ee152 green electronics - stanford university · 2014. 9. 16. · midterms • oct 17 and nov 14...

65
EE152 Green Electronics Introduction Periodic Steady State Analysis 9/24/13 Prof. William Dally Computer Systems Laboratory Stanford University

Upload: others

Post on 04-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • EE152 Green Electronics

    Introduction Periodic Steady State Analysis

    9/24/13

    Prof. William Dally Computer Systems Laboratory

    Stanford University

  • Today’s Agenda •  Course Logistics •  Why “Green Electronics” •  Periodic Steady-State Analysis

    2 EE152 F13 L1

  • About the Course •  Philosophy

    –  Engineering to benefit society –  Learn Engineering Thinking and Engineering Methods –  Hands-on – learn by doing

    •  7 Labs + Project •  6 HW Assignments •  2 Midterms

    3 EE152 F13 L1

  • Course at a Glance HW   Lab  

    Lecture   Date   Topic   out   in   out   in   Lab  Descrip3on   Homework  Descrip3on  1   24-‐Sep  Introduc3on  to  Green  Electronics   1   1   Introduc3on  to  AVR  Microcontroller  2   26-‐Sep  Real-‐3me  embedded  soFware  

    3   1-‐Oct  Boost,  Buck,  and  periodic  steady  state  analysis   2   1   2   1  AC  energy  meter   Periodic  Steady  State  

    4   3-‐Oct  Power  MOSFETs,  SPICE  simula3on  5   8-‐Oct  Motors  and  Modeling   3   2   3   2  Motor  control  -‐  Matlab   Motor  Calcula3ons  6   10-‐Oct  Feedback  Control  7   15-‐Oct  Review  for  Midterm   3   4   3  Motor  control  -‐  Lab  8   17-‐Oct  PV  Cells,  Op3miza3on,  Finding  Peak  Power  

    MT   17-‐Oct  Midterm  1  -‐  in  evening  9   22-‐Oct  Magne3cs   4   5   4  PV  power-‐point  tracker   Feedback  

    10   24-‐Oct  Transformers  and  bridge  converters  11   29-‐Oct  Grounding  and  debugging   5   4   6   5  Power  supply  part  1/Project  Proposal  Magne3cs  design  12   31-‐Oct  Solar  Day  -‐  costumes  op3onal  13   5-‐Nov  Inverters   6   5   7   6  Power  supply  part  2   Bridge  converter  14   7-‐Nov  SoF  switching  15   12-‐Nov  Review  for  Midterm   6   P   7  Project  16   14-‐Nov  Guest  Lecture  1  MT   14-‐Nov  Midterm  2  17   19-‐Nov  Guest  Lecture  2   C1  18   21-‐Nov  Guest  Lecture  3  19   3-‐Dec  Wrapup  Lecture   C2  20   5-‐Dec  Project  Presenta3ons   P  Project  Report  Due  -‐  Website  

    4 EE152 F13 L1

  • Grading

    6 Homeworks 15% 7 Labs 20% 2 Midterms 30% 1 Project 30% Participation 5%

    5 EE152 F13 L1

  • Collaboration •  May collaborate in groups of up to 4 on homework

    assignments –  Turn in one assignment for the group. –  Give attribution for any outside assistance

    •  Labs to be done in assigned groups of 2

    •  Projects may be done in groups of up to 4

    6 EE152 F13 L1

  • Labs •  One lab each week

    –  Assigned on Tuesday (9/24 for Lab 1) –  Must be demonstrated and signed off during your lab

    session the following week •  Groups of two

    –  If you have a partner lined up, put it on your lab sheet •  Lab will be open 7-10 several nights per week

    –  Write down what evenings you are available –  We will assign you one evening for your checkoff

    7 EE152 F13 L1

  • Labs •  Introduction to AVR Microcontroller •  AC energy meter •  Motor control - Matlab •  Motor control - Lab •  PV power-point tracker •  Power Supply SPICE •  Power Supply Lab

    8 EE152 F13 L1

  • Project •  Proposal assigned Oct 29 (in parallel with lab 6) •  Project starts Nov 12 (after lab 7) •  Due December 5 •  Weekly checkpoints •  Significant investigation related to green electronics

    –  Efficient power converter –  Soft switching –  Inverter –  Battery characterization –  Battery management –  New concept in PV control –  Three-phase motor control –  Energy-conservation via control –  ….

    9 EE152 F13 L1

  • Homeworks •  Assigned each Tuesday •  Due the following Tuesday •  OK to work in groups of up to 4

    –  Turn in one solution and list all who participated –  Give attribution for any outside help

    10 EE152 F13 L1

  • Midterms •  Oct 17 and Nov 14 – in the evening •  Two hours each •  Covers all material up through previous lecture •  Open notes

    11 EE152 F13 L1

  • Why Green Electronics?

    12 EE152 F13 L1

  • 1. Growing CO2 Emissions

    13 EE152 F13 L1

  • 2. Finite Supply of Fossil Fuels

    14 EE152 F13 L1

  • Inefficient Use of Energy

    15 EE152 F13 L1

  • Green Electronics is Part of the Solution

    16 EE152 F13 L1

  • What is Green Electronics?

    17 EE152 F13 L1

  • Energy Conversion

    18 EE152 F13 L1

  • 19 EE152 F13 L1

  • 20 EE152 F13 L1

  • Photovoltaic System

    Solar Panel

    Solar Panel

    Solar Panel

    Solar Panel

    Solar Panel

    Solar Panel

    Photovoltaic Array

    PV Controller and Inverter

    Batteries

    400V DC 240V AC60 Hz

    48V DC

    To Grid

    21 EE152 F13 L1

  • 22 EE152 F13 L1

  • 23 EE152 F13 L1

  • 24 EE152 F13 L1

  • 25 EE152 F13 L1

  • Electric Car

    Charger120/240V AC60 Hz

    From Grid

    Battery

    Battery

    Battery

    Battery Pack

    400V DC Motor Controller

    AC Induction or Brushless PM Motor

    400V DC

    3-phase ACVariable Voltage

    Variable Frequency

    Resistive Load

    User Interface

    26 EE152 F13 L1

  • Less Obvious

    27 EE152 F13 L1

  • Or

    28 EE152 F13 L1

  • A great vehicle to teach Engineering

    29 EE152 F13 L1

  • Interesting examples to teach methods •  Analyze – of a circuit or a system •  Synthesize – a circuit, a system, software •  Model – a physical thing •  Simulate – your system or circuit •  Optimize – efficiency, performance, cost, etc…

    30 EE152 F13 L1

  • Interrelating Topics •  Electronics •  Electro-mechanical system •  Thermal effects •  Magnetic components •  Power Semiconductors •  …

    31 EE152 F13 L1

  • Bugs have consequences

    32 EE152 F13 L1

  • Power Electronics + Intelligent Control

    Intelligent Controller

    Power Path

    33 EE152 F13 L1

  • 34 EE152 F13 L1

  • Example Waveforms

    35 EE152 F13 L1

  • Periodic Steady State Analysis

    36 EE152 F13 L1

  • Buck Converter

    L

    V2

    +-

    iLV1

    +-

    a

    b

    37 EE152 F13 L1

  • Periodic Steady State

    L

    V2

    +-

    iLV1

    +-

    a

    b

    Switch is periodic with cycle time tcy Separate behavior

    Over one cycle of switch At frequencies much lower than fcy

    38 EE152 F13 L1

  • Periodic Steady State

    L

    V2

    +-

    iLV1

    +-

    a

    b

    Time is divided into cycles with period tcy State variables are the same at the beginning and end of each cycle

    39 EE152 F13 L1

  • Periodic Steady State

    L

    V2

    +-

    iLV1

    +-

    a

    b

    Each cycle: switch in position a for ta, b for tb = tcy- ta

    40 EE152 F13 L1

  • Position a

    L

    V2

    +-

    iLV1

    +-

    a

    b

    VL =V1 −V2

    ΔIa =taVLL

    =ta V1 −V2( )

    L

    41 EE152 F13 L1

  • Position b

    L

    V2

    +-

    iLV1

    +-

    a

    b

    VL = −V2

    ΔIb =−tbV2L

    42 EE152 F13 L1

  • Waveforms

    ip

    i0

    0 ta tcy=ta+tb

    iL

    a/b

    43 EE152 F13 L1

  • Periodic Steady State

    ΔIa +ΔIb = 0ta V1 −V2( )

    L+tb −V2( )L

    = 0

    ta V1 −V2( )+ tb −V2( ) = 0taV1 = ta + tb( )V2

    V2 =ta

    ta + tb

    #

    $%

    &

    '(V1 = DV1

    L

    V2

    +-

    iLV1

    +-

    a

    b

    44 EE152 F13 L1

  • Periodic Steady State •  V2 = DV1 •  Only depends on duty factor D

    –  Not on cycle time tcy –  Not on inductor value L –  They determine the “ripple”

    45 EE152 F13 L1

  • What if V2 ≠ DV1 ?

    ΔI = ΔIa +ΔIb

    ΔI =ta V1 −V2( )

    L+tb −V2( )L

    ΔI =tcyL

    DV1 −V2( )

    L

    V2

    +-

    iLV1

    +-

    a

    b

    46 EE152 F13 L1

  • Equivalent Circuit

    L

    V2+-

    iL

    DV1+-

    47 EE152 F13 L1

  • Transient Response

    L

    V2

    iLV1

    +-

    a

    b

    R

    C

    +

    _

    V2(0) = 0, IL(0) = 0 . L = 10uH, C=0.1uF, R=8Ω, D=0.5 What is V2(t)? If V1(t>0) is 2V. Switching frequency is high enough you can ignore it.

    48 EE152 F13 L1

  • Equivalent Circuit

    L

    V2

    iLDV1

    +-

    DR

    C

    +

    _

    ω =1LC

    =1MHz

    ζ =DR2

    CL= 0.2

    f = ω2π

    =

    Q = 12ζ

    = 2.5

    49 EE152 F13 L1

  • Equivalent Circuit

    L

    V2

    iLDV1

    +-

    DR

    C

    +

    _

    ω =1LC

    =1MHz

    ζ =DR2

    CL= 0.2

    f = ω2π

    =

    Q = 12ζ

    = 2.5

    ζ depends on duty factor!

    50 EE152 F13 L1

  • Sketch Response from f and Q

    51 EE152 F13 L1

  • Verify With Simulation

    0 5 10 15 20 25 30 35 400

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    time µs

    V 2

    ω =1e+06ζ =0.2

    f = 1.59e+05Q = 2.5

    52 EE152 F13 L1

  • With Current

    0 5 10 15 20 25 30 35 400

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    time (µs)

    V 2 (V

    )

    ω =1e+06ζ =0.2

    f = 1.59e+05Q = 2.5

    0 5 10 15 20 25 30 35 40

    −0.1

    −0.05

    0

    0.05

    0.1

    0.15

    I L (V

    )

    53 EE152 F13 L1

  • 50% Overshoot

    L

    V2

    iLV1

    +-

    a

    b

    R

    C

    +

    _

    0 5 10 15 20 25 30 35 400

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    time µs

    V 2

    ω =1e+06

    ζ =0.2

    f = 1.59e+05

    Q = 2.5

    Is this OK? What if your 5V power supply went to 7.5V on turn-on?

    54 EE152 F13 L1

  • 50% Overshoot

    L

    V2

    iLV1

    +-

    a

    b

    R

    C

    +

    _

    0 5 10 15 20 25 30 35 400

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    time µs

    V 2

    ω =1e+06

    ζ =0.2

    f = 1.59e+05

    Q = 2.5

    Is this OK? What if your 5V power supply went to 7.5V on turn-on? It would fry all of your logic chips Control of switch-mode circuits prevents overshoot

    55 EE152 F13 L1

  • Matlab Model L=1e-5 ;!C=1e-7 ;!R=4 ; % DR!VI=2 ;!!dt=1e-8 ;!tsim=4e-5 ;!steps = ceil(tsim/dt) ;!!t=0 ;!vc=0 ;!il=0 ;!!% preallocate result arrays to speed simulation!tx=zeros(1,steps) ; vx=zeros(1,steps) ; ix = zeros(1, steps) ; !!for i=1:steps! vl = VI-vc-il*R ;! vc = vc+il*dt/C ;! il = il+vl*dt/L ;! tx(i) = t ; vx(i) = vc ; ix(i) = il ; % log variables! t=t+dt ;!end!

    56 EE152 F13 L1

    0 5 10 15 20 25 30 35 400

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    time (µs)

    V 2 (V

    )

    ω =1e+06ζ =0.2

    f = 1.59e+05Q = 2.5

    0 5 10 15 20 25 30 35 40

    −0.1

    −0.05

    0

    0.05

    0.1

    0.15

    I L (V

    )

  • Matlab Model L=1e-5 ;!C=1e-7 ;!R=4 ; % DR!VI=2 ;!!dt=1e-8 ;!tsim=4e-5 ;!steps = ceil(tsim/dt) ;!!t=0 ;!vc=0 ;!il=0 ;!!% preallocate result arrays to speed simulation!tx=zeros(1,steps) ; vx=zeros(1,steps) ; ix = zeros(1, steps) ; !!for i=1:steps! vl = VI-vc-il*R ;! vc = vc+il*dt/C ;! il = il+vl*dt/L ;! tx(i) = t ; vx(i) = vc ; ix(i) = il ;! t=t+dt ;!end!

    57 EE152 F13 L1

  • Caution! Simulation is not a substitute for

    understanding

    58 EE152 F13 L1

  • Can the Buck Run Backwards?

    L

    V2+-

    V1+-

    a

    b

    iL

    59 EE152 F13 L1

  • Boost Converter

    L

    V2+-

    V1+-

    a

    b

    iL

    V1 =V2Da

    =V2

    1−Db( )

    60 EE152 F13 L1

  • Boost Waveforms

    ip

    i0

    t0 tb tcy

    iL

    b/a

    tb ta

    61 EE152 F13 L1

  • Boost Transient Response (for f

  • Equivalent Circuit

    kL

    kV2 V1+-

    kR

    C

    +

    _

    iL

    63 EE152 F13 L1

  • Summary: PWM, PSSA, Buck Boost •  Separate behavior into fast and slow

    –  Fast – within switching cycle –  Slow – f

  • In Upcoming Lectures •  Application to motor control •  Realizing the switches

    –  Power MOSFETs, Diodes, IGBTs –  and their imperfections

    •  Realizing the inductors •  Using transformers •  Computing losses and efficiency •  Batteries and photovoltaic cells

    65 EE152 F13 L1