ee152 green electronics - stanford...

77
EE152 Green Electronics Power Devices 10/3/16 Prof. William Dally Computer Systems Laboratory Stanford University

Upload: lycong

Post on 21-May-2018

224 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

EE152 Green Electronics

Power Devices10/3/16

Prof. William DallyComputer Systems Laboratory

Stanford University

Page 2: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Course Logistics• HW1 due Today

– Put in box outside Sue’s office (G301) by 10AM tomorrow• HW2 out Today due Monday 10/3• Lab1 signed off this week - individually• Lab2 out - group• Lab groups and signups nearly final• Sign up for Piazza

EE155/255 Lecture 3 - Power Devices

Page 3: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Course to Date• We need sustainable energy systems• At the core they are voltage converters• Periodic steady-state analysis, buck and boost• Intelligent control + power path• Intelligent control done with event-driven embedded software• Real devices – finite voltage, on resistance, switching time

EE155/255 Lecture 3 - Power Devices

Page 4: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Today• Power Devices

EE155/255 Lecture 3 - Power Devices

Page 5: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Real Switches

EE155/255 Lecture 3 - Power Devices

L

V2

iLV1

+-

a

b

R

C

+

_

M1

M2

V1

High-SideGate Drive

Low-SideGate Drive

VGL

VGH

inH

inL

GND

X

G1

G2

Page 6: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Real Switches• Finite switching time• Finite voltage blocking• Non-zero on resistance• Parasitic L and C

EE155/255 Lecture 3 - Power Devices

L

V2

iLV1

+-

a

b

R

C

+

_

M1

M2

V1

High-SideGate Drive

Low-SideGate Drive

VGL

VGH

inH

inL

GND

X

G1

G2

Page 7: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Quick Summary in a Few Pictures

EE155/255 Lecture 3 - Power Devices

Page 8: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

DC I-V Characteristics of On Switches

V(d)0.0V 0.1V 0.2V 0.3V 0.4V 0.5V 0.6V 0.7V 0.8V 0.9V 1.0V 1.1V 1.2V 1.3V 1.4V 1.5V 1.6V 1.7V 1.8V 1.9V 2.0V

0A

5A

10A

15A

20A

25A

30A

35A

40A

45A

50AIx(m:1) Ix(h:2) Ix(i:C) I(Dd)

600V FETFCB36N60

600V IGBTFGH40N60

400V DiodeSTTH20R04

60V FETIRLB3036

FETs CharacterizedBy RON

IGBT Like a DiodeLittle Current Until ~0.7V

HV FET has high RONR ~ kV2

Diode and IGBTResistive at high Current

EE155/255 Lecture 3 - Power Devices

Page 9: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Boost Configuration for Transient Test

EE155/255 Lecture 3 - Power Devices

Page 10: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Transient Response of FET and IGBT

0ns 40ns 80ns 120ns 160ns 200ns 240ns 280ns 320ns0V

50V

100V

150V

200V

250V

300V

350V

400V

450V

500V

550V

0A

5A

10A

15A

20A

0V

50V

100V

150V

200V

250V

300V

350V

400V

450V

500V

550V

0A

5A

10A

15A

20A

0KW

1KW

2KW

3KW

4KW

5KW

6KW

7KW

8KW

9KW

10KW

V(di) Ix(i:C)

V(dm) Ix(h:2)

ix(i:c)*v(di) ix(h:2)*V(dm)

600V FETFCB36N60

InstantaneousPower

Turn On Turn Off

600V IGBTFGH40N60

36µJ 36µJ92µJ 428µJ

EE155/255 Lecture 3 - Power Devices

Page 11: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Power MOSFETs

EE155/255 Lecture 3 - Power Devices

Page 12: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Power MOSFETs are your friends

EE155/255 Lecture 3 - Power Devices

Page 13: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

MOSFET Properties• Fast switching time 10-50ns

– Low switching losses• Low conduction losses at low voltages

– V2/R of 1-2MW • e.g., at 20V R = 0.4mOhm (4mV drop at 10A)

– Typically better than IGBT up to ~400V• Easily paralleled for lower Ron, More I, or easier cooling• Integral body diode in DMOS FET• Avalanche breakdown can be used to “snub” overshoot

EE155/255 Lecture 3 - Power Devices

Page 14: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

MOSFETs are Switches

Gate

Drain

Source

Drain

Source

GateRon

Dbody

(a) (b)

EE155/255 Lecture 3 - Power Devices

Page 15: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

(a)

gaten n

p

VDS

(b)

gaten n

p

VDS

- - - - -

IDS

g=0 g=1

IDSg

s d

g

s dIDS=0

+

+

How do they Work

VGS

EE155/255 Lecture 3 - Power Devices

Page 16: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Power MOSFET (DMOS) Structure

n+

p+n+

n-

p+n+

gatesource source

drain

channel

EE155/255 Lecture 3 - Power Devices

Page 17: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Gate Charge vs VGS

EE155/255 Lecture 3 - Power Devices

0 10 20 30 40 50 60 70 80 900

1

2

3

4

5

6

7

8

9

10

QG (nC)

V GS (V

)

Page 18: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

CDG

LS

LGRG

LD

CDS

CGS

source

gate

drain

Parasitics

EE155/255 Lecture 3 - Power Devices

130 Green Electronics

CDG

LS

LGRG

LD

CDG

CGS

source

gate

drain

Figure 17.4: MOSFET parasitic circuit elements. At high operating frequen-cies these parasitic circuit elements have a large e↵ect on the performance andswitching losses of a MOSFET.

Symbol Value Units DescriptionCDS 200 pF Drain-source capacitanceCDG 70 pF Drain-gate (Miller) capacitanceCGS 3600 pF Gate-source capacitanceQG 86 nC Total gate turn-on chargeQGD 35 nC Gate-drain turn-on chargeLS 7 nH Source inductanceLD 3 nH Drain inductanceLG 7 nH Gate inductanceRG 1.5 ⌦ Gate resistance

Table 17.1: Values of parasitic circuit elements for a typical 600V 100m⌦ powerMOSFET in a TO-220 package.

600V 0.1W FET TO220 Package

Page 19: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

CDG

LS

LGRG

LD

CDS

CGS

source

gate

drain

Parasitics

EE155/255 Lecture 3 - Power Devices

CDS – CV2 energyLD, LS – I2L energy

slows switching, overshoot,corrupts gate drive

CDG – slows turn onRG, LG – slow device turn-on

Page 20: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

EE155/255 Lecture 3 - Power Devices

Page 21: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Typical MOSFETs

EE155/255 Lecture 3 - Power Devices

Copyright

(c)

2011-15

by

W.J

Dally,allrights

reserved

133

Device 20V IRLB3036 IRFB4227 FCB36N60N EPC2010 C2M0025120 Units DescriptionVDSmax

20 60 200 600 200 1200 V Maximum VDS

Ron

1.9 20 81 18 25 m⌦ On resistanceQG 91 70 86 5 161 nC Gate chargeCoss 1020 460 80 270 220 pF Output capacitance CSD + CGD

IDmax

195 65 36 12 90 A Maximum continuous drain currentIDM 1100 260 108 60 250 A Maximum pulsed drain currentEAS 290 140 1800 mJ Single-event avalanche energyP

max

380 330 312 463 W Maximum power dissipationV 2/R 1.9 2.0 4.4 2.2 58 MW Figure of meritV 2/RQG 21 29 52 440 360 mV/s Figure of merit

Table 17.2: Key parameters of six field-e↵ect transistors.

GaN SiC

Page 22: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Power MOSFETs should be ON or OFFThey are not happy in between

• IRLB3036 • Can handle 60V (when its off)• Can handle 195A (when its on – if you can cool it)

– I2R = (195)2(0.002) = 76W• But it can’t handle 60V and 195A at the same time

– P = VI = (60)(195) = 11.7kW– At least not for very long

• Turn them on and off quickly• Best circuits are “soft switching”

– Zero-current switching (ZCS) or zero-voltage switching( ZVS) or both.

EE155/255 Lecture 3 - Power Devices

Page 23: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Power Diodes

EE155/255 Lecture 3 - Power Devices

Page 24: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Diode Properties• Self-controlling switch

– Allows current in one direction– Turns off when current reaches zero (in theory)

• Relatively fixed voltage drop independent of current– 0.5 to 2.0V– High losses at low voltages

• Care required to operate in parallel– Current hogging

• Turn-off delay– Must clear space charge out of junction

• Turn-on delay– Negligible for most fast diodes, but some are problematic

EE155/255 Lecture 3 - Power Devices

Page 25: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Key Parameters• Reverse breakdown voltage

• Maximum current

• Reverse recovery time

• Junction capacitance

EE155/255 Lecture 3 - Power Devices

Page 26: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Diode Reverse Recovery

EE155/255 Lecture 3 - Power Devices

I1

IRM

ta tb

trr

Qrr

iD

(Amps)

t(sec)t1

t2

t3

”Softness” of recovery

Page 27: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Diode Reverse Recovery

0ns 3ns 6ns 9ns 12ns 15ns 18ns 21ns 24ns 27ns 30ns-220A

-200A

-180A

-160A

-140A

-120A

-100A

-80A

-60A

-40A

-20A

0A

20A

40AI(D1) I(D2) I(D3) I(D4)

0ns 10ns 20ns 30ns 40ns 50ns 60ns 70ns 80ns 90ns 100ns 110ns 120ns-810A

-720A

-630A

-540A

-450A

-360A

-270A

-180A

-90A

0A

90A

180AI(D1) I(D2) I(D3) I(D4) I(D5) I(D6) I(D7)

400V DiodeSTTH20R04

Medium Speed Diode

Area under curve (Charge)is approximately constant QRR

EE155/255 Lecture 3 - Power Devices

Page 28: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Diode Forward Recovery

EE155/255 Lecture 3 - Power Devices

VFP

VF

tfr

vD

(Volts)

t(sec)

1.1VF

Page 29: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Diode Forward Recovery

Good Diode Bad Diode

EE155/255 Lecture 3 - Power Devices

Page 30: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Two 2A Diodes < One 4A Diode

EE155/255 Lecture 3 - Power Devices

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

25°C

75°C

125°C

VD (Volts)

i D (A

mps

)

Page 31: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

CDG

LS

LGRG

LD

CDS

CGS

source

gate

drain

Summary – Power Devices• Finite, non-zero

– Switching time– Blocking voltage– On-voltage (resistance)

• Parasitics – L and C• MOSFETs – switches

– Turn on/off as fast as gate can be charged

– R = kV2

• Diodes– Self-controlled switches– Reverse recovery loss QRR

EE155/255 Lecture 3 - Power Devices

Gate

Drain

Source

Drain

Source

Gate RonDbody

(a) (b)

I1

IRM

ta tb

trr

Qrr

iD

(Amps)

t(sec)t1

t2

t3

Page 32: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Power Circuits

EE155/255 Lecture 3 - Power Devices

Page 33: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Practical Buck Converter

EE155/255 Lecture 3 - Power Devices

M1

M2

V1

High-SideGate Drive

Low-SideGate Drive

VGL

VGH

inH

inL

GND

X

G1

G2

Page 34: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Simple Model

EE155/255 Lecture 3 - Power Devices

M1G1

ii

M2

V1

+-

G2

(a)

M1G1

M2G2

V1

+-

(b)

Page 35: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

One Switch May be a Diode

EE155/255 Lecture 3 - Power Devices

M1G1

ii

M2

V1+-

G2

(a)

M1G1

M2G2

V1+-

(b)

Lower switch for buck

Upper switch for boost

Other switch does mostof the work

Synchronous rectification may be used to reduce loss

Page 36: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Turn-On Loss

EE155/255 Lecture 3 - Power Devices

IP

ILQRR QD

ID

VDS

s

t1 t2 t3

Page 37: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Turn-OnBuck w/ Diode

IP

ILQRR QD

ID

VDS

s

t1 t2 t3

t1 – ramp current to IL

t2 – diode reverse recovery

t3 – discharge drain capacitance

Current waveform in t2 and t3 may vary

EE155/255 Lecture 3 - Power Devices

Page 38: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Turn-OnBuck w/ Diode

t1 =ILs

E1 = 0.5VDDILt1 =0.5VDDIL

2

s

t2 =2QRR

sE2 =VDDt2 IL + 0.5t2s( )

t3 ≈2IPQD

E3 = 0.5VDDQD + 0.33VDDILt3

IP

ILQRR QD

ID

VDS

s

t1 t2 t3

EE155/255 Lecture 3 - Power Devices

Page 39: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Turn-OffBuck with Diode

Excess current charges drain node.

Integrate to get switching energy

E =VDDtr16IL +

13I1

!

"#

$

%&

ID

VDS

IL

trtc

I1

EE155/255 Lecture 3 - Power Devices

Page 40: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Turn-OffBuck with Diode

If current ramps faster than voltage nearly ZVSID

VDS

IL

tr

tc

V1

E = 16V1ILtc

EE155/255 Lecture 3 - Power Devices

Page 41: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Parasitic Losses

LP

C2

CL

L1D1

M1

C1

EE155/255 Lecture 3 - Power Devices

Page 42: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Switching Loss with SPICE

EE155/255 Lecture 3 - Power Devices

Page 43: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Simulation Setup• Boost configuration 40A, 50V• IRLB3036 – 60V, 2mW FET

EE155/255 Lecture 3 - Power Devices

Page 44: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Ideal Diode, No Parasitics

22uJ turn-on 22uJ turn-off

EE155/255 Lecture 3 - Power Devices

Page 45: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Body Diode of IRLB3036

225uJ turn-on

700A peak currentEE155/255 Lecture 3 - Power Devices

Page 46: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Gate Drive

EE155/255 Lecture 3 - Power Devices

Page 47: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Gate Driver

RGH

RGL

M1

source

drain

Control &Protection+

-VGH

in

Gate-driver IC

SH

SL

EE155/255 Lecture 3 - Power Devices

Page 48: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Effect of Miller Cap on Rise Time

M1

iG

CDG

EE155/255 Lecture 3 - Power Devices

Page 49: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Effect of Miller Cap on Rise Time

M1

iG

CDG

dVDdt

=iGCDG

Δt = ΔVDCDG

iG

Example: i = 0.5A, C = 100pF, DV = 400V

EE155/255 Lecture 3 - Power Devices

Page 50: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Bootstrap Supply

M1

i

M2

V1

+-

High-SideGate Drive

Low-SideGate Drive

VGL

+-

inH

inL

GND

X

G1

G2

CB

RB DB V

EE155/255 Lecture 3 - Power Devices

Page 51: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Dead Time

EE155/255 Lecture 3 - Power Devices

Page 52: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Too Little Dead Time (11.6kW loss)

1.6µs 1.7µs 1.8µs 1.9µs 2.0µs 2.1µs 2.2µs 2.3µs 2.4µs 2.5µs 2.6µs 2.7µs 2.8µs 2.9µs 3.0µs 3.1µs 3.2µs-5V

0V

5V

10V

15V

20V

25V

30V

35V

40V

45V

50V0V

2V

4V

6V

8V

10V

12V

14V

16V-3.0KA

-2.5KA

-2.0KA

-1.5KA

-1.0KA

-0.5KA

0.0KA

0.5KA

1.0KA

1.5KA

2.0KA

2.5KA

3.0KA-10KW

0KW

10KW

20KW

30KW

40KW

50KW

60KW

70KW

80KW

90KW

100KW

110KW

V(m1)

V(p1l) v(p1h)-v(m1) V(1:gl) V(1:gh)-v(m1)

Ix(1:h:1) Ix(1:l:3)

ix(1:h:1)*(v(d)-v(m1)) ix(1:l:1)*v(m1)

4mJ3.4mJ

2500A

3.4mJ3.7mJ

EE155/255 Lecture 3 - Power Devices

Page 53: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

0.6 0.8 1 1.2 1.4 1.6 1.8v G

(V)

0

10

0.6 0.8 1 1.2 1.4 1.6 1.8

v X (V

)

0

20

40

0.6 0.8 1 1.2 1.4 1.6 1.8

i M1 (k

A)

0

1

2

3

t (µ s)0.6 0.8 1 1.2 1.4 1.6 1.8

P M1 (k

W)

0

50

100

0

5

10

15

0

5

10

15

The “Real” Gate Signal

EE155/255 Lecture 3 - Power Devices

Page 54: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Too Much Dead-Time (340W loss)(Still pretty good)

1.6µs 1.7µs 1.8µs 1.9µs 2.0µs 2.1µs 2.2µs 2.3µs 2.4µs 2.5µs 2.6µs 2.7µs 2.8µs 2.9µs 3.0µs 3.1µs 3.2µs-5V

0V

5V

10V

15V

20V

25V

30V

35V

40V

45V

50V-2V

0V

2V

4V

6V

8V

10V

12V

14V

16V-700A

-600A

-500A-400A

-300A

-200A

-100A

0A100A

200A

300A

400A

500A600A

700A

800A-4KW

0KW

4KW

8KW

12KW

16KW

20KW

24KW

28KW

32KW

36KW

40KW

V(m2)

V(p2l) V(p2h)-v(m2) V(2:gl) V(2:gh)-v(m2)

Ix(2:h:1) Ix(2:l:3)

ix(2:h:1)*(v(d)-v(m2)) ix(2:l:1)*v(m2)

700mV diode drop

740A

0.27mJ

EE155/255 Lecture 3 - Power Devices

Page 55: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Just Right (310W loss)

1.6µs 1.7µs 1.8µs 1.9µs 2.0µs 2.1µs 2.2µs 2.3µs 2.4µs 2.5µs 2.6µs 2.7µs 2.8µs 2.9µs 3.0µs 3.1µs 3.2µs-5V

0V

5V

10V

15V

20V

25V

30V

35V

40V

45V

50V-2V

0V

2V

4V

6V

8V

10V

12V

14V

16V-350A

-280A

-210A

-140A

-70A

0A

70A

140A

210A

280A

350A

420A-0.3KW

0.0KW

0.3KW

0.6KW

0.9KW

1.2KW

1.5KW

1.8KW

2.1KW

2.4KW

2.7KW

V(m4)

V(p4l) v(p4h)-v(m4) v(4:gh)-v(m4) V(4:gl)

Ix(4:h:1) Ix(4:l:3)

IX(4:l:1)*v(m4) ix(4:h:1)*(v(d)-v(m1))

0.19mJ3uJ

Conduction loss is I2R = 502 x 1m ~ 25W

Slower gate rise

Short duration diode drop

EE155/255 Lecture 3 - Power Devices

Page 56: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Too much dead time is better than too little

EE155/255 Lecture 3 - Power Devices

Page 57: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Snubbers

EE155/255 Lecture 3 - Power Devices

Page 58: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

LD

G 50V

+-

40A

RS

CS

D

Cj

M

Dampen Ringing Nodes

LD and Cj resonate when M is on

Parallel RS dampens tank

Series CS limits dissipation

EE155/255 Lecture 3 - Power Devices

Page 59: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Inductance on Drain

8uJ turn-on

42uJ turn-off

EE155/255 Lecture 3 - Power Devices

Page 60: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

With Snubber (1nF, 5W)

8uJ turn-on

2uJ in snubber

42uJ turn-off

EE155/255 Lecture 3 - Power Devices

Page 61: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

LD

G 50V

+-

40A

RS

CS

D

Cj

M

Design Procedure

Pick RS ~ 1/wCj

Pick CS so t >= p/w

OrEs = CSV2/2

EE155/255 Lecture 3 - Power Devices

Page 62: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

G 50V+-

40A

RS

CS

D

M

DS

Move Turn-Off Dissipation to Passive Device

CS slows rise time of drain

CSV2/2RS dissipated in RS when CS discharges

Rarely used today

Other forms slow fall time and rising/falling currentEE155/255 Lecture 3 - Power Devices

Page 63: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Lab Half-Bridge Module

EE155/255 Lecture 3 - Power Devices

Page 64: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

The Half-Bridge Module

1

2

Hin

IRS21834

ComVss

LO

S

HO

COM

Out

VDVB

M1

M2

R14.7

R24.7

U1

����

VCC

3

DT

GND

4

Hin

����

V12

C14.7 F

2.2 F200V

D356V5W

D1

R3 1

C21 F

VBCSupply

VDCFilter

D215V

C3

7

6

5

13

12

11

EE155/255 Lecture 3 - Power Devices

Page 65: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Bootstrap Supply

EE155/255 Lecture 3 - Power Devices

Page 66: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Drain Voltage Filter

1

2

Hin

IRS21834

ComVss

LO

S

HO

COM

Out

VDVB

M1

M2

R14.7

R24.7

U1

����

VCC

3

DT

GND

4

Hin

����

V12

C14.7 F

2.2 F200V

D356V5W

D1

R3 1

C21 F

VBCSupply

VDCFilter

D215V

C3

7

6

5

13

12

11

EE155/255 Lecture 3 - Power Devices

Page 67: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Drain Voltage Filter300nH Input Inductance

EE155/255 Lecture 3 - Power Devices

Page 68: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

SPICE

EE155/255 Lecture 3 - Power Devices

Page 69: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

SPICE Example – A Voltage Divider

EE155/255 Lecture 3 - Power Devices

Page 70: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

A Voltage Doubler* Simple voltage "doubler".include "gel.lib".param td=100n tr=100n tf=100n tw=2.5u tcy=5u ncy=2.param l1=22uH c1=10uF r1=10

* call half-bridge subcircuitxhb vd mid g g 0 v12 gel_hb

* circuitl1 vin mid {l1}c1 vd 0 {c1}r1 vd 0 {r1}

* suppliesv12 v12 0 12vin vin 0 24

* stimulusVG g 0 PULSE(0 5 {td} {tr} {tf} {tw} {tcy} {ncy})

.ic i(l1)=9.2

.ic v(vd)=42.8

.tran {ncy*tcy}

EE155/255 Lecture 3 - Power Devices

Page 71: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Turn-On Transient

EE155/255 Lecture 3 - Power Devices

Page 72: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Steady State

EE155/255 Lecture 3 - Power Devices

Page 73: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Close up of Drain Current

EE155/255 Lecture 3 - Power Devices

Page 74: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

With PID Control

EE155/255 Lecture 3 - Power Devices

Page 75: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

A Warning• SPICE (or any simulator) is a Verification tool, not a Design tool• Design your circuit first

– Use Excel, Matlab, a calculator etc… to calculate component values• Then simulate your circuit to check operation and fine-tune parameters• Don’t try to design your circuit using SPICE

• Simulation is not a substitute for thinking

EE155/255 Lecture 3 - Power Devices

Page 76: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

Summary• Real switches have limitations

– Conduction losses (RON for FETs, VCE for IGBTs, Diode drop)– Switching losses (finite ton, toff, trr)

• With current source load, current ramps, then voltage falls • And voltage rises before current falls• May be dominated by reverse recovery time• Complicated by inductance

• Power MOSFETs– Switch quickly, have linear I-V, integral diode

• IGBTs– Diode-like I-V, slower switching

• Diodes– Have reverse recovery time

• Switches operate in pairs– For one-way converters, one switch may be a diode– Synchronous rectification – make both switches FETs to reduce loss– Need “dead time” to avoid “shoot through” current

• Gate-drive circuits control rise and fall times• Bootstrap supply needed for high-side driver• Snubbers dampen voltage and current transients• Use SPICE as a verification tool, not a design tool

Page 77: EE152 Green Electronics - Stanford Universityweb.stanford.edu/class/ee152/lecture_slides/Power_Devices_100316.pdf · EE152 Green Electronics Power Devices 10/3/16 ... EE155/255 Lecture

No Date Topic HWout HWin Labout Labck Lab HW1 9/26/16Intro(basicconverters) 1 1 IntrotoST32F3 PeriodicSteadyState2 9/28/16EmbeddedProg/PowerElect.3 10/3/16PowerElectronics- 1(switches) 2 1 2 1 ACEnergyMeter PowerDevices4 10/5/16PowerElectronics- 2(circuits)5 10/10/16Photovoltaics 3 2 3 2 PVMPPT PVSPICE6 10/12/16FeedbackControl7 10/17/16ElectricMotors 4 3 4 3 MotorcontrolMatlab Feedback8 10/19/16IsolatedConverters9 10/24/16SolarDay 5/PP 4 5 4 Motorcontrol- Lab/ IsolatedConverters

10 10/26/16Magnetics11 10/31/16SoftSwitching 6 5/PP 6 5 PS MagneticsandInverters12 11/2/16ProjectDiscussions13 11/7/16Inverters,Grid,PF,andBatteries 6 P 6 Project14 11/9/16Thermal&EMI15 11/14/16QuizReview C116 11/16/16Grounding,andDebuggingQ 11/16/16Quiz- intheevening C2

11/21/16ThanksgivingBreak11/23/16ThanksgivingBreak

17 11/28/1618 11/30/16 C319 12/5/1620 12/7/16Wrapup

TBD Projectpresentations PTBD Projectwebpagedue

In Upcoming Lectures