ee3561_unit 3(c)al-dhaifallah14351 ee 3561 : - computational methods unit 3: solution of systems of...

48
EE3561_Unit 3 (c)AL-DHAIFALLAH1435 1 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read Chapter 9 of the textbook

Upload: gerard-armstrong

Post on 22-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 1

EE 3561 : - Computational MethodsUnit 3:

Solution of Systems of Linear Equations

Mujahed AlDhaifallah (Term 342)

Read Chapter 9 of the textbook

Page 2: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 2

Systems of linear equations

form Matrix form Standard

7

5

3

601

315.2

342

76

535.2

3342

formsdifferent in

presented be can equationslinear of system A

3

2

1

31

321

321

x

x

x

xx

xxx

xxx

Coefficient Matrix

Unknown Vector

RHS Vector

Page 3: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 3

Solutions of linear equations

52

3

equations following the tosolutiona is 2

1

21

21

2

1

xx

xx

x

x

Page 4: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 4

Solutions of linear equations A set of equations is inconsistent if there exist

no solution to the system of equations

ntinconsiste are equations These

542

32

21

21

xx

xx

Page 5: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 5

Solutions of linear equations Some systems of equations may have infinite

number of solutions

allfor solutionais)3(5.0

solutions ofnumber infinite have

642

32

2

1

21

21

aa

a

x

x

xx

xx

Page 6: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 6

Graphical Solution of Systems ofLinear Equations

52

3

21

21

xx

xx

solution

Page 7: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 7

Cramer’s Rule is not practical

way efficient in computed are tsdeterminan theif used becan It

system. 30by 30 a solve toyears10 needscomputer super A

. systems largefor practicalnot is Rule sCramer'

2

21

11

51

31

,1

21

11

25

13

system thesolve toused becan Rule sCramer'

17

21 xx

Page 8: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 8

Naive Gaussian Elimination Examples

Lecture 6 Naive Gaussian

Elimination

Page 9: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 9

Naive Gaussian Elimination The method consists of two steps

Forward Elimination: the system is reduced to upper triangular form. A sequence of elementary operations is used.

Backward substitution: Solve the system starting from the last variable.

'

'

'00

''0

3

2

1

3

2

1

33

2322

131211

3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

a

aa

aaa

b

b

b

x

x

x

aaa

aaa

aaa

Page 10: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 10

Elementary Row operations

Adding a multiple of one row to another Multiply any row by a non-zero constant

Page 11: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 11

ExampleForward Elimination

18

27

6

16

14320

18120

2240

4226

4,3,2equationsfrom Eliminate:Step1

nEliminatio Forward:1Part

34

19

26

16

18146

39133

106812

4226

4

3

2

1

1

4

3

2

1

x

x

x

x

x

x

x

x

x

Page 12: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 12

Example Forward Elimination

3

9

6

16

3000

5200

2240

4226

4equation from Eliminate:Step3

21

9

6

16

13400

5200

2240

4226

4,3equationsfrom Eliminate:Step2

4

3

2

1

3

4

3

2

1

2

x

x

x

x

x

x

x

x

x

x

Page 13: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 13

Example Forward Elimination

3

9

6

16

3000

5200

2240

4226

34

19

26

16

18146

39133

106812

4226

nEliminatio Forward theofSummary

4

3

2

1

4

3

2

1

x

x

x

x

x

x

x

x

Page 14: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 14

Example Backward substitution

36

)1(4)2(2)1(216,1

4

)1(2)2(26

22

59,1

3

3

for solve,...for solvethen,for solve

3

9

6

16

3000

5200

2240

4226

12

34

134

4

3

2

1

xx

xx

xxx

x

x

x

x

Page 15: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 15

Forward Elimination

ni

ba

abb

njaa

aaa

x

ni

ba

abb

njaa

aaa

x

ijj

ji

ijij

ijj

ji

ijij

3

)2(

eliminate To

2

)1(

eliminate To

222

2

222

2

2

111

1

111

1

1

Page 16: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 16

Forward Elimination

.eliminated is until continue

1

)(

eliminate To

1

n

mmm

imjj

mjmm

imijij

m

x

nim

ba

abb

njmaa

aaa

x

Page 17: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 17

Backward substitution

mm

n

mjjjmm

m

nn

nnnnnnnn

nn

nnnnn

nn

nn

a

xab

x

a

xaxabx

a

xabx

a

bx

,

1,

2,2

11,2,222

1,1

,111

Page 18: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 18

How many solutions does a system of equations AX=B have?

0 elements0 elements

Bingcorrespond Bingcorrespond

rows zerorows zero

moreor one has moreor one hasrows zero no has

matrix reducedmatrix reducedmatrix reduced

0det(A)0det(A)0det(A)

infintesolution NoUnique

Page 19: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 19

How do we know if a solution is good or not Given AX=B

X is a solution if AX-B=0 Due to computation error AX-B may not be zero Compute the residuals R=|AX-B|

One possible test is ?????

iirmax if acceptable issolution The

Page 20: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 20

Determinant

13detdet

1300

410

321

A'

213

232

321

A

:Example

tdeterminan affect thenot does operations elementary The

operations Elementary

(A')(A)

Page 21: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 21

Linear Systems Types

5.1!10

5.0

0

#:

0

2

00

21

1

2

00

21

1

1

20

21

4

2

42

21

3

2

42

21

2

1

43

21

solutions of # infintesolution NoUnique

XimpossibleX

solutionsInfinitesolutionNosolution

XXX

XXX

Singular Systems

Page 22: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 22

Detecting Singularity After completing the elimination step, the

determinant can be evaluated as the product of the diagonal elements.

One can detect singularity by the fact that the determinant of a singular system is zero.

Page 23: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 23

Problems with Naive Gaussian Elimination

o The Naive Gaussian Elimination may fail for very simple cases. (The pivoting element is zero).

o Very small pivoting element may result in , serious computation errors

2

1

11

10

2

1

x

x

2

1

11

110

2

110

x

x

Page 24: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 24

Possible solution Equations Permutation: Naive Gaussian

elimination method works well in the above two examples if the equations are first permuted, i.e., arranged as

The procedure that will do so is called “Gaussian elimination with scaled partial pivoting”.

1

2

10

11

2

1

x

x

1

2

110

11

2

1

10 x

x

Page 25: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 25

Gaussian Elimination with Scaled Partial Pivoting In Gaussian elimination method, the order

in which the equations are used as pivoting equations is the natural order {1, 2, 3, · · · , n}.

To overcome the problems that Naive Guassian elimination procedure face, we choose an order which is different than the natural used in forward elimination method. This is called partial pivoting.

The most important step in this method is to determine the pivot equation

Page 26: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 26

Gaussian Elimination with Scaled Partial

Pivoting

Page 27: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 27

Scaled Partial Pivoting Procedure1. Let l0 = {1, 2, 3, · · · , n}. This vector is called the

“index vector”.2. Define . This vector is

called the “Scale Vector” and is fixed for all operations. This means that si =absolute value of the maximum element in row i.

3. For iteration 1, define ratio#1 as That is divide the absolute value of the elements

of the first column by the corresponding elements in the “Scaled Vector”.

Page 28: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 28

Scaled Partial Pivoting Procedure4. Choose the equation which give the greatest

ratio as the first pivoting equation. Assume the greatest ratio is

5. Set the new index vector to be

i.e., interchange the place of 1 and i in l0 to get l1.

6. Then do the elimination as in the Naive Gaussian elimination method by taking raw i as the pivot raw and aii as the pivot element.

7. Repeat steps 3 to 6 for n − 1 iterations.

Page 29: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 29

Example 2

1

1

1

1

3524

3685

4123

1211

Pivoting Partial Scaledwith

nEliminatioGaussian using sytstem following theSolve

4

3

2

1

x

x

x

x

Page 30: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 30

Example 2Initialization step

4321LVectorIndex

5842S vectorScale

1

1

1

1

3524

3685

4123

1211

4

3

2

1

x

x

x

xScale vector:

disregard sign

find largest in magnitude in each row

Page 31: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 31

Why index vector? Index vectors are used because it is much

easier to exchange a single index element compared to exchanging the values of a complete row.

In practical problems with very large N, exchanging the contents of rows may not be practical since they could be stored at different locations.

Page 32: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 32

Example 2Forward Elimination-- Step 1: eliminate x1

]1324[

Exchangeequation pivot first theis 4equation

toscorrespondmax 5

4,

8

5,

4

3,

2

14,3,2,1

]4321[

]5842[

1

1

1

1

3524

3685

4123

1211

equationpivot theofSelection

14

4

1,

4

3

2

1

L

landl

liS

aRatios

L

S

x

x

x

x

i

i

l

l

Page 33: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 33

Example 2Forward Elimination-- Step 1: eliminate x1

1

25.2

75.1

25.1

3524

75.025.05.50

75.175.25.00

25.075.05.10

1

1

1

1

3524

3685

4123

1211

B andA Update

4

3

2

1

4

3

2

1

x

x

x

x

x

x

x

x

First pivot equation

Page 34: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 34

Example 2Forward Elimination-- Step 2: eliminate x2

]2314[

2

5.1

8

5.5

4

5.0:Ratios

1

25.2

75.1

25.1

3524

75.025.05.50

75.175.25.00

25.075.05.10

equationpivot second theofSelection

4

3

2

1

L

x

x

x

x

Page 35: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 35

Example 2Forward Elimination-- Step 2: eliminate x2

]2314[2

5.1

8

5.5

4

5.04,3,2:Ratios

]1324[]5842[

1

25.2

75.1

25.1

3524

75.025.05.50

75.175.25.00

25.075.05.10

equationpivot second theofSelection

2,

4

3

2

1

LiS

a

LS

x

x

x

x

i

i

l

l

Page 36: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 36

Example 2Forward Elimination-- Step 3: eliminate x3

1

9

1667.2

25.1

3524

2000

8333.15.200

25.075.05.10

]3214[

1

8333.6

1667.2

25.1

3524

1667.05.200

8333.15.200

25.075.05.10

4

3

2

1

4

3

2

1

x

x

x

x

L

x

x

x

xThird pivot equation

Determinant =

(-1)3*(-1.5)(-2.5)(2)(4)

= 30-

Page 37: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 37

Example 2Backward substitution

7.23334

2531

1.13335.1

75.025.025.1

2.43275.2

8333.11667.2,5.4

2

9

]3214[

1

9

1667.2

25.1

3524

2000

8333.15.200

25.075.05.10

234

1,

22,33,44,1

34

2,

33,44,2

4

3,

44,3

4,4

4

3

2

1

1

1111

2

222

3

33

4

4

xxx

a

xaxaxabx

xx

a

xaxabx

x

a

xabx

a

bx

L

x

x

x

x

l

llll

l

lll

l

ll

l

l

Page 38: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 38

Example 3

1

1

1

1

3524

3685

4123

1211

Pivoting Partial Scaledwith

nEliminatioGaussian using sytstem following theSolve

4

3

2

1

x

x

x

x

Page 39: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 39

Example 3Initialization step

4321LVectorIndex

5842S vectorScale

1

1

1

1

3524

3685

4123

1211

4

3

2

1

x

x

x

x

Page 40: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 40

Example 3Forward Elimination-- Step 1: eliminate x1

]1324[

Exchangeequation pivot first theis 4equation

toscorrespondmax 5

4,

8

5,

4

3,

2

14,3,2,1

]4321[

]5842[

1

1

1

1

3524

3685

4123

1211

equationpivot theofSelection

14

41,

4

3

2

1

L

landl

liS

aRatios

L

S

x

x

x

x

i

i

l

l

Page 41: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 41

Example 3Forward Elimination-- Step 1: eliminate x1

1

25.2

75.1

25.1

3524

75.025.05.100

75.175.25.00

25.075.05.10

1

1

1

1

3524

3685

4133

1211

B andA Update

4

3

2

1

4

3

2

1

x

x

x

x

x

x

x

x

Page 42: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 42

Example 3Forward Elimination-- Step 2: eliminate x2

]1234[2

5.1

8

5.10

4

5.04,3,2:Ratios

]1324[]5842[

1

25.2

75.1

25.1

3524

75.025.05.100

75.175.25.00

25.075.05.10

equationpivot second theofSelection

2,

4

3

2

1

LiS

a

LS

x

x

x

x

i

i

l

l

Page 43: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 43

Example 3Forward Elimination-- Step 2: eliminate x2

1

2.25

1.8571

0.9286

3524

75.025.05.100

1.71432.7619-00

0.35710.785700

]2314[

1

25.2

75.1

25.1

3524

75.025.05.100

75.175.25.00

25.075.05.10

B andA Updating

4

3

2

1

4

3

2

1

x

x

x

x

L

x

x

x

x

Page 44: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 44

Example 3Forward Elimination-- Step 3: eliminate x3

]1234[2

0.7857

4

2.76194,3:Ratios

]1234[]5842[

1

2.25

1.8571

0.9286

3524

75.025.05.100

1.71432.761900

0.35710.785700

equationpivot third theofSelection

3,

4

3

2

1

LiS

a

LS

x

x

x

x

i

i

l

l

Page 45: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 45

Example 3Forward Elimination-- Step 3: eliminate x3

1

2.25

1.8571

1.4569

3524

75.025.05.100

1.71432.761900

0.8448000

]1234[

1

2.25

1.8571

0.9286

3524

75.025.05.100

1.71432.761900

0.35710.785700

4

3

2

1

4

3

2

1

x

x

x

x

L

x

x

x

x

Determinant =

(-1)2*(0.8448)* (-2.7619)*(-10.5)*(4)

=97.9966

Page 46: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 46

Example 3Backward substitution

1.86734

2531

0.3469

0.39802.7619

1.71431.8571,1.7245

0.8448

1.4569

]1234[

1

2.25

1.8571

1.4569

3524

75.025.05.100

1.71432.761900

0.8448000

234

1,

22,33,44,1

2,

33,44,2

4

3,

44,3

4,4

4

3

2

1

1

1111

2

222

3

33

4

4

xxx

a

xaxaxabx

a

xaxabx

x

a

xabx

a

bx

L

x

x

x

x

l

llll

l

lll

l

ll

l

l

Page 47: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 47

How good is the solution?

0005.0

0002.0

0003.0

0001.0

:Residues

7245.1

3980.0

3469.0

8673.1

solution

1

1

1

1

3524

3685

4123

1211

4

3

2

1

4

3

2

1

R

x

x

x

x

x

x

x

x

Page 48: EE3561_Unit 3(c)AL-DHAIFALLAH14351 EE 3561 : - Computational Methods Unit 3: Solution of Systems of Linear Equations Mujahed AlDhaifallah (Term 342) Read

EE3561_Unit 3 (c)AL-DHAIFALLAH1435 48

Remarks: We use index vector to avoid the need to move

the rows which may not be practical for large problems.

If you order equation as in the last value of the index vector, you have triangular form.

Scale vector is formed by taking maximum in magnitude in each row.

Scale vector does not change. The original matrices A and B are used in

Checking the residuals.