dynamics of railway freight vehicleseprints.hud.ac.uk/24585/1/freight_vehicle_dynamics.pdf ·...

49
DYNAMICS OF RAILWAY FREIGHT VEHICLES Iwnicki S.D. 1 , Stichel S. 2 , Orlova A. 3 , Hecht M. 4 1. Institute of Railway Research, University of Huddersfield, Huddersfield, UK 2. Division of Railway Vehicles, KTH Royal Institute of Technology, Stockholm, Sweden 3. Petersburg State Transport University, St. Petersburg, Russia 4. Fachgebiet Schienenfahrzeuge am Institut für Land‐ und Seeverkehr, Technische Universität Berlin, Belin, Germany Keywords: Freight wagon; Vehicle dynamics; Computer simulation; Rail Freight; Running Gear Design; Freight Bogies Abstract This paper summarises the historical development of railway freight vehicles and how vehicle designers have tackled the difficult challenges of producing running gear which can accommodate the very high tare to laden mass of typical freight wagons whilst maintaining stable running at the maximum required speed and good curving performance. The most common current freight bogies are described in detail and recent improvements in techniques used to simulate the dynamic behaviour of railway vehicles are summarised and examples of how these have been used to improve freight vehicle dynamic behaviour are included. A number of recent developments and innovative components and sub systems are outlined and finally two new developments are presented in more detail: the LEILA bogie and the SUSTRAIL bogie. 1 Introduction From their inception railways have been predominant in the carriage of bulk goods and railway wagons have been designed to allow this to be effected efficiently on different types of railway infrastructure. In more recent times with changes in industrial needs and competition from road and air transport railways have carried an ever declining share of freight. Although there is some evidence in some countries that this trend has started to change recently due to road congestion there is still not yet a widespread evidence of a major modal shift from road to rail which politicians have indicated is desirable. For example the European Transport White paper 2011 [1] sets a target for modal shift of 30% by 2030 and 50% by 2050 from road freight to other modes such as rail or waterborne transport for distances over 300 km. The barriers to this increased modal shift from road to rail seem to be largely due to the requirements from modern shippers for shorter end‐to‐end times but even more the demand is for high reliability of service and for additional features such as tracking and tracing of shipments, security and temperature control. As Hecht [2] points out the lower speeds for rail freight compared with passenger services are not mainly related to

Upload: others

Post on 13-Mar-2020

41 views

Category:

Documents


1 download

TRANSCRIPT

DYNAMICSOFRAILWAYFREIGHTVEHICLES

IwnickiS.D.1,StichelS.2,OrlovaA.3,HechtM.4

1. InstituteofRailwayResearch,UniversityofHuddersfield,Huddersfield,UK2. DivisionofRailwayVehicles,KTHRoyalInstituteofTechnology,Stockholm,

Sweden3. PetersburgStateTransportUniversity,St.Petersburg,Russia4. FachgebietSchienenfahrzeugeamInstitutfürLand‐undSeeverkehr,Technische

UniversitätBerlin,Belin,Germany

Keywords:Freightwagon;Vehicledynamics;Computersimulation;RailFreight;RunningGearDesign;FreightBogies

Abstract

Thispapersummarisesthehistoricaldevelopmentofrailwayfreightvehiclesandhowvehicledesignershavetackledthedifficultchallengesofproducingrunninggearwhichcanaccommodatetheveryhightaretoladenmassoftypicalfreightwagonswhilstmaintainingstablerunningatthemaximumrequiredspeedandgoodcurvingperformance.Themostcommoncurrentfreightbogiesaredescribedindetailandrecentimprovementsintechniquesusedtosimulatethedynamicbehaviourofrailwayvehiclesaresummarisedandexamplesofhowthesehavebeenusedtoimprovefreightvehicledynamicbehaviourareincluded.Anumberofrecentdevelopmentsandinnovativecomponentsandsubsystemsareoutlinedandfinallytwonewdevelopmentsarepresentedinmoredetail:theLEILAbogieandtheSUSTRAILbogie.

1 IntroductionFromtheirinceptionrailwayshavebeenpredominantinthecarriageofbulkgoodsandrailwaywagonshavebeendesignedtoallowthistobeeffectedefficientlyondifferenttypesofrailwayinfrastructure.Inmorerecenttimeswithchangesinindustrialneedsandcompetitionfromroadandairtransportrailwayshavecarriedaneverdecliningshareoffreight.Althoughthereissomeevidenceinsomecountriesthatthistrendhasstartedtochangerecentlyduetoroadcongestionthereisstillnotyetawidespreadevidenceofamajormodalshiftfromroadtorailwhichpoliticianshaveindicatedisdesirable.ForexampletheEuropeanTransportWhitepaper2011[1]setsatargetformodalshiftof30%by2030and50%by2050fromroadfreighttoothermodessuchasrailorwaterbornetransportfordistancesover300km.

Thebarrierstothisincreasedmodalshiftfromroadtorailseemtobelargelyduetotherequirementsfrommodernshippersforshorterend‐to‐endtimesbutevenmorethedemandisforhighreliabilityofserviceandforadditionalfeaturessuchastrackingandtracingofshipments,securityandtemperaturecontrol.AsHecht[2]pointsoutthelowerspeedsforrailfreightcomparedwithpassengerservicesarenotmainlyrelatedto

lowervehiclespeedcapabilitybutaremoreduetothefactthatfreighttrainsoftentravelonlowerspeedlinesorareheldforpassengertraffictopassandduetocomplexandlengthyshuntingandhandlingoperationsandmotivepowerandcrewchanges.

Neverthelessiffreightvehiclespeedsandaccelerationandbrakingcapabilitiescouldallowthemtobefullyintegratedwithpassengertrafficthiswouldbringastepchangeinendtoendfreighttrainspeedsaswellasoverallsystemcapacity.Akeyfactorinobtainingthisincreasedspeedistoensurethatthedynamicperformanceoffreightvehiclescanallowsafeandreliableoperationontrackwithdifferentlevelsofirregularitiesandsupportconditions.Runninggearhasevolvedwiththeexperienceofoperationondifferentrailwaysandmorerecentlytheuseofcomputersimulationtoolsandseveralstandardiseddesignsarenowubiquitous.Severalresearchprojectsandteamshaverecentlybeentryingtoadvancefromthispositionusinginnovativedesignsadaptedfrompassengervehiclesorusingothernoveltechniques.Theuseofcomputersimulationsisnowestablishedfordesignofrunninggearandisalsobecomingacceptedaspartofthevehicleacceptanceprocessesinmanycountries.

2 Earlydevelopmentsoffreightwagons

2.1 BackgroundDesignersoffreightvehiclerunninggearfacemanychallengesbutnotleastoftheseisthefactthattheratiooftheladentotaremassofafreightvehiclecanbeasmuchas5:1comparedwithamoremanageable1.5:1fortypicalpassengervehicles.Thiseffectivelymeansthatthesuspensionsystemhastobedesignedfortwodifferentvehicles(andeverystageinbetween).Anumberofcleverdesignshaveevolvedovertheyearsandthemostsuccessfulofthesearenowsummarised.

2.2 UICdoublelinkFreightwagonswithlinktypesuspensionshaveexistedformorethan100years,ascanbeseeninfigure1,andthelinksuspensionisprobablystillthemostcommonsuspensiontypefortwoaxlefreightwagonsinEuropetoday.Asearlyas1890theprincipleofthelinksuspensionwasdefinedasastandard.Areviewoffreightwagonswithlinksuspensioncanbefoundin[3].

Figure1:FreightwagonfromKockumsSweden,builtin1882[4].

AfterWorldWarIItheUICdoublelinksuspensionwasdefinedasastandard[5].Inthebeginningofthe1980sanumberofimprovementsweremade.Theaxleloadwasincreasedto22.5tonnesandtheparabolicleafspringwasintroducedasstandardcomponent[6],[7].TheUICdoublelinksuspensioninfigure2mainlyconsistsofthreeparts:Leafsprings,linksandaxleguards.Thevehicleisconnectedtotheparabolicorleafspringbydoublelinks.Theleafspringrestsontheaxlebox.Thisarrangementallowstheaxleboxtomoveinboththelongitudinalandlateraldirectionrelativetothewagonbody.Theaxleguardrestrictsthehorizontalmotionoftheaxlebox.Theprincipleofthesuspensionisthatofapendulum.Inthelongitudinaldirectionthesuspensionlinksareinclined,whereasinthelateraldirectiontheyareinaverticalplanewhenthevehiclebodyisinnominalposition[1],[8],[9],[10].Thecharacteristicsofthedouble‐linksuspensionarequitecomplex.ThemaincomponentsareshowninFigure3.

Figure2:UICdoublelinksuspension.

Figure3:Doublelinksuspension[8].Partsofdoublelink(a),assembleddoublelink(b)andmounteddoublelink(c).

Oneofthemainadvantagesofthelinkrunninggearisthatitissimple,robustandcheapandalsotakesuplittlespaceinbothlateralandverticaldirections.Bothstiffnessanddampingareprovidedbyonesystemandareloaddependent.Thequasistaticcurvingperformanceofthesingleaxlerunninggearwithlinksuspensionisgood.Foratypicaltwo‐axlefreightwagonwithawheelbaseof9mondryrailsgoodsteeringperformancedownto300mcurveradiuscanbeachieved[10].

Therunningbehaviouroftwo‐axlefreightwagonswithlinksuspensioncanberatherpoormainlyduetovehiclehunting.Theamountofdampingprovidedinthehorizontalplaneisoftennotsufficient.Additionallythecharacteristicsofthesuspensionchangeduringthelifeofthevehicle,duetosuspensionwear,andwiththerunningconditions[10].Thelinksuspensiontakesquitealotoflongitudinalspaceandisapoorisolatorforsoundandvibration.

2.3 LinksuspensionbogiesTheleafspringandlinksuspensionofthesingle‐axlerunninggearhasalsobeenusedonbogiessinceabout1925[1].Morerecentlyithasbeenstandardisedwithforexamplebogietype931(figure4),developedinthe1950sbyDeutscheBahnwithawheelbaseof2000mmandawheeldiameterof1000mm.Thisbogiewasdevelopedtorunat100km/hwithanaxleloadof20tandwasthefirstbogiestandardisedbyUIC[6],[7].

Figure4:.DBbogieType931[7].

Inthebeginningofthe1980sDBbogietype665wasintroducedwithnewfeatureslikeparabolicleafsprings,22.5tpermissibleaxleloadandshorterlinksasshowninfigure5[7].

Figure5:DBbogieType665[7].

Thebogieframeisaweldedsteeldesignbutinsomeplacesforgedcomponentsareused.Theframeisconnectedtoparabolicortrapezoidalleafsprings,thatrestontheaxlebox,beingconnectedbyswinglinks.Nominallythesuspensionlinksarepositionedinalongitudinalverticalplaneandinclinedinthisplane.Duringvehicleoperationthelinksswinginthatplaneandalsolaterally[1],[6],[7],[11].Asphericalcentre‐pivotandtwosidebearersconnectthebogieframeandthewagonbody.Thesidebearerscanbeeitherrigidorverticallysuspendedandhavethreefunctions:

toactasstaticsupportforthecarbody. toactasrollstiffness. toprovidefrictiondampingbetweencarbodyandbogie

Thequasistaticcurvingperformanceofabogiewithlinksuspensionisgenerallyverygooddueto:

theshortwheelsetdistanceinthebogieof1.8m. thesoftlongitudinalprimarysuspension.

Evenifshortlinks(higherstiffness)areusedinsteadofthelonglinksthecurvingperformanceisstillgood[11].Thesoftsuspensioneffectivelyisolatesthebogieframefromthemotionofthewheelsets.Adisadvantagethatcanbementionedisthattheweightofabogiewithlinksuspensionisabout100kghigherthantheweightofaY25bogie.Furthertherunningbehaviourontangenttrackcannotberegardedasgoodeventhoughexistinglimitsfortrackforcesandrideindexareingeneralnotexceeded.Thedynamiccurvingperformancecanbecritical.Thesuperpositionofquasistaticanddynamiclateralaccelerationscancauserepeatedbumpstopimpactswhenthevehicleishuntingincurveswithcantdeficiency,becauseofthesoftlateralprimarysuspension[11],[12].

2.4 TheY25StandardBogieMostrailwayvehicleshavebogiesortruckswhichallowlongervehiclessupportedontwobogieswhilestillkeepingattackanglesbetweenwheelsandrailincurvestoreasonablelevels.Thisarrangementalsoallowstwostagesofsuspensionwiththe‘primary’suspensionbetweenwheelsetandbogieandsecondarysuspensionbetweenbogieandcoachorwagonbody.Theprimarysuspensioncanisolatethebogiefromshortwavelengthirregularitieswhilethesecondarysuspensiondealswiththelongerwavelength,lowerfrequencyexcitations.

Aspreviouslymentioned,aspecificchallengefordesignersoffreightvehiclerunninggearisthelargedifferencebetweentareandladenvehiclemass.IntheY25bogieprogressivedampingwithverticalloadiseffectedbytheuseof‘Lenoirlinks’whichtakepartoftheverticalloadthroughanangledlinkandapusherontoaverticalfrictionsurface.Thisgivesalevelofdampingwhichisbroadlyproportionaltothevehiclemass.TheY25bogiedesignoriginatedinFrancein1948andwasstandardisedbytheOREsteeringcommitteein1967.Itisshowninfigure6.

Figure6:AY25typebogie

ThedesignhasbeenhugelysuccessfulandY25typebogiesarethemostpredominantfreightbogieinEurope.

2.5 ‘three‐piece’FreightBogiesThethree‐piecebogieswerefirstdevelopedin1930sandseemedtooriginatesimultaneouslyintheUSA(Barberbogie)andtheSovietUnion(Haninbogie).Nowthethree‐piecebogieanditsmoresophisticateddescendentsarethemostcommonsuspensionforfreightwagonsacrossNorthandSouthAmericas,CIScountries,China,Africa,IndiaandAustralia.Maximumaxleloadsrangebetween7and36t.Themostcommonstandardsforthree‐piecebogiesareAAR[13]for1435mmgaugeandGOST[14]for1520mmgauge.Areviewofthree‐piecebogiescanbefoundin[15].

TheRussianmodel18‐100bogieshowninfigure7isagoodexampleofanearlytypeofthree‐piecebogie.Theterm‘three‐piece’referstothedesignofthebogieframewhichconsistsofthreeinterconnectedparts:twosideframesandonebolster.Theframepartsareusuallycast.

Thebogieisequippedwithcentralsuspensionbetweenthesideframesandthebolsterthatconsistsofasetofspringsandwedgefrictiondampersworkinginverticalandlateraldirectionandkeepingtheframesquare.Thesideframeswiththeirflatsurfacesrestontheaxle‐boxes(orbearingadapters).Thesizeoftheopeninginthesideframeprovidesclearancesinlongitudinalandlateraldirectionwithinwhichtheaxle‐boxmovesresistedbydryfrictionforces.Thecarbodyrestsontheflatcenterbowl,itsrollmotionrelativetothebolsterislimitedbysidebearerswhichareusuallystiffverticalstopsincludingclearancewhenthewagonbodyisinthecentralposition.

a) b)

c)

Figure7:Model18‐100bogie:a–generalview,b–centralsuspensionscheme,c‐primary‘suspension’scheme(1–wheelset;2–sideframe;3–bolster;4–brakingleverage;5–centralpivot;6–rigidsidebearings;7–suspensionsprings;8–frictionwedge;9–axle‐box)

Thethree‐piecebogieisaveryrobustdesignwiththeadvantageofbeinglowcostinproduction,operationandrepair.Thefollowingitemsareconsideredasdisadvantagesoftraditionalthree‐piecebogieandattemptshavebeenmadetoaddresstheseinitsfurtherdevelopments[15],[16],[17]:

Limitedcriticalspeedoftheemptywagon)withswayoscillationofcarbodybeingthemajorlossofstabilitymode);

Wheelflangecontactincurvesproducedbywarpingbetweensideframesandbolster;

Sideframesaddingtotheunsprungmassandthusincreasingtrackimpactonshortwavelengthirregularities;

Deteriorationofrideperformancewithwearoffrictionwedgesandotherfrictionsurfaces.

3 ComputersimulationComputersimulationoffreightvehiclesisnotatallascommonasforpassengervehicles.SincemanyoftheEuropeanfreightvehiclesarestandardizedverylittlenewdevelopmenthasbeencarriedoutandthemanufacturersdoingeneralnotperformasimulationanalysisoftherunningbehaviouroffreightwagon.However,inseveralresearchgroupsatuniversitiesandresearchinstitutesandatsomeconsultingcompaniescomputersimulationoffreightvehiclesisnowperformed.

Sincemanufacturersdonotusuallybuildsimulationmodelsoffreightvehiclesthemselvesoneofthemainchallengesinmodellingafreightwagonistoobtainallthe

7

2

3

8

29

1

3

4

5

6

72 8

9

inputparametersrequired.Anotheraspectisthatmostsuspensionelementsarestronglynon‐linearandinmanycasesevenmathematicallynon‐smooth.Thismakesitverydifficulttobuildupsimulationmodelsthatprovidegoodresultscomparedtomeasurementresults.Someofthephenomenaobservedduringsimulationoffreightvehicleswillbediscussedbelow.

Further,asdescribedinSection3.1,thecharacteristicsofthesuspensionelementscanvaryduringoperationduetowearorenvironmentaleffectssuchasforexamplesurfacecontaminationchangingthefrictioncoefficientinslidingsurfaces.

Themainpurposeofsimulationstudiesoffreightvehiclesisveryoftenastabilityanalysis(seeSection3.2)oraninvestigationofthecurvingbehaviourofthefreightwagon(seeSection3.3).Sincetheaxleloadsoffreightwagonsareusuallyhigh,theinvestigationofwheelorrailwearandrollingcontactfatigueisoftentheprimaryreasonforasimulationstudyincurves.

3.1 SuspensioncomponentsThesuspensioninmostfreightvehiclesreliesonfrictiondamping.Frictionelementsarelowcost,requirelittlemaintenanceandareusuallyloaddependent.Thismeansthattheleveloffrictiondampingchangeswithaxleload,animportantfeatureinfreightwagonsduetothehightaretoladenratioalreadymentioned.Surveysofmodellingoffrictioncomponentsinfreightwagoncanbefoundforexamplein[18]‐[22].Papers[18]and[19]aregeneralreviewsofrailvehiclesuspensioncomponents,while[20]isfocusedonfreightvehiclesandalsodiscussesissuessuchasstabilityandcurvingoffreightvehicles.Papers[21]and[22]arefocussedonmodellingfrictionwedgesofthree‐piecebogies.AlsointheproceedingsfromtheEuromech500colloquium[23]manyvaluablecontributionsonthetopicofnon‐smoothsuspensionelementscanbefound.Variousarrangementsofsuspensionelementstosimulatevehiclesuspensionsaredocumentedin[24],[25].

3.1.1 FrictiondampingInmostfreightvehiclesimulationmodelsfrictionismodelledasdryCoulombfriction,wherethefrictionforceisproportionaltothenormalload.Thefrictioncoefficientisassumedtobeconstant,seeforce‐deflectioncurveinfigure8,left.ThedisadvantageoftheCoulombmodelisthatitisnon‐smooth,i.e.multi‐valuedandnon‐differentiable.Anotherwaytomodelfrictioniswithalinearspringinserieswithafrictionsliderasinfigure9withtheresultingforce‐displacementcharacteristicinfigure8,right.Sincemostfrictiondamperarrangementshaveafiniteflexibility,suchmodelscouldalsoberegardedasmorerealistic.Note,howeverthatthemodelwithaspringinseriesisstillnon‐smooth.Toavoidthedifficultiesmentionedaboveregularizationmethodsareoftenapplied,seeforexample[26],[27]and[28].

Figure8:Force‐displacementcurveofCoulombfrictionmodel(left)andCoulombmodelwithspringinseriesasin[29](right).

Figure9:Frictionelementwithspringinseries.

Piotrowskidevelopedanon‐smoothrheologicalmodel[29],[30],whichemploysthenotionofthedifferentialsuccessioninvolvingacontingentderivativeofthenon‐smooth,multi‐valuedcharacteristicsofCoulombfriction.TanandRogers[31]proposedequivalentviscousdampingmodelstoavoidthenumericalproblemsofCoulombfriction.Theyclaimthatthissubstitutionworksverywellforcaseswhereslidingmotionspredominate.

Inmanyrunninggeararrangementstwo‐dimensionalfrictionelementsareneeded,e.g.intheY25andinthethree‐piecebogie.Inthesedesignsmotionsintwodirectionstangentialtothefrictionsurfacesarepossible.Two‐dimensionalCoulombfrictionmodelscanbefounde.g.in[32],[33].

Anotherphenomenonthatisimportanttotakeintoaccountisstochasticexcitationsthatsmooththedryfrictiondamping.Alsomidfrequencyexcitationgeneratedinthewheelrailcontact–oftencalleddither–cansmoothendryfrictionandthereforehaveasignificantinfluenceonthesimulationresults,seeforexample[30],[33].

TrueandAsmund[33]investigatedtheeffectsofdryfrictioninthesuspensionofasimplefreightvehicle.Theyusedarelativelysimplemodelofdryfrictionandfoundthatthestablebehaviourforthesystemwithfrictionexhibitedalaterallyoscillatingmotionwhichmakesthesystemsensitivetoexternalperiodicforcing.

x

F

x

F

3.1.2 Wagonswithlinksuspension

3.1.2.1 Basicmodelofleafspringandlinksuspension

Leafspringsareoftenusedasverticalsuspension.Inmultibodysimulationmodelstheyareusuallyregardedasrigidinboththelongitudinalandlateraldirections.Fordynamicdisplacementsaroundastaticequilibriumpositionleafspringsarecharacterizedbyarelativelyhighstiffnessforsmalldisplacementsandasignificantlylowerstiffnessforlargerdisplacement,(figure10).LeafspringsaredescribedintheOREreports[34],[35].

Figure10:Typicalforce‐displacementdiagramofleafspring/linksuspension.Exampleofcurveforsmalldisplacementsaroundstaticequilibrium.

Sincelinksuspensionsshowverysimilarcharacteristicstheyareoftenmodelledinasimilarwaytoleafsprings,atleastforthelaterallinkbehaviour.Theinitialhigherstiffnessk1inleafspringsiscausedbyfriction,i.e.theleavesofaleafspringsticktogetherforsmalldisplacementsandstarttoslideoneachotherforlargerdisplacements.Inthesamewaythelinkrollsintheendbearingaslongasthereisnoslidinginthecontactarea.Thelowerstiffnessk2isthevalueforslidingintheleafspringorthesocalledpendulumstiffnessofalink.TheforceFddeterminestheamountofdampinginthehysteresis.Acommonlyusedmodeltorepresentthetwodifferentstiffnessvalueswiththehysteresisistousealinearspringandafrictionelementinseries,inparallelwithanotherlinearspring,asshowninfigure11.Itshouldbetakenintoaccountthatthecharacteristicsofleafspringsvaryduetowearinrunningordeteriorationorlubricationstate.

Thethreeparametersinthemodeldescribedabovecanbederivedfrommeasurements.Thismodel,however,issimplifiedsincetheshapeofthehysteresiscurveisusuallyroundedasshowninfigure10.Measurementresultsandmoredetaileddescriptionsoflinksuspensionscanbefoundin[34]‐[48].

Figure11:ModelforleafspringorlinksuspensionasusedforexamplebyKTH[40].Seefigure10fordefinitionofk1andk2.

3.1.2.2 AdvancedsimulationmodelsForlateraldisplacementsofadouble‐linkallfourjointsareassumedtostarttoslideatthesametime;thereforethemodelinfigure11issufficient.Inthelongitudinaldirection,however,itismorelikelythatthejointsstarttoslideatdifferentdisplacementsasshowne.g.byPiotrowski[29].Heusesasetoffourslidersandspringelementswithdifferentbreakoutforcesinparalleltodescribethesecharacteristics.AlsoinamodelusedbyStiepelseveralelementsinparallelareused[44].

Togiveabetterrepresentationoftheroundedshapeofthehysteresiscurves,Fancherdevelopedamodelfortruckleafsprings[45],[46]usingexponentialexpressions.Jönsson[42]usedasimilarapproach,wherethetotalforceoverthesuspensioncomponentisseparatedintopiece‐wiseelasticandfrictionforces.Themodelisusedforbothleafspringsanddouble‐links.

Anotherpossibilitytodescribehysteresiswithroundedshapeforlinksuspensionsistouserollingcontacttheory,whichhasbeenproposedbyPiotrowski[33].Basedontheslipvelocitythecreepageinthecontactiscalculated.

3.1.3 Modellingthethree‐piecebogie

3.1.3.1 ModelsofthecentralsuspensionMostoftheresearchinmodellingthree‐piecebogies,suchas[21],[22],isfocussedonthecentralsuspensionelementofthethree‐piecetruckthatprovidesdampingwithfrictionwedges.Earlymodelsoffrictionwedgesuspensionsrecognizedonlyverticalload‐dependentfrictionforce,latermodelsincludedtwo‐dimensionalfrictionintheverticalandlateraldirections[46],[50].

Thefirstapproachtoaccountforpossibleangularandlongitudinaldisplacementsofbolsterrelativetothesideframesistointroducewarpingandlongitudinalnonlinear

resistancecharacteristicsintothemodel,asitisdonein[15],[17].Insuchcasethewedgesarenotmodelledasseparatebodies,buttheequivalentforceagainstdisplacementcharacteristicsareintroducedaccountingforwedgeparameters,suchasinclinationangle,widthoftheverticalsurface,widthoftheinclinedsurface,frictioncoefficientsoninclinedandverticalsurfaces,etc.

Thesecondapproachtoaccountforallpossibledegreesoffreedombetweensideframeandbolsteristointroducemultiplecontactpointsmappedalongtheedgesofthewedgewithtwo‐dimensionalfrictionforceelementsineachofthem.SuchanapproachwasusedbyBallewetal[46],itisimplementedinsimulationtoolssuchasVAMPIRE[52],andtheUniversalMechanismsoftware[52].Numerouscontactelementsrequireanefficientnumericalsimulationalgorithmtobeimplementedintothesoftwarethatprovidesfastsolutiontoresultingstiffsystemofequations,suchastheonedevelopedbyPogorelov[57].Thewedgesaretreatedasmassless.Contacttypemodelsallowthestudyofsuchcomplicatedphenomenonasunevendistributionofcontactforcesoverthewedgesurfaces,implementationofresilientpadsonwedgesurfaces,jammingandwedging[54].Inpaper[56]theauthorsincludedthemassofthewedgeintoconsiderationtostudyitsdynamicproperties.

3.1.3.2 ModelsoftheaxletosideframeinteractionInthefirstapproachsimilartofrictionwedgestheaxletosideframeinteractioncanbedescribedbynonlinearequivalentcharacteristicsasin[15],[17].Thedryfrictioninteractionbetweentheaxleboxcrownandthesideframepedestalismodelledbytwodimensionaldryfrictionelementinparallelwithanothernonlinearelementthatdescribesbumpstopsinlongitudinalandlateraldimension.Atypicalcharacteristicofthebumpstopelementispresentedinfigure12.Toimprovenumericalintegrationthetransitionfromclearancetobumpstopisoftensmoothed.

Iftheinteractionbetweenthecrownandpedestalisaflatsurface,thenitswidthcanresultinrollstiffnessthatisproducedbygravity.Suchstiffnesscanbeintroducedintothemodeldependingontheaxleload.

Figure12Modelforbumpstopelement(∆‐clearance, –stiffnessofthebumpstop)

Thesecondapproachistointroducemultiplecontactpointsontheedgesofthecrownwithtwo‐dimensionalfrictionelementsinthem.Thebumpstopsarethenalsothecontactelementsbetweentheaxleboxoradapterandthestopsinthesideframejaws.Suchapproachisusedin[57]aswellasinUniversalMechanismsoftware[52].

3.1.3.3 ModelsofthecentrebowlandsidebearersThesameapproachescanbeappliedtomodelsofthecentrebowltocentreplateinteractionandatthesidebearers.

Inthefirstapproach,see[15],[17],centreplatetocentrebowlinteractionworkssimultaneouslyasonedimensionalyawfrictionandnonlinearrollandpitchtorquewithsoftcharacteristicsasshowninfigure13.Knowingtheclearanceinthesidebearersthenonlinearrollcharacteristiccanbelinearized.

Figure13Modelforcenterplateelement(∆‐distancebetweencenterplateedgeandcarbodycenterofgravity, –rollangle, –weightofthecarbodyperonecenterplate, –rolltorque, –equivalentrollstiffness)

Thesecondapproachistointroducemultiplecontactpointsontheedgesofthecentreplatewithtwo‐dimensionalfrictionelementsinthem.Theinteractionwiththecentrebowlrimisthenalsothecontactelements.Suchanapproachisusedin[57]aswellasinUniversalMechanismsoftware[52].

3.2 StabilityFreightvehiclesinmostcasesoperateatmuchlowerspeedsthanpassengervehicles.Typicalrunningspeedsareataround100km/h.Thissuggeststhatstabilityinvestigationsarenotasimportantasforfasterpassengervehicles.Ontheotherhandfreightvehiclesoftenaremuchlessdampedthanpassengervehiclesandstabilityinvestigationsarethereforenecessary.Severalofthewagontypesintroducedabovecan–inunfavourablerunningconditions‐showsignificanthuntingbehaviouratspeedsaslowas70km/h.

Inabogievehiclebasicallythreetypesofhuntingmotioncanarise:

Wheelsethuntingwhereonewheelsetperformsthehuntingmotion.

M

0M

c

Mg

Bogiehuntingwhereawholebogieistakingoverthehuntingmotion. Carbodyhuntingwherethecarbodyperformsayawmotionandthetwobogies

mainlyfollowthecarbodywithlateralmotions,i.e.thewholevehicletakesoverthehuntingmotion.

Carbodyhuntingisoftenatypeofresonancephenomenon,wheretheKlingelhuntingfrequencygivenmainlybyvehiclespeedandconicityinthecontactcoincideswiththeyaweigenfrequencyofthecarbody.

Huntingmotionwithanon‐zerolimitcycledependsonthewheel‐railgeometry,thesuspensionandthemassesandinertiasofthevehicle.Sincethemassandinertia,andinmostcasesthesuspensionstiffnessanddampingofthefreightwagonwillsignificantlychangewithload,thetypeofhuntingmotionobservedusuallydiffersbetweenanemptyandaloadedwagon.Sincethestiffnessvaluesbetweenaxleboxandbogieframe(inabogievehicle)arelowerinanunloadedvehicle,theriskforwheelsetorbogiehuntingishigher.Inloadedvehicles,vehiclehuntingcanoftenbeobserved.Sincethefrequencyofwheelsethuntingisusuallylow(typicallybetween1and2Hz)thewheelrailforcesinducedarerelativelylowandinmostcasesbelowthelimitvaluesstipulatedinstandards.Therefore,thevehicledesigninrealityallowsforthecarbodyinstabilitytohappeninsomeconditions.Otherwisethesuspensionneedstobesostiffthatthecurvingperformancewouldsuffer,andtheamountofwearandRCFwouldincreasesignificantly.Theriskofcarbodyhuntingcanvarywiththetypeofloadsincethiscaninfluencetheyaweigenfrequencyofthecarbody.

Duetothesignificantinherentnon‐linearityandnon‐smoothnessofthesuspensionelementslinearizationofthemodelsisusuallynotrealistic.Itisthereforenecessarytoperformtimesteppigintegrationwiththefullnon‐linearmodel.Thetaskisingeneraltofindthenon‐linearcriticalspeedvBofthewagonascanbeseeninthegenericbifurcationdiagraminfigure14.

Figure14:Genericbifurcationdiagram

Incomplexmodelsitisverydifficulttofindtheexactcriticalspeed,forexamplewithapathfollowingmethod[58].Thereforeotherengineeringmethodsareused.Onepossibilitythathasbeensuggestede.g.byPolach[59]istoexcitethevehiclewithaninitialdisturbancethatcaneitherbedeterministicorstochastic.Aftertheinitialdisturbancethevehicleisrunonidealsmoothtrack.Iftheoscillationvanishesthevehicleisregardedasstable.Thesimulationshavetoberepeatedwithincreasingspeeduntiltheoscillationsdonotdisappear.Inthatcasethenon‐linearcriticalspeedvb(figure15)isreached.Ariskwiththismethodisthattheinitialdisturbanceisnothighenoughtoinitiatealimitcycleoscillationandthatthecriticalspeeddetectedishigherthantherealnon‐linearcriticalspeed.

Anothermethodtodetectthenon‐linearcriticalspeedisstartthesimulationsataveryhighspeedtobesurethatthevehiclehasreachedthenon‐zeroattractor(limitcycle).Thenthespeediscontinuouslyreduceduntilthelimitcyclebehaviourdisappears.Polachalsodescribesthismethod.IthasbeenusedforexamplebyBoronenkoetal[15]totunethesuspensionofthree‐piecebogies.

Asimilarmethod,showninfigure15,issuggestedin[60]todeterminetheso‐callednon‐linearcriticalspeed.ThedifferencetothemethodintroducedaboveisthatthespeedisnotreducedcontinuouslybutindiscretestepsassuggestedbyTrue[98].

Figure15:Proceduretofindthenon‐linearcriticalspeed[60].

Figure16showsthebifurcationdiagramforaloadedtwo‐axlevehiclecalculatedwiththismethod.Itcanbeobservedthatonlythestablebranchesofthebifurcationdiagramcanbedetermined,nottheunstablepart.Thezerosolutionisalsopossibleatleastuptoaspeedof120km/h(boldsolidline).Thiswassimulatedusingtheprocedureabove,startingfromlowspeedandincreasingthespeedstepwise.

Figure16:Bifurcationdiagramforaloadedtwo‐axlevehiclewithlinksuspension(21taxleload)Wheel:somewhatwornS1002.Rail:NominalUIC60[42].

Hoffmanalsoinvestigatedthestabilityofatwo‐axlewagonwithlinksuspension[43],[61].HeusesthelinkmodeldevelopedbyPiotrowski[29].TheleafspringsmodelisbasedonFancheretal[46].Figure17.showsattractorsfortwodifferenttypesoffreightwagons.Theresultsareinprinciplequitesimilartothoseinfigure16.

Figure17:AttractorsfortheHbbills311andtheG69freightwagons.ThemodelwiththemeasuredcharacteristicsoftheUIClinksisdampinglessthanthemodelwiththecylindricalcharacteristics.Thehuntingattractorexistsevenforlowspeeds[61].

Gialleonardoetal[62]extendedthistypeofstabilityanalysisforatwo‐axlewagonwithlinksuspensiononcurvedtrack.Ascanbeseeninfigure18.theleadingwheelset(ylw)

showsmuchsmalleroscillationamplitudesthanthetrailingwheelset(ytw)andthecarbody.Thisisbecausetheouterwheeloftheleadingwheelsetexperiencesflangecontact.Ingeneraltheresultsshowthepresenceoflargeperiodicoscillationsinnarrowcurvesatcommercialoperatingspeeds.Itisalsoshowninthepaperthatthecouplingforcesbetweenwagonassembliessignificantlyreducetheoscillationamplitudes.

Figure18Mapoflateraloscillationamplitudeinsinglewagonasfunctionofcurveradius[62].

Zhaietal[63]extendedthestabilityanalysisforafreightwagonwiththree‐piecebogiestoalsoincludeavisoelastictrackstructure.ThestabilityanalysisisperformedaccordingtothemethodologysuggestedbyPolach,whichisexplainedabove.Theauthorsfoundthatalowercriticalhuntingspeedisobtainedonelastictrackcomparedwiththerigidtrackcase.Thedifferenceinthecriticalhuntingspeedsbetweentheelastictrackbaseandtherigidtrackbaseis4.4%fortheloadedfreightcar.

3.3 CurvingAsindicatedabovesimulationsoftherunningbehaviouroffreightwagonsincurvesareoftenperformedtoinvestigatetheriskofwheelwearandRollingContactFatigue(RCF).

Forpassengervehiclescurvingsimulationsareoftenperformedonidealtrack,i.e.thestochastictrackirregularitiesareneglected.Authorsareinthiscaseinterestedinthequasistaticbehaviourofthevehicle,i.e.themeanwheelsetattackanglesorthemeanenergydissipationinthecontactpoints.Forfreightvehicleswithnon‐linearandnon‐smoothsuspensionthiscanleadtosignificantmistakesasshownintheexamplefromJönsson[42].Onidealtrackthefrictionsurfacesmightsticktogetherandforcethewheelsetintoamoreunfavourableposition.Trackirregularitieshelptogetrelativemotioninthefrictionsurfaces,whichusuallyleadstobetter–andmorerealistic–steeringbehaviourofthevehicle.Asseeninfigure19,theenergydissipationasa

measurefortheamountofwearorRCF,ismuchlowerwhensimulatingrunningwithtrackirregularities.

Figure19:Energydissipation.Comparativesimulationwithandwithouttrackirregularities.Two‐axlevehiclewithlinksuspension.22.5taxleload[42].

Inoneoftheirnumerousstudiesonthree‐piecebogiesBoronenkoetal[15]investigatethereasonforexcessiveflangewearinsomeoftheRussianwagons.Oneconclusionisthatthemainreasonforflangewearistheunstablebehaviourofthebogiesincurves(ruttingmode)[16],whenthebogieisflangingwithatwo‐pointcontactsituationinsteadofnegotiatingthecurveusingthewheelconicity.Theflangingistheresultofbogiewarping,whichincreasestheangleofattackcomparedtoaradialposition.Inthearticleanumberofdifferentdesignsarediscussed.Amongothersitisconcludedthatabogiedesignwithradialarmssignificantlyreducestheangleofattackandthewearnumberincurves,seefigure20.

Figure20:Angleofattack(a)andwearnumber(b)forwagonsinacurveof200mradiusat60km/hwith18‐100bogiesrespectivelybogieswithradialarmupgrade[15].

Berghuvud[64]investigatedthecurvingbehaviourofdifferenttypesofthree‐piecebogiewithandwithoutbraking.Heconcludedthattheinfluenceofbrakingonthecurvingbehaviouriscomplex.Brakingcanhaveapositiveeffectontheangleofattackofthewheelsetsinacurvesinceithelpstoovercomethestaticfrictionintheprimarysuspension.Itcanalsoincreasetheangleofattackiflargelongitudinalforcespushthewheelsetlongitudinallytowardsthelimitoftheplayandthuslockthewheelsetinanunfavourableposition.

3.3.1 VehicleResistanceRadiallysteeringbogiesdonotonlyreduceflangewearincurvesbutalsoreducetherequiredtractionenergy.

Figure21:Y25bogierunningina300mcurve

Wheelsliplateralandlongitudinalatallwheelrailcontactpoints,90ttankcarwithaY25‐Bogieina300mcurve,speed80km/h,lateralaccelerationaq=0,67m/s²,s1002Wheelprofile,UIC60E1,1:40railinclination

Figure22:Radiallysteeredbogierunningina300mcurve

Wheelsliplateralandlongitudinalatallwheel‐railcontactpoints,90ttankcarwithaLeila‐Bogieina300mcurve,speed80km/h,lateralaccelerationaq=0,67m/s²,s1002Wheelprofile,UIC60E1,1:40railinclination

Figure21showsaconventionalY25bogie(runningtotheright).Theouterwheeloftheleadingaxlehastwopointcontactwithratherhighlateralandlongitudinalcreepages.Theinnerleadingwheelislessaffectedandthetrailingwheelsethasmuchsmallervalues.Withradialsteering,(figure22)theleadingaxlealsohasverysmallcreepages.Thisresultsinlowerwearandrunningresistance.Asaresultontrackwithtightcurvesmorethan20%oftheoverallrunningresistancecanbereducedwithsimilarlevelsofenergysaving[66].

Ofcourseradialsteeringmayaffectrunningstabilityonstraighttrack.ThereforebogiedesignswithcrossanchorssuchastheTVP2007ortheLeilabogiehaveanadvantageoverindividualradialsteeringaxlesasintheswinghangerbogie.

3.3.2 InfluenceofcurvingonwheelandraildamagephenomenaAsmentionedintheintroductiontothissectionthecurvingperformanceofafreightwagonisveryimportantforthelevelofwheelandraildamage.Thismeansinturnthatthevehicletrackinteractionincurvesdeterminestoalargeextentthemaintenancecostforthewholesystem.In[66]Fröhlingdiscussestheinfluenceof,amongothers,bogiedesign,bogiemaintenanceandthewheel/railinterfaceinheavyhauloperationondifferentdamagephenomenaonwheelsandrails.InalaterpublicationFergussonetal[67]presentananalysisofwheelwearasafunctionoftherelationshipbetweenthelateralandlongitudinalprimarysuspensionstiffnessandthecoefficientoffrictionatthecentreplatebetweenthewagonbodyandthebolstertominimisethewheelwearrate

ofaself‐steeringthree‐piecebogiewithoutcompromisingvehiclestability.Simulationresultsindicatethatwheelwearistheoreticallythelowestforlowlateralandlongitudinalprimarysuspensionstiffnessandnofrictionatthecentreplate.Casanuevaetal[68]extendthewearpredictionmethodologyforfreightwagonstoalsoincludeswitchesandcrossings.Itisconcludedthatwearonsomepartsofthewheelprofilecanonlybeexplainedwithrunningthroughswitches.

TunnaandUrban[69]carriedoutaparametricstudytoquantifytheeffectsofvariousfreightvehicleparametersonthegenerationofRCF.Threedifferentfreightsuspensionswerconsidered:anenhancedthree‐piecebogie,arigid‐framebogiewithprimarysuspension,andatwo‐axlevehiclewithleafsprings.Simulationswereperformedfortrackcurvaturerangingfrom400to10000m.TojudgethegenerationofRCFtheTgammamodelfromBurstow[70]wasused.Itisstatedthatparametersthatclearlyneedtobeconsideredwhenevaluatingrailsurfacedamagearecurvedistribution,trackquality,conicity,vehicletypeandloadingstateofthewagon.Sinceseveralparametersarelinedependentitisconcludedthataroutebasedanalysisisnecessary.

In[71]asimulationmodelofanironorewagonwiththree‐piecebogieisdevelopedtoinvestigatetheriskofRCFontheSwedishandNorwegianironoreline.43loadcaseswithvariousconditionswereusedasinputs.TheriskforRCFwasestimatedwiththeso‐calledshakedownmap.Thewearnumber,whichistheproductofcreepagesandcreepforces,wascalculatedtoestimatewhereinitiatedcracksdeveloporarewornaway.Infigure23areasonthewheelprofilewithhighriskofRCFcanbeseen.TheareaonthewheeltreadcoincidesverywellwithfieldobservationsofRCFbuttheareasintheflangerootandontheflangedidnotshowRCFdamage.Itcanbeconcludedthattheenergydissipationishighenoughtowearawayinitiatedcracks.Itseemsthatsimulationofthecurvingbehaviouroffreightwagonscanprovidevaluableinformationabouttheriskofwheeldamageforspecificoperatingconditions.

In[71]asimulationbyDukkipatiandDongexaminetheeffectsofafreightwagonrunningoveradippedjoint.InaveryrecentpaperWangandGaoinvestigatethewheelwearofafreightvehiclewiththree‐piecebogieincurves[99].Itisshownthatwearismostsevereontheouterleadingwheelinthebogie.

Figure23:CalculatedRCFpositionsofthewheelwithcorrespondingaveragewearnumber.Thefar‐leftlineisalsoreportedastheobservedapproximatelocationforRCFinitiation.

3.4 ParameteridentificationTheestablishmentofthecorrectparametersforuseincomputermodelsisclearlyofgreatimportance.Someparameterscaneasilybemeasuredorprovidedbythemanufacturersbutothersareverydifficulttoestablish.Renetel[74]demonstratetheuseofatestrigwithaslidingplateunderneathonewheelsettoestablishkeyparameters.Theslidingplateismovedwithactuatorsandforcesmeasuredtoallowthelateral,shearandwarpstiffnesstobeestablishedaswellasthefrictioncharacteristicsofthebogie.

4 ModernDevelopments

4.1 TheBritishRailHSFBogiesWickensandcolleaguesatBritishRailResearchcarriedouttheoreticalandpracticalworkaimedatunderstandingthedynamicperformanceoftwoaxlefreightvehicles[75],[76].Theaimwastoincreasetheoperatingspeedoffreightvehiclesandreducetherateofderailments.Aseriesofexperimentaltwoaxlevehicleswereconstructedtoconfirmtheresultsoftheanalysis.Theyincludedcoilspringsandviscousdampersandlongitudinalrodstocontrolyawmotionandwereinitiallytestedonafullsizerollerrig.Computersimulationsofcurvingandstabilitywerecarriedoutwithvariousdamperconfigurationsandon‐tracktestsofseveralprototypeswereundertaken

Theresultofthisworkwastheprototype‘HSFV.4’highspeedfreightvehiclewithviscousdamping(figure24)whichwastestedatspeedsofupto120km/handprovedtorunwithouthuntingforawiderangeofeffectiveconicityvalues.

Figure24:TheHSFV.1experimentalfreightwagon

4.2 TheUnitruckrunninggearTheUnitrucksingle‐axlerunninggearwithlateral“swinghangers”wasfirstdevelopedfortheAmericanmarketandinthe1990’sadjustedtosuitEuropeanconditions.VehicleswithUnitruckrunninggear[76]aretodayusedbothinNorthAmericaandEurope.Theyhaveonlyonestagesuspension,whichalsoincludesfrictiondamping.AsintheY25bogie,theverticalforceintheprimarysuspensionisusedtopreloadthedifferentfrictioncomponentsviaaninclinedsurface.Figure25leftshowsthewedgeelement,whichisinserieswithoneofthecoilspringsandincontactwiththecarbodyviaaninclinedfrictionsurface;theverticalsurfaceincontactwiththesaddleisalsoafrictionsurface.Newerdesignshavesubstitutedtheinclinedfrictionsurfacebyaroller(figure25left)[77],thusenablingthedisplacementinthelongitudinaldirection,butreducinglongitudinaldamping.Also,addingacouplingplateinthecentreofthecoilspringsincreaseslongitudinalstiffness(Figure25right),whichimprovescriticalspeedcomparedtotherunninggearwithrollersandclassiccoilsprings.

Figure25:Unitruckrunninggear(left)andmodificationsforimprovingcurvingbehaviour(right).

4.3 The‘SwingMotion’Bogie

Figure26:The‘Swingmotion’bogie

The‘SwingMotion’bogie(figure26)isavariantofthethree‐piecefreightbogieandwasoriginallydevelopedforheavyhauloperationsinNorthAmerica.IntheSwingMotiondesignanadditionalcrossmemberortransomisincludedwhichconnectsthetwosideframestogetherviapivotsatthebaseofthesecondaryspringpack.Thebolsterstillsitsonthetopofthespringpacksandisdampedthroughfrictionwedges.Apivotbetweentheaxleboxesandthesideframesisalsoincludedsothatthesideframescanpivotorswingtoaccommodatelateralmotionofthebolster.Theswingmotiongivesincreasedlateralstabilityatspeedsupto176km/handisclaimedtoreducewheelandrailwear,reducerollingresistanceandforcesontrackandvehiclebodycomparedwithstandardthree‐piecebogies.

4.4 The‘LTF’bogieInthe1980sBritishRailResearchintheUKdevelopedanovel,trackfriendlybogieusingpassengervehicletechnology.TheLTF25bogieisshowninfigure27andisdescribedin[79].

Figure27:The‘LTF25’bogie

TheLTF25bogiewasspecificallydesignedtoreducedynamictrackforcesandaspartofthiseffortwasmadetoreducetheunsprungmass.Smallwheels(813mmdiameter)wereusedandinsideaxleboxesgivinga30%reductioninwheelsetmassalthoughthisnecessitatedtheuseofon‐boardhotboxdetectors.

Primarysuspensionisthroughsteelcoilspringsandsecondarysuspensionisthroughrubberspringelementsandhydraulicdampers.

ThehighcostoftheLTF25bogieandconcernsaboutaxlefatiguewithinboardaxleboxesmilitatedagainstitsadoptionbutPowellDuffrynproducedamodifiedversionofthebogiesknownastheTF25bogie(showninfigure28)whichhasachieved

considerableproductionsuccess.

Figure28:TheTF25bogie

4.5 The‘Gigabox’bogieThe‘Gigabox’bogieusespedestalunitscontainingprogressiverubberspringswithintegralhydraulicdampingasshowninfigures29and30).ThesystemwasdevelopedbyContiTecandSKFandisclaimednottorequiremaintenanceforupto1millionkmandtoprovidegoodnoiseandvibrationisolation.Areductionofupto20%inlateralforcesisclaimedaswellasa2dBreductioninnoise.

Figure29:TheGigaboxbogie

Figure30:Pedestalunitandcrosssection

4.6 TheDoubleRubberRingSpring(DRRS)bogieOriginallydesignedbyTalbottheDRRSbogieusesdoublerubbertorroidalringspringswithloadproportionalfrictiondampingasshowninfigure31.Containerwagons with DRRS bogies entered service with the DB ‘Inter Cargo Express‐System’.Maximumaxle‐loadrangesfrom22.5tat100km/hto18.375tat160km/h.

Figure31:TheDRRSbogieandcrosssection

4.7 Advancesinthree‐piecebogiesThemajordriversforadvancesofAARthree‐piecebogiesweretighteningrideperformanceandtrackimpactstandards,suchasM‐1001[79]andM‐976[80],since2000.

Anoverviewofimprovementsinthesuspensionsisgivenin[81].Suspensionspringstendtoincreasethedeflection.Usinghighercontrolspringsunderthewedgesincreasesfrictionundertheemptywagonthusprovidingitsbetterstability,andmakesdampinglessdependentonthewearofwedgesthemselves.Differentheightoftheinnerandouterspringsallowshavinglowerlateralstiffnessofthesuspensionundertheemptywagon,thusimprovingitsrunningperformance.Usingthesetof9doublespringspereachsideofthebogieincreaseswarpingresistance.

Theinnovativedesignsofthewedgesareshowninfigure32.Bothdesignsaimtoincreasingthewarpingresistanceofthebogie.Thesplitwedgeconsistsoftwosymmetricpartsinclinedtowardseachotherandinteractswiththespatialinsertinthebolsterpocket.Inthespatialwedgethesurfacesareinclinedintheotherdirectionandtheyarewiderthantheverticalsurface,whichgivesthesameeffect.

Figure32:Splitwedge(left)andspatialwedge(right).

Intheinteractionbetweenthesideframeandthewheelsetaxlevariouselasticcomponentsareintroducedtoreduceunsprungmassaswellastoreduceresistancetowheelsetdisplacementinplane,thusreducingthelateraltrackforces.Someofthedesignsofelasticshearpadsareshowninfigure33.

Split wedge 

Insert 

Inclined surfaces 

Visual wear indicators 

Figure33:AdapterPlus®byAmsted(left)andlayeredshearpadinRussian18‐9800bogie(right).

Therigidsidebearingswithclearanceshavetransformedinmodernthree‐piecebogiesintoconstantcontactsidebearings,incorporatingtheelasticelementcompressedbytheweightofthecarbody,[82].Examplesofthedesignareshowninfigure34.Constantcontactsidebearingsprovideyawdampingforthebogiesonstraighttrack,aswellasadditionalcarbodyrollresistanceforbettercurvingperformance.Therollerspositionedwithaclearanceproviderigidbumpstopthatlimitstheelasticelementdeflectionwithoutincreasingtheyawresistance.

Figure34:Constantcontactsidebearingwithsprings(left)andwithnon‐metalelementandroller(right).

Thereareseveraldevicesusedtoincreasewarpingstiffnessofthree‐piecebogies,themostcommonofwhichisusingcross‐bracesbetweenthesideframesshowninfigure35.

    Cap 

Elastic element 

 Cage

Wear resistant element 

Insert 

Roller 

    Cap 

Elastic element 

  Cage 

1–topbrace;2–bottombrace;3‐bolt;4–washer;5‐nut;6–fasteningunit;7–rings;8–lockingplate;9–washer;10‐bolt;11–elasticpad;12–safetywire;13,14‐bracket;15,16,17‐plate;18–key

Figure35Cross‐bracesbetweensideframes.

UsingtheconceptofshearandbendingstiffnessofthebogieScheffel[83],developedseveralnoveldesignsofthree‐piecebogies(figure36).Atfirstthehorizontalmotionoftheframeisdecoupledfromthewheelsetsbyhorizontallysoftprimarysuspension.Thentheaxleboxesareinterconnectedthroughsub‐framesorarmsbyelasticelementsthatsupporttheirradialpositionincurves,butresistin‐phaseyaw[84].Scheffelbogieshavingtheaxleloadof32tprovidemileagebetweenwheelturningofupto1.5millionkilometresthusprovingthehighefficiencyofthedesigntoreducetrackforces.

1‐sideframe;2‐bolster;3‐wheelset;4–primarysuspension;5–elasticconnectionbetweensub‐frames

Figure36:ScheffelHSbogie(left)andbogieretrofittedwithRadialArmdesign(right).

4.8 TheLenoirpusherspringVariousalternativestothedoubleLenoirlinkagehavebeenexploredwiththeaimofprovidingreducedlongitudinalstiffnessatlowcost.Oneexampleisthe‘Lenoirpusherspring’whichconsistsofaplungerandwasherspringsmountedoppositetheLenoirpusher(figure37).Thisallowsmorelongitudinalmotionthantheconventional

Figure37:TheLenoirpusherspring

Piotrowski[86]reportshowthisarrangementhasbeenshowntogivegoodperformanceinaprototypevehiclewithsignificantreductionsinwheelwear.

4.9 TheRC25NTBogie

EisenbahnLaufwerkeHalle(Germany)hasdevelopedtheRC25NTself‐steeringthree‐piecebogiewithdirectinter‐axlelinkageswhichwaspresentedattheInnotransexhibitionin2010)[87](figure38).Thebogiehashorizontallysoftrubberbushesintheprimarysuspensionandflexicoildualratespringswithfrictiondampinginthesecondarysuspension.Thebogieisequippedwithdiskbrakes.Theaimofthedevelopmentwastobuildabogiecapableofstablerunningupto120km/h,keepinglownoisecriteriaandnegotiatingcurveswithminimumofwear.ThebogieisdesignedtoreplacetheY25typebogiewithoutchangestothewagonbody.

SimulationshaveshownthattheRC25NTprovidesbetterstabilityonstraighttrackthantheY25(figure39)andlesswheelandrailwearincurves(figure40).ThebogiewastestedaccordingtotheUIC518standardinSwedenin2010forspeedsupto160km/h.TheRC25NTdemonstratesthatdirectinter‐axlelinkagescanallowfreightcarbogiestorunat120km/hwithpropersteeringandlowwearincurves.

Figure38:RC25NTbogiewithdirectinter‐axlelinkages

Figure39:SimulationstabilityresultsforRC25NTbogievs.Y25bogie(upperfigure=highconicity,lowerfigure=lowconicity)

Figure40:SimulatedwearnumberforRC25NTbogievs.Y25bogie

4.10 The‘LEILA’BogieTheLEILAbogie(‘LEIchtesundLärmArmesGüterwagenDrehGestell’withthemeaningoflightandlownoisefreightbogie)isapassiveradialsteeringbogiewithamaximumaxleloadof22.5tandwasdevelopedbetween2000and2005duringaGermanandSwissresearchproject[88].TheInstituteofRailVehiclesoftheTechnischeUniversitätBerlinwasoneoftheinvolvedpartner.Theaimtodevelopthisbogiewas:

toreducethenoiseemissionsoffreightwagons; toreducethemassofabogietobeunder4tand toreducesignificantlywearandrunningresistance.

Inaddition:

thereliabilityandavailabilityoffreightwagons; transparencyinthetransportchain; theactiveandpassivesafetyofthefreighttrafficand; thetransportvelocityshouldbesimilarlyincreased[89].

Figure41and42showthemaincomponentsofthisbogie.ComparedtothestandardbogiessuchasY25,theLEILAbogiehasinnerbearings.Theresultingbetterforceflowleadtoaweightreductionofthebogieframeandwheelsetresultinginanoverallweightreductionof750kgperbogiecomparedtoY25bogie.Atthewebofthewheels(diameter:920mm),discbrakesaremounted.Theprimarylayerconsistsofrubberspringsandtheloaddependentstiffnesscharacteristicsareseparatedinverticalandhorizontalworkingcomponents.Thebogiehaspassiveradialsteeringtechnologyofthewheelsets.Wheelsetsareabletorotateabouttheverticalaxiswithoutanyexternalenergybutonlybytherollradiusdifferencebetweentheinnerandouterwheel.Bothwheelsetsareconnectedwithcrossanchors;mountedonoppositeaxleboxes.ThesecondarylayerisdefinedUICcentreofpivotandsidebearer(latterguaranteestheexchangeabilitytoY25bogies).Inaddition,thecentreofpivothasanelasticallybearingusingasecondaryrubberspring.TheLEILAbogieprototypewasexaminedduringvariousfieldtestswhereitdemonstrateditsadvantagescomparedtoaY25bogie.Thenoiseemissionswerereducedupto18dB(A)comparedtoaY25bogiewithcastironbrakeblocksandupto8dB(A)comparedtoaY25bogiewithcompositeblocks(k‐blocks).Butthebogiefailedatthattimetoenterthemarket.Duringtheverygoodongoinghomologationprocesstheproducerofthebogiedecidedtostoptheproductionofnewfreightwagonsandbogies.Thereforethehomologationwasstoppedandnotfinishedjustforcommercialreasons.RightnowasmoreandmoreEMUsareproducedwithinnerbearingsitisexpectedthattheacceptabilityofinnerbearingbogieswiththeadvantageslessweightandlowerforcesattheaxlesincurveswillbemoreacceptable.

Figure41:MaincomponentsofLEILAbogie[88]

Figure42:LeilaBogiefrombeneathwiththeinnerbearings,crossanchorandwheeldiscbrakesclearlyvisible

4.11 TheTVP2007BogieTheTVP2007isavariantoftheY25bogiedevelopedbyTatravagónkaa.s..Itsmaindifferenceisamodifiedprimarysuspensioncharacteristic:TwodoubleLenoirlinksandenablesalongitudinalplayof±4mm.Theoppositeaxleboxesareconnectedbycrossanchorstoimprovetherunningcharacteristic.TheTVP2007isshowninfigure43.

Figure43:TVP2007bogiebyTatravagónkaa.s.

Morethan3000bogiesareinoperationsince2009ontheEuropeancontinentunderdifferentwagonstructures.ThebigadvantagesarethatmainlystandardY25componentscanbeusedexceptforslightlymodifiedaxlebearingsandthecrossanchorsthemselves.AswiththeLeilabogiethecrossanchorcouplesthetwoaxlessothattheyturnwithaphaseshiftof180°.Thisstabilizestheradialsteeringeffectevenwhenthewheel‐railcontactisnotperfectandthesecondveryimportanteffectisdynamicstabilisationwithoutyawdampersforhighspeedstraighttrackrunning.Oncurvytracksignificantflangeandrunningsurfacewearreductionandalsosignificantreductionoftherunningresistanceoccur.

4.12 TheSUSTRAILBogieTheaimoftheSUSTRAILprojectistopromotemodalshiftoffreightinEuropefromroadtorail.TheSUSTRAILprojectintendstoprovidetheapproach,structure,andtechnicalcontenttosupportthismodalshiftthroughimprovementsintherailwayfreightsystemincludinginnovationsinrollingstockintrackcomponents.Theprojectincludesworkpackagesfocusedonmarketresearch,vehicles,infrastructureandassessmentofcostbenefits.Theworkdescribedhereispartofworkpackage3:‘Thefreightvehicleofthefuture’.

ThemainscientificandtechnologicalinnovationsbeingconsideredfortheSUSTRAILfreightvehicleare:

The development of advanced vehicle dynamics concepts based on new wheelprofilesandimprovementsinsuspensiondesignrespondingtotheneedsofamixedtrafficrailway;

Developmentsinthetractionandbrakingsystemsforhighspeedlowimpactfreightoperation;

Noveldesignsandmaterials for lightweighthighperformance freightwagonbodyvehiclesandbogiestructures;

Advancedconditionbasedpredictivemaintenance tools for critical componentsofbothrailwayvehiclesandthetrack;

Identification of performance based design principles to move towards the zeromaintenanceidealforthevehicle/tracksystem.

Partnersintheprojecthavecarriedoutatechnologyreviewtoidentifythepotentialinnovativetechnologiestomeettheaboverequirementsandtheresultshavebeenrankedandtwoconceptvehiclesarebeingdesigned.The‘Conventional’vehiclewilluseoptimisedexistingtechnologyandademonstratorforthisisbeingbuiltaspartoftheproject.The‘Futuristic’vehiclewillutilisetechnologywhichhasnotyetbeenprovenintherailwayfieldbuthaspotentialtomakegreaterimprovements.

Simulationshavebeencarriedoutofthedynamicbehaviouroftheconceptdesignvehiclesrunningontypicaltrackintare,partladenandfullyladencases.Inlinewiththetargetofa50%reductioninlateralforcesonthetrackandstablerunningat140km/hasuspensionusingdoubleLenoirlinkages,longitudinallinkagesbetweenaxleboxesandcentrepivotsuspensionhasbeenselected.Computersimulationhasbeenusedtooptimisethesuspensionandtoselectsuitableparametersforthevariouscomponents.Assessmentoftheresultsisbasedon:

Stability:stablerunningontypicalEuropeantrackatthedesignspeedof140km/hmust be ensured and ride quality (vertical lateral and longitudinal accelerationsexperiencedbythegoodstransported)willbeassessed.

Reduced track forces: track geometrical deterioration (ballast settlement andhorizontallevel,alignmentandbuckling),railsurfacedamage(wear,rollingcontactfatigue – RCF) and track components damage (sleeper cracking, rail paddeterioration,railfatigue,fasteningdeterioration)willallbeassessed.

AbenchmarkvehiclehasbeenselectedbasedonaY25bogieandflatbedwagonandhasbeenusedtoallowquantificationofthebenefitsofthenewdesign.

AnumberofradicalinnovationswereconsideredduringthetechnologyreviewstageoftheprojectbutitwasdecidedthattheuseofdoubleLenoirlinkprimarysuspensionasin theY37 series of bogies (figure44),would be investigated.ThedoubleLenoir linksuspension provides much lower longitudinal primary stiffness while still utilisingstandard components and methods which are well established within the railwayindustry.

Figure44:AsuspensionwithdoubleLenoirlinks

Aspart of the optimisation of theprimary suspension the followingparameterswerevaried:

Theverticalcoilspringstiffness(Kc) ThelengthoftheLenoirlink(L) TheangleoftheLenoirlink(Aistheoffset) The friction coefficient at the sliding surfaces (μyz) (controlled through

changingmaterial) Theverticalclearancetothebumpstop(dz0)

Theseparametersareillustratedinfigure45.

Figure45:TheLenoirlinkshowingtheparametersvariednthiswork

A model of the SUSTRAIL vehicle was set up with double Lenoir links using thecomputer simulation tool Gensys and the influence of variations in the suspensionparametersonthecriticalspeedofthewagonwassimulated.Straighttrackwasusedforthissimulationandaninitiallateraldisturbancewasintroducedfollowedbyidealtrackwithnoirregularities.Axle loadis22.5t,wheelprofile isS1002andrailprofileUIC60inclinedat1:40.Thewheelrailcoefficientoffrictionissetat0.35.Thewagonspeedwasreducedfromaninitial170km/handcriticalspeedassumedtohavebeenreachedwhenthetrackshiftingforce(∑ )dropsbelow2.5kN.Anexampleisshowninfigure46.

Figure46:AsamplesimulationresultsshowingtheestablishmentofthecriticalspeedfortheSUSTRAILvehiclewithdoubleLenoirlinks

Theeffectsofthevarioussuspensionparametersonthecriticalspeedaresummarisedinfigure47.

Figure47:TheeffectofLenoirlinkangle,lengthandfrictioncoefficientonthecriticalspeedoftheSUSTRAILvehicle

The simulations were repeated with a speed of 120 km/h on straight track withmeasuredirregularitiesandthemaximumverticaltrackforcewasestablishedforeachtracksectionasshowninfigure48.

120

130

140

150

160

170

26 28 30 32 34 36 38

Critical speed [km/h]

A [mm]

SUSTRAIL OR, S1002, UIC60i40, mu=0.35

120

130

140

150

160

170

0.20.250.30.350.40.450.50.550.6

Critical speed [km/h]

Damping in primary suspension

SUSTRAIL OR, S1002, UIC60i40, mu=0.35

120

130

140

150

160

170

60 70 80 90 100 110

Critical speed [km/h]

L [mm]

SUSTRAIL OR, S1002, UIC60i40, mu=0.35

110120130140150160170

0 20 40 60 80 100 120

-40-30-20-10

010203040

0 20 40 60 80 100 120

Time [s]

Y [kN] Speed [km/h]

Figure48:MaximumverticalforceontherailfortheSUSTRAILvehiclerunningat120km/h

Furthervariationswerecarriedoutandtheeffectofthefrictioncoefficientandstiffnesswithinthesuspensiononthemaximumcontactforceisshowninfigure49.

Figure49:Theeffectoffrictioncoefficientandspringstiffnessonthecontactforce

It can be seen that the maximum vertical contact forces tends to increase with thedampingandwiththespringstiffness.In order to improve the running behavior of the SUSTRAIL vehicle it was decided toassess thebenefitof linkagesprovividing longitudinal stiffnessbetween theaxleboxesusingaradialarm.AradialarmdesignedbyScheffel[90]wasstudiedpreviouslyintheInfra‐Radialproject [91]whichaimedtodevelopabogie forheavyhaulvehicles(axleloadsover25T)withreducedlifecyclecosts.Testsusing theradialarmwith fourdifferentprimarysuspension types showedgoodresultswithstablerunningandradiallyalignedwheelsetsincurves.Wearofthewheelswasseentoreducesignificantly[91].Intheworkreportedheresimulationwascarriedout using MEDYNA for the SUSTRAIL vehicle with double Lenoir links and modifiedradialarms.Simulationshaveconfirmedthattheradialarmshouldprovidelateralstiffnessbetweenthe wheelsets and optimised parameters have been defined. A prototype of theSUSTRAILfreightvehicleisbeingconstructedbyREMARULengineering.Inadditionto

0

50

100

150

200

0 5 10 15 20

rical force (Q) - 99.85% percentile

Track section

Max:Mean:Std:

148.79 [kN]137.99 [kN]4.9131 [kN]

135

140

145

150

155

160

165

0.20.250.30.350.40.450.50.550.6

Max vertical contact force [kN]

Damping in primary suspension [-]

135

140

145

150

155

160

165

50 60 70 80 90 100

Max vertical contact force [kN]

Vertical coils spring stiffness [%]

theinnovativesuspensiondescribedinthispapertheSUSTRAILvehiclewillhavediskbrakeswithanelectroniccontrolsystem.Thebogiedesignisshowninfigure50.

Figure50:TheprototypeSUSTRAILfreightbogie

5 LongitudinaldynamicsThelongitudinaldynamicbehaviourofrailwayvehiclesisoftenneglectedasthelinktothevehicletrackinteractionisgenerallynotsignificantandithasbeencommontoassumethatallvehiclesofthesametypeinatrainwillbehaveidentically.Inheavyhaulfreightapplicationshoweverwherelongtrainsarecommontheeffectoflongitudinaldynamicscanbecomesignificant.In[71]forexampleQietalmodelthelongitudinalbehaviourofalongtrainincludingtractionandbrakingandthecouplingbetweenvehicles.Belforteetal[93]alsoanalysetheeffectsofseveretractionandbrakingforcesonlongitudinaldynamics.

Thereareseveralareaswherelongitudinaldynamicscaninteractwiththegeneralvehicledynamics.Theseinclude:

Wheelunloadingoncurvesduetolateralcomponentsofcouplerforces; Wagonbodypitchduetocouplerimpactforcesand Bogiepitchduetocouplerimpactforces

Cole[94]describeshowtheseeffectscanbeassessedindifferentcasesandMcClanachan[95]andElSibaie[96]presentresultsofcomputersimulationsincludingcouplermodels.

6 Conclusions

Freightvehicleshavetoprovidesatisfactoryperformanceatlowcostintareandladenconditiononvaryingtrackquality.ThishasresultedinseveralstandarddesignsincludingtheY25andthethree‐piecebogie.Thesedesignsusefrictiondampingproportionaltothevehiclemasstoprovidegooddynamicperformanceatallloadingconditions.Inrecentyearsvehicledesignershavetriedtoimproveonthedynamicperformanceoffreightwagonsandtheuseofcomputertoolshavehelpedtoovercomethecompromisebetweengoodcurvingperformanceandstabilityathigherspeeds.Thishasresultedinanumberofinnovativedesignswithdemonstrableperformanceimprovementsbutitisnotablethatfewofthesehaveyettomakesignificantimpactintheworldwidefreighttrainfleets.

Akeyreasonforthislackofadoptionisprobablytheinnatelyconservativenatureoftherailwayindustry.Ofcoursethisoftenhasasoundbasisin,forexample,thebenefitofusingstandardcomponentswhichalloweffectivemaintenanceofwidelydispersedfleetsofvehiclesbutinordertoallowthebenefitsoftheinnovativetechniquesanddesignssummarisedinthispaperitistimetoreconsiderthedesignoffreightvehicles.Thiscouldallowincreasesinspeedwithlowerimpactontrackandenvironmentandaresultingstepchangeinperformanceoftherailwaysystem.Oneencouragingsignistheestablishmentinsomecountriesoftrackaccesschargingwhichbenefitstheuseofvehicleswith‘trackfriendly’suspension.Togetherwithemerginglegislationandgrowingpressuresonsystemcapacityitislikelythatthedemandforfreightvehicleswithhigherdynamicperformancewillclimbrapidly.

Railfreightonlycancontributeinmitigatingtheenvironmentalimpactsoftransportationiftheknowledgeandtodaysexperienceforinnovativeproductsisused.Somebasicthoughtscanbefoundhereandin[97].Optimisingperformancethroughthedevelopmentofinnovativeproductsistobeplannedandprocuredcarefully.Thispaperhasdemonstratedthatfreightvehicledesignershaveinnovativedesignsofrunninggearandcomputersimulationtoolsreadyforthischallenge.

References[1] Hecht.M.,Europeanfreightvehiclerunninggear:today’spositionandfuture

demands,Proc.OftheInst.OfMech.Engrs.,PartF,JournalofRailandRapidTransit,Vol215,pp.1‐11,2001.

[2] EuropeanCommission(2011).WhitePaper‐RoadmaptoaSingleEuropeanTransportArea–Towardsacompetitiveandresourceefficienttransportsystem.COM(2011)144final,Brussels,28March.

[3] JönssonP.‐A.,FreightWagonRunningGear‐areview,KTHRailwayDivision,Stockholm,2002.

[4] RailwayvehiclesfromKockums(inSwedish:JärnvägsfordonfrånKockums),Kockumsindustrier,Malmö,Sweden,Pamphlet,1995.

[5] UICCode517.Wagons–Suspensiongear(Standardisation),6thedition1‐7‐79,Reprint1‐1‐89,incorporating8amendments.

[6] MadeyskiT.LaufwerkskonstruktionundErhöhungderRadsatzlastenimGüterverkehr.ZEV‐GlasersAnnalen107,pp.139‐147,1983.

[7] MüllerL.andNiedermeyerW.,WeiterentwickelteGüterwagendrehgestellederDeutschenBundesbahnfür22.5tRadsatzlast–wiedernachdemLenkachsenprinzip.ZEV‐GlasersAnnalen111,pp.188‐196,1987.

[8] LangeH.,“DynamicanalysisofafreightcarwithstandardUICsingle‐axlerunninggear,”KTHRailwayTechnology,Stockholm,TRITA‐FKTReport1996:34,1996.

[9] StichelS..Runningbehaviorofrailwayfreightwagonwithsingleaxlerunninggear,TRITA‐FKTReport1998:40,DivisionofRailwayTechnology,KTH,1998.

[10] StichelS.HowtoimprovetherunningbehavioroffreightwagonswithUIC‐linksuspension.VehicleSystemDynamicsSupplement33,pp.394‐405,1999.

[11] Stichel,S.Runningbehavioroffreightwagonswithlinkbogies.TRITA‐FKTReport1999:12,DivisionofRailwayTechnology,KTH,1999.

[12] SpechtW.NeueErkenntnisseüberdasVerschleissverhaltenvonGüterwagendrehgestellen,ZEVGlasersAnnalen111,pp.271‐280,1987.

[13] AssociationofAmericanRailroads.Manualofstandardsandrecommendedpractices.SectionD.Trucksandtruckdetails,2010,130p.

[14] GOST9246‐2013Bogiestwo‐axlethree‐pieceforfreightwagonsof1520mmgaugerailways.Generaltechnicalspecifications.38p.

[15] OrlovaA.,andRomenYu.,Refiningthewedgefrictiondamperofthree‐piecefreightbogies.VehicleSystemDynamics,Vol.46,Issue1&2,2008,pp445‐455

[16] BoronenkoY.,OrlovaA.,RudakovaE..Influenceofconstructionschemesandparametersofthree‐piecefreightbogiesonwagonstability,rideandcurvingqualities.VehicleSystemDynamics,Vol.44,Supplement,2006,402–414.

[17] OrlovaA.Identificationofparametersforspatialwedgesystemimplementedinfreightbogiedesign.Proceedingsofthe10thmini‐conferenceonVehicleSystemDynamics,IdentificationandAnomalies.Ed.I.Zobory.ISBN9789634209683.‐Budapest:KomaromiNyomdaesKiadoKft.,2008,pp245‐252

[18] EickhoffB.M.,EvansJ.R.andMinnisA.J.,Areviewofmodelingmethodsforrailwayvehiclesuspensioncomponents.VehicleSystemDynamics:InternationalJournalofVehicleMechanicsandMobility,24:6‐7,469‐496,1995

[19] Brunis.,VinolasJ.,BergM.,PolachO.,andStichelS.,“Modellingofsuspensioncomponentsinarailvehicledynamicscontext,”VehicleSystemDynamics,vol.49,no.7,pp.1021–1072,2011.

[20] StichelS.,JönssonP‐A.,CasanuevaC.andHosseinNiaS.,ModelingandSimulationofFreightWagonwithSpecialattentiontothePredictionofTrackDamage.InternationalJournalofRailwayTechnologyVol.3,2014.

[21] KlauserP.E.,Modellingfrictionwedges,PartI:Thestate‐of‐the‐art.ProceedingsofIMECE042004ASMEInternationalMechanicalEngineeringCongress&Exposition,November13‐20,Anaheim(CA):AmericanSocietyofMechanicalEngineering,2004.

[22] WuQ.,ColeC.,SpiryaginMandSunQ.,Areviewofdynamicsmodellingoffrictionwedgesuspensions.VehicleSystemDynamics:InternationalJournalofVehicleMechanicsandMobility,52:11,1389‐1415,2014.

[23] Non‐smoothProblemsinVehicleSystemsDynamics.SpringerBerlinHeidelberg,2010.

[24] AndersonE.,BergM.andStichelS.,RailVehicleDynamics.KTHRoyalInstituteofTechnology,Stockholm,2013.

[25] PolachO.,BergM.andIwnickiS.,Simulation.In:Iwnicki,editor,HandbookofRailwayVehicleDynamics.Chapter12.London:Taylor&Francis,pp.359‐421,2006.

[26] XiaF.,“Modellingofwedgedampersinthepresenceoftwo‐dimensionaldryfriction,”inVehiclesystemdynamics,Lingby,Denmark,2003,vol.37,pp.565–578.

[27] KaiserA.B.,CusumanoJ.P.andGardnerJ.F.,ModelingandDynamicsofFrictionWedgeDampersinRailroadFreightTrucks,VehicleSystemDynamics,vol.38,no.1,pp.55–82,2002.

[28] BossoN.,GugliottaA.andSomaA.,Multibodysimulationofafreightbogiewithfrictiondampers,inRailroadConference,2002ASME/IEEEJoint,2002,pp.47–56.

[29] PiotrowskiJ.,ModeloftheUIClinksuspensionforfreightwagons,ArchiveofAppliedMechanics,vol.73,no.7,pp.517–532,Dec.2003.

[30] PiotrowskiJ.,Smoothingdryfrictiondampingbydithergeneratedinrollingcontactofwheelandrailanditsinfluenceonridedynamicsoffreightwagons,NVSD,vol.48,no.6,pp.675–703,Jun.2010.

[31] TanX.andRogersR.J.,Equivalentviscousdampingmodelsofcoulombfrictioninmulti‐degree‐of‐freedomvibrationsystems,JournalofSoundandVibration,vol.185,no.1,pp.33–50,Aug.1995.

[32] XiaF.,Modellingofatwo‐dimensionalCoulombfrictionoscillator,JournalofSoundandVibration,vol.265,no.5,pp.1063–1074,Aug.2003.

[33] PiotrowskiJ.,Asubstitutemodeloftwo‐dimensionaldryfrictionexposedtodithergeneratedbyrollingcontactofwheelandrail,VehicleSystemDynamics,vol.50,no.10,pp.1495–1514,2012.

[34] TrueH.andAsmundR..ThedynamicsofarailwayfreightwagonwheelsetwithdryfrictiondampingVehicleSystemDynamics44supplement2006pp853‐861

[35] ORE,Flexibilityoftrapezoidalsprings,”Utrecht,25,1986.

[36] ORE,Parabolicspringsforwagons(design,calculation,treatment),”Utrecht,43,1988.

[37] ORE,ImprovementoftherunningstabilityofexistingRIVwagonsrequiredtorununderanyloadingconditionsatspeedsof80km/h,”Utrecht,2,1967.

[38] JolyM.R.,ORE:Etudedelastabilitétransversaled’unvéhiculeferroviaireàdeuxessieux,”Utrecht,1974.

[39] AyasseJ.B.,Computersimulationoffreightvehicleswithleafsprings;acomparisonbetweendifferentpackages,INRETS,TechnicalreportINRETS/RE‐01‐046‐FR,2001.

[40] JönssonP.‐A.,Modellingandlaboratoryinvestigationsonfreightwagonlinksuspensionswithrespecttovehicle‐trackdynamicinteraction,LicenciateThesis,KTH,Stockholm,2004.

[41] JönssonP.‐A.,AnderssonE.andStichelS.,“Experimentalandtheoreticalanalysisoffreightwagonlinksuspension,”ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransit,vol.220,no.4,pp.361–372,Jan.2006.

[42] JönssonP.‐A.,AnderssonE.andStichelS,“Influenceoflinksuspensioncharacteristicsvariationontwo‐axlefreightwagondynamics,”NVSD,vol.44,no.1,pp.415–423,2006.

[43] JönssonP.‐A.,StichelS.,andPerssonI.,NewsimulationmodelforfreightwagonswithUIClinksuspension,VSD,vol.46,no.Suppl.1,pp.695–704,2008.

[44] HoffmannM.,DynamicsofEuropeantwo–axlefreightwagons,Ph.D.Thesis,TechnicalUniversityofDenmark,KongensLyngby,Denmark,2006.

[45] StiepelM.andZeipelS.,Freightwagonrunninggearswithleafspringandringsuspension,presentedattheSIMPACKusergroupmeeting,2004.

[46] CebonD.,SimulationoftheResponseofLeafSpringstoBroadBandRandomExcitation,VehicleSystemDynamics,vol.15,no.6,pp.375–390,1986.

[47] FancherP.S.,ErvinR.D.,MacadamC.C.andWinklerC.B,MeasurementandRepresentationoftheMechanicalPropertiesofTruckLeafSprings,SAEInternational,Warrendale,PA,SAETechnicalPaper800905,Aug.1980.

[48] PiotrowskiJ.,OnApplicationoftheRollingContactTheoryforModellingoftheUICLinkSuspensionforFreightWagons,ZeszytyNaukoweInstytutuPojazdów,vol.3,no.50,pp.5–14,2003.

[49] MateiJ.,Anewmathematicalmodelofthebehaviourofafour‐axlefreightwagonwithUICsingle‐linksuspension.ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransit,2011225:637,DOI:10.1177/0954409711398173.

[50] VershinskyS.V.,V.N.DanilovV.N.andChelnokovI.I.,Wagondynamics.Мoscow,Transport,1972,304p.(inRussian)

[51] BallewB.,ChanB.J.andSanduC.MultibodydynamicsmodellingofthefreighttrainbogiesystemVehicleSystemDynamics49(4)2011pp501‐526

[52] KlauserP.E.,Modellingfrictionwedges,PartII:Animprovedmodel.ProceedingsofIMECE042004ASMEInternationalMechanicalEngineeringCongress&Exposition,November13‐20,Anaheim(CA):AmericanSocietyofMechanicalEngineering,2004.

[53] KovalevR.,LysikovN.,MikheevG.,PogorelovD.,SimonovV.,YazykovV.,ZakharovS.,ZharovI.,GoryachevaI.,SoshenkovS.,TorskayaE.Freightcarmodelsandtheircomputer‐aideddynamicanalysis.MultibodySystemDynamics,Volume22,Number4,2009,pp.399–423

[54] PogorelovD.,OnCalculationofJacobianMatricesinSimulationofMultibodySystems.InSchiehlenandValasek(eds.)PreprintsoftheNATOAdvancedStudyInstituteonVirtualNonlinearMultibodySystems,CzechTechnicalUniversityinPrague,Prague,2002,pp.159‐164

[55] McKisicA.D.,UshkalovV.F.andZhechevM.,Possibilityofjammingandwedginginthethree‐piecetrucksofamovingfreightcar.VehicleSystemDynamics,Vol.45,No.1,pp.61‐67,2007.

[56] CusumanoJ.P.andGardnerJ.F.Dynamicmodelsoffrictionwedgedampers.Proceedingsofthe1997IEEE/ASMEJointRailConference,March18‐20,Boston,MA

[57] McClanachan,M.,Handoko,Y.,Dhanasekar,M.,Skerman,D.,Davey,J.ModellingFreightWagonDynamics.VehicleSystemDynamicsSupplement41(2004),p.438‐447

[58] KaiserA.B.,CusumanoJ.P.andGardnerJ.F..ModelinganddynamicsoffrictionwedgedampersinrailroadfreighttrucksVehicleSystemDynamics38(1)2002pp55‐82

[59] Kaas‐PetersenCH(1986)Chaosinarailwaybogie.ActaMechanica61:89–107.

[60] PolachO..Onnon‐linearmethodsofbogiestabilityassessmentusingcomputersimulations.ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransit,2006,220,pp.13‐27.

[61] StichelS.,“Limitcyclebehaviourandchaoticmotionsoftwo‐axlefreightwagonswithfrictiondamping,”MultibodySystemDynamics,vol.8,no.3,pp.243–255,2002.

[62] HoffmannM.&TrueH.,Dynamicsoftwo‐axlerailwayfreightwagonswithUICstandardsuspension,VehicleSystemDynamics:InternationalJournalofVehicleMechanicsandMobility,44:sup1,139‐146,DOI:10.1080/00423110600869594.2006.

[63] DiGialleonardoE.,BruniS.&TrueH.,Analysisofthenonlineardynamicsofa2–axlefreightwagonincurves,VehicleSystemDynamics:InternationalJournalofVehicleMechanicsandMobility,52:1,125‐141,DOI:10.1080/00423114.2013.863363.2014.

[64] ZhaiW.M.andWangK.Y.,Lateralhuntingstabilityofrailwayvehiclesrunningonelastictrackstructures,JournalofComputationalandNonlinearDynamics,ASME,2010,5(4),pp.041009‐1‐9.

[65] BerghuvudA.,Freightcarcurvingperformanceinbrakedconditions.ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransit2002216:23.DOI:10.1243/0954409021531656.

[66] Hecht;M.;KeudelJ.;VerbesserteEnergieeffizienzdurchradialeinstellendesFahrwerk,Eisenbahningenieur05/2006,p.42‐47

[67] FröhlingR.D.Wheel/railinterfacemanagementinheavyhaulrailwayoperations—applyingscienceandtechnology,VehicleSystemDynamics:InternationalJournalofVehicleMechanicsandMobility,45:7‐8,649‐677,DOI:10.1080/00423110701413797,2007.

[68] FergussonS.N.,FröhlingR.D.andKlopperH.(2008)Minimisingwheelwearbyoptimisingtheprimarysuspensionstiffnessandcentreplatefrictionofself‐steeringbogies,VehicleSystemDynamics:InternationalJournalofVehicleMechanicsandMobility,46:S1,457‐468,DOI:10.1080/00423110801993094.

[69] CasanuevaC.,DoulgerakisE.,JönssonP.‐A.andStichelS.,Influenceofswitchesandcrossingsonwheelprofileevolutioninfreightvehicles.VehicleSystem

Dynamics:InternationalJournalofVehicleMechanicsandMobility,52:sup1,317‐337,DOI:10.1080/00423114.2014.898779.

[70] TunnaJ.andUrbanC.,Aparametricstudyoftheeffectsoffreightvehiclesonrollingcontactfatigueofrail.ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransit2009223:141,DOI:10.1243/09544097JRRT228.

[71] BurstowM.,WholeliferailmodelapplicationanddevelopmentforRSSB–developmentofanRCFdamageparameter.AEATR‐ES‐2003‐832,Issue1,RailSafety&StandardsBoard,London,UK,October2003,availablefromhttp://www.rssb.co.uk.

[72] HosseinNiaS.,JönssonP.‐A.andStichelS..WheeldamageontheSwedishironorelineinvestigatedviamultibodysimulation.ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransit2014228:652.DOI:10.1177/0954409714523264.

[73] DukkipatiR.V.andDongR.,Thedynamiceffectsofconventionalfreightcarrunningoveradippedjoint.VehicleSystemDynamics31(1999)pp95‐111

[74] RenL.H.,ShenG.andHuY.S..AtestrigformeasuringthreepiecebogiedynamicparametersappliedtofreightcarapplicationVehicleSystemDynamics44supplement2006pp853‐861

[75] WickensA.H.Thedynamicsofrailwayvehiclesonstraighttrack–fundamentalconsiderationsoflateralstabilityProceedingsoftheInstitutionofMechanicalEngineersPart3F1965‐66vol29

[76] WickensA.H.,GilchristA.O.andHobbsA.E.W.,Suspensiondesignforhighperformancetwo‐axlefreightvehiclesProceedingsoftheInstitutionofMechanicalEngineersPart3D1969‐70vol184pp22‐36

[77] WebberH.B.,Trackingtruck,US339466230‐Jul‐1968.

[78] GreenbrierEurope,WagonySwidnicaS.A.,“Ukladzawieszeniapojazdukolejowego,zwlaszczadwuosiowegowagonutowarowego,”PL207920B1B61F5/30(2006.01).

[79] EtwellM.‘AdvancesinRailWagonDesign’ProceedingsoftheInstitutionofMechanicalEngineers,PartF:JournalofRailandRapidTransitJanuary1990vol.204no.145‐54

[80] AssociationofAmericanRailroads.Manualofstandardsandrecommendedpractices.SectionC–partII.Design,fabrication,andconstructionoffreightcars.M‐1001.Chapter11:Serviceworthinesstestsandanalysesfornewfreightcars.2007,374p.

[81] AssociationofAmericanRailroads.Manualofstandardsandrecommendedpractices.SectionD.TrucksandtruckdetailsSpecificationM‐976Truckperformanceforrailcars.Adopted2002,revised2009.

[82] OrlovaA.,RudakovaE.Comparisonofdifferenttypesoffrictionwedgesuspensionsinfreightwagons.Proceedingsofthe8‐thInternationalConferenceonRailwayBogiesandRunningGears.Budapest:BUTE,2010.–P.41‐50.

[83] BoronenkoYu.P.,OrlovaA.M.Influenceofbogietocarbodyconnectionparametersonstabilityandcurvingoffreightvehicle//Extendedabstracts6th

internationalconferenceRailwaybogiesandrunninggears.Budapest:BUTE.September2004.–P.23‐25

[84] ScheffelH.,SmitP.H.,ShearStiffnerLinkagesforRadialBogies.SupplementtoVehicleSystemDynamics,27,1997

[85] BoronenkoYu.P.Theinfluenceofinter‐axlelinkagesonstabilityandguidanceoffreightbogies/OrlovaA.M.,RudakovaE.A.//Proceedingsofthe8‐thminiconferenceonvehiclesystemdynamics,identificationandanomalies.Budapest:BUTE,2002.‐P.175‐182

[86] PiotrowskiJ.,PazdzierniakP.andAdamczewskiT.,‘SuspensionoffreightwagonbogiewiththeLenoirfrictiondamperensuringlowwearofwheelsandgoodlateraldynamicsofthewagon’,Proc.ofXVIIIconference‘PojazdySzynow’Vol.I,pp.199‐211,2008

[87] RC25NT

[88] Hecht,M.;Wearandenergy‐savingfreightbogiedesignswithrubberprimarysprings:principlesandexperiences,JRRT227IMechE2009,p.105‐110

[89] Hecht,M.;InnovativeFreightWagons‐APreconditiontoincreasetheMarket‐ShareofRailFreight;ArchivesofTransport,Vol.29,Warsaw,2014,PolishAcademyofSciences,committeeofTransport,p.17‐26

[90] ScheffelH.Anewdesignapproachforrailwayvehiclesuspension;RailInternational.–1974.‐‐№10.‐P.638‐651.

[91] KikW.,ScholdanD.,StephanidesJ;‘ProjectINFRA‐RADIAL–bogiesforaxleloadsof25t–testandsimulation’;XXICenturyRollingStock:Ideas,Requirements,ProjectsConference,St.Petersburg,2007.

[92] QiZ.,HuangZ.andKongX.,SimulationoflongitudinaldynamicsoflongfreighttrainsinpositioningoperationsVehicleSystemDynamics50(9)2012pp1409‐1433

[93] BelforteP.,CeliF.,DianaG.andMelziS.NumericalandexperimentalapproachfortheevaluationofseverelongitudinaldynamicsofheavyfreighttrainsVehicleSystemDynamics46(Supplement)2008pp937‐955

[94] ColeC.‘Longitudinaltraindynamics’inHandbookofRailwayVehicleDynamics,IwnickiedTaylorandFrancis1999

[95] McClanachanM.,ColeC.,RoachD.andScownB.‘Aninvestigationoftheeffectofbogieandwagonpitchassociatedwithlongitudinaltraindynamics’.ThedynamicsofvehiclesonroadsandontracksVehicleSystemDynamicsSupplementSwets&ZeitlingerAmsterdampp374‐3851999

[96] El‐SibaieM.‘Recentadvancementsinbluffanddrafttestingtechniques’,FifthInternationalHeavyHaulConference,Beijing,1993

[97] Koenig,R;Hecht,M.etal.;WhitePaperInnovativeRailFreightWagon2030,TUDresdenTUBerlin2012;http://www.schienenfzg.tu‐Berlin.de/fileadmin/fg62/Dokumente/Downloads/White_Paper_Innovative_Rail_Freight_Wagon_2030.pdf

[98] H.True,“OntheTheoryofNonlinearDynamicsanditsApplicationsinVehicleSystemsDynamics,”VehicleSystemDynamics,vol.31,no.5–6,pp.393–421,1999.

[99] P.Wang,L.Gao.Numericalsimulationofwheelwearevolutionforheavyhaulrailway.J.Cent.SouthUniv.(2015)22:196‐207,DOI:10.1007/s11771‐015‐2510‐1.