

Romberg Method

Page 8: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 8

Upper and Lower SumsUpper and Lower Sums

a b

f(x)

3210 xxxx

ii

n

ii

ii

n

ii

iii

iii

n

xxMPfUsumUpper

xxmPfLsumLower

xxxxfM

xxxxfm

Define

bxxxxaPPartition

1

1

0

1

1

0

1

1

210

),(

),(

:)(max

:)(min

...

The interval is divided into subintervals

Page 9: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 9

Upper and Lower SumsUpper and Lower Sums

a b

f(x)

3210 xxxx

2

2 integral theof Estimate

),(

),(

1

1

0

1

1

0

LUError

UL

xxMPfUsumUpper

xxmPfLsumLower

ii

n

ii

ii

n

ii

Page 10: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 10

ExampleExample

14

3

2

1

4

10

3,2,1,04

1

1,16

9,

4

1,

16

116

9,

4

1,

16

1,0

)intervals equalfour (4

1,4

3,

4

2,

4

1,0

1

3210

3210

1

0

2

iforxx

MMMM

mmmm

n

PPartition

dxx

ii

Page 11: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 11

ExampleExample

14

3

2

1

4

10

8

1

64

14

64

30

2

1

32

11

64

14

64

30

2

1integraltheofEstimate

64

301

16

9

4

1

16

1

4

1),(

),(

64

14

16

9

4

1

16

10

4

1),(

),(

1

1

0

1

1

0

Error

PfU

xxMPfUsumUpper

PfL

xxmPfLsumLower

ii

n

ii

ii

n

ii

Page 12: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 12

Upper and Lower SumsUpper and Lower Sums• Estimates based on Upper and Lower

Sums are easy to obtain for monotonic functions (always increasing or always decreasing).

• For non-monotonic functions, finding maximum and minimum of the function can be difficult and other methods can be more attractive.

Page 13: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 13

Newton-Cotes Methods In Newton-Cote Methods, the function

is approximated by a polynomial of order n

Computing the integral of a polynomial is easy.

1

)(...

2

)()()(

...)(

1122

10

10

n

aba

abaabadxxf

dxxaxaadxxf

nn

n

b

a

b

a

nn

b

a

Page 14: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 14

Newton-Cotes Methods Trapezoid Method (First Order Polynomial are used)

Simpson 1/3 Rule (Second Order Polynomial are used),

b

a

b

a

b

a

b

a

dxxaxaadxxf

dxxaadxxf

2210

10

)(

)(

Page 15: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 15

Trapezoid MethodTrapezoid Method

)()()(

)( axab

afbfaf

f(x)

ba 2

)()(

2

)()(

)()()(

)()()(

)(

)(

2

afbfab

x

ab

afbf

xab

afbfaaf

dxaxab

afbfafI

dxxfI

b

a

b

a

b

a

b

a

Page 16: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 16

Trapezoid MethodDerivation-One interval

2

)()(

)()(2

)()()()()(

2

)()()()()(

)()()()()(

)()()(

)()(

22

2

afbfab

abab

afbfab

ab

afbfaaf

x

ab

afbfx

ab

afbfaaf

dxxab

afbf

ab

afbfaafI

dxaxab

afbfafdxxfI

b

a

b

a

b

a

b

a

b

a

Page 17: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 17

Trapezoid MethodTrapezoid Method

)(bf

f(x)

ba

)()(2

bfafab

Area

)(af

Page 18: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 18

Trapezoid MethodTrapezoid MethodMultiple Application RuleMultiple Application Rule

a b

f(x)

3210 xxxx

s trapezoid theof

areas theof sum)(

...

segments into dpartitione

is b][a, intervalThe

210

b

a

n

dxxf

bxxxxa

n

1212

2

)()(xx

xfxfArea

x

Page 19: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 19

Trapezoid MethodTrapezoid MethodGeneral Formula and special caseGeneral Formula and special case

)()(2

1)(

...

equal)y necessarilot segments(nn into divided is interval theIf

11

1

0

210

iiii

n

i

b

a

n

xfxfxxdxxf

bxxxxa

1

10

1

)()()(2

1)(

allfor

points) base spacedEqualiy ( CaseSpecial

n

iin

b

a

ii

xfxfxfhdxxf

ihxx

Page 20: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 20

Example

Given a tabulated values of the velocity of an object.

Obtain an estimate of the distance traveled in the interval [0,3].

Time (s) 0.0 1.0 2.0 3.0

Velocity (m/s) 0.0 10 12 14

Distance = integral of the velocity

3

0)(Distance dttV

Page 21: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 21

ExampleExampleTime (s) 0.0 1.0 2.0 3.0

Velocity (m/s)

0.0 10 12 14

29)140(2

112)(101 Distance

)()(2

1)(

1

0

1

1

1

n

n

ii

ii

xfxfxfhT

xxh

MethodTrapezoid

3,2,1,0are points Base

lssubinterva3 into

divided is interval The

Page 22: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 22

Estimating the Error Estimating the Error For Trapezoid methodFor Trapezoid method

?accurcy digit decimal 5 to

)sin( compute toneeded

are intervals spacedequally many How

0

dxx

Page 23: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 23

Error in estimating the Error in estimating the integralintegralTheoremTheorem

a

3

[ , ]

3

Assumption: ''( ) is continuous on

Equal intervals (width )

Theorem: If Trapezoid Method is used to

approximate ( ) then

max ''( ) (One Interval Case)12

12

b

x a b

f x [a,b]

h

f x dx

b aError f x

b aError

n

2 [ , ]max ''( ) (Multiple Application Case)x a b

f x

Page 24: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 24

ExampleExample

5

0

3

2 [ , ]

35

2

25 3

2

1sin( ) , error 10

2

max ''( )12

; 0; '( ) cos( ); ''( ) sin( )

1''( ) 1 10

12 2

610 4.3701 10

x a b

x dx find h so that

b aError f x

nb a f x x f x x

f x Errorn

hn

Page 25: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 25

ExampleExample

)()(2

1)(),(

, allfor :

)()(2

1),(

)(Compute tomethod TrapezoidUse

0

1

1

1

11

1

0

3

1

n

n

ii

ii

iiii

n

i

xfxfxfhPfT

ixxhCaseSpecial

xfxfxxPfTTrapezoid

dxxf

x 1.0 1.5 2.0 2.5 3.0

f(x) 2.1 3.2 3.4 2.8 2.7

Page 26: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 26

ExampleExample

9.5

7.21.22

18.24.32.35.0

)()(2

1)()( 0

1

1

3

1

n

n

ii xfxfxfhdxxf

x 1.0 1.5 2.0 2.5 3.0

f(x) 2.1 3.2 3.4 2.8 2.7

Page 27: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 27

Lecture 21 Romberg Method

MotivationDerivation of Romberg MethodRomberg MethodExampleWhen to stop?

Page 28: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 28

Motivation for Romberg Motivation for Romberg MethodMethod Trapezoid formula with an interval h gives

error of the order O(h2) We can combine two Trapezoid estimates

with intervals h and h/2 to get a better estimate.

Page 29: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 29

Romberg MethodRomberg Method

First column is obtained using Trapezoid Method

dx f(x) ofion approximat theimprove tocombined are

,...8

a-b,

4

a-b ,

2

a-b

,a-b size of intervals with method Trapezoid using Estimates

b

aR(0,0)

R(1,0) R(1,1)

R(2,0) R(2,1) R(2,2)

R(3,0) R(3,1) R(3,2) R(3,3)The other elements are obtained using the Romberg Method

Page 30: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 30

First Column First Column Recursive Trapezoid Recursive Trapezoid MethodMethod

f(x)

haa

)()(2

)0,0(R

intervaloneonbasedEstimate

bfafab

abh

Page 31: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 31

Recursive Trapezoid Recursive Trapezoid MethodMethod

f(x)

hahaa 2

)()0,0(2

1)0,1(

)()(2

1)(

2)0,1(R

2

intervals 2 on based Estimate

hafhRR

bfafhafab

abh

Based on previous estimate

Based on new point

Page 32: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 32

Recursive Trapezoid Recursive Trapezoid MethodMethod

f(x)

)3()()0,1(2

1)0,2(

)()(2

1

)3()2()(4

)0,2(R

4

hafhafhRR

bfaf

hafhafhafab

abh

hahaa 42 Based on previous estimate

Based on new points

Page 33: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 33

Recursive Trapezoid Recursive Trapezoid MethodMethodFormulasFormulas

n

k

abh

hkafhnRnR

bfafab

n

2

)12()0,1(2

1)0,(

)()(2

)0,0(R

)1(2

1

Page 34: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 34

Recursive Trapezoid Recursive Trapezoid MethodMethod

)1(

2

2

1

2

13

2

12

1

1

)12()0,1(2

1)0,(,

2

..................

)12()0,2(2

1)0,3(,

2

)12()0,1(2

1)0,2(,

2

)12()0,0(2

1)0,1(,

2

)()(2

)0,0(R,

n

kn

k

k

k

hkafhnRnRab

h

hkafhRRab

h

hkafhRRab

h

hkafhRRab

h

bfafab

abh

Page 35: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 35

Derivation of Romberg Derivation of Romberg MethodMethod

...)0,1()0,(3

1)0,()(

2*41

)2(...64

1

16

1

4

1)0,()(

by R(n,0) obtained is estimate accurate More

)1(...)0,1()(

2 method Trapezoid)()0,1()(

66

44

66

44

22

66

44

22

12

hbhbnRnRnRdxxf

giveseqeq

eqhahahanRdxxf

eqhahahanRdxxf

abhwithhOnRdxxf

b

a

b

a

b

a

n

b

a

Page 36: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 36

Romberg MethodRomberg Method

1,1

)1,1()1,(14

1)1,(),(

)12()0,1(2

1)0,(

,2

)()(2

)0,0(R

)1(2

1

mnfor

mnRmnRmnRmnR

hkafhnRnR

abh

bfafab

m

k

n

n

R(0,0)

R(1,0) R(1,1)

R(2,0) R(2,1) R(2,2)

R(3,0) R(3,1) R(3,2) R(3,3)

Page 37: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 37

Property of Romberg Property of Romberg MethodMethod

)(),()(

Theorem

22 mb

a

hOmnRdxxf

R(0,0)

R(1,0) R(1,1)

R(2,0) R(2,1) R(2,2)

R(3,0) R(3,1) R(3,2) R(3,3)

)()()()( 8642 hOhOhOhOError Level

Page 38: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 38

Example 1Example 1

3

1

2

1

8

3

3

1

8

3)0,0()0,1(

14

1)0,1()1,1(

1,1

)1,1()1,(14

1)1,(),(

8

3

4

1

2

1

2

1

2

1))(()0,0(

2

1)0,1(,

2

1

5.0102

1)()(

2)0,0(,1

Compute

1

1

0

2

RRRR

mnfor

mnRmnRmnRmnR

hafhRRh

bfafab

Rh

dxx

m

0.5

3/8 1/3

Page 39: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 39

Example 1 cont.Example 1 cont.

3

1

3

1

3

1

15

1

3

1)1,1()1,2(

14

1)1,2()2,2(

3

1

8

3

32

11

3

1

32

11)0,1()0,2(

14

1)0,1()1,2(

)1,1()1,(14

1)1,(),(

32

11

16

9

16

1

4

1

8

3

2

1))3()(()0,1(

2

1)0,2(,

4

1

2

1

RRRR

RRRR

mnRmnRmnRmnR

hafhafhRRh

m

0.5

3/8 1/3

11/32 1/3 1/3

Page 40: EE3561_Unit 7Al-Dhaifallah1435 1 EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)

EE3561_Unit 7 Al-Dhaifallah1435 40

When do we stop?When do we stop?

( , ) ( , 1)

or

after a given number of steps

for example STOP at R(4,4)

STOP if

R n m R n m