dye-sensitized solar cells - cimavcongreso.cimav.edu.mx/2010/wp-content/uploads/2010/... ·...

49
Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México Departamento de Física Aplicada [email protected] CIMAV Chihuahua Octubre 26, 2010 Gerko Oskam Departamento de Física Aplicada Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav) Mérida, Yucatán, MEXICO Dye-Sensitized Solar Cells Basic Principles & Applications

Upload: others

Post on 29-Jan-2021

20 views

Category:

Documents


0 download

TRANSCRIPT

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    CIMAV – Chihuahua

    Octubre 26, 2010

    Gerko Oskam

    Departamento de Física AplicadaCentro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav)

    Mérida, Yucatán, MEXICO

    Dye-Sensitized Solar Cells Basic Principles & Applications

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Efficiency Record: 11.1%

    O'Regan & Grätzel, Nature 1991, 353, 737.

    • photoelectrochemical cell

    • porous, high surface area metal oxide film

    • light absorption by adsorbed sensitizer molecules

    • electron transport in solid and ion transport in solution

    Dye-sensitized TiO2 solar

    cells

    Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L.Y.,

    Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%

    Jap. J. Appl. Phys. Part 2 - Letters & Express Letters 2006, 45, L638.

    Jsc = 20.9 mA cm-2

    Voc = 0.736 V

    FF = 0.722

    (Rs = 1.6 Ω cm2)

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    OUTLINE

    • Modules & large-scale applications

    • Fundamentals & processes

    • Current research topics

    • Research at Cinvestav – Mérida

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    www.g24i.com 120 MW plant in Cardiff, Wales; June 2007

    G24 Innovations, Ltd

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    TOYOTA-AISIN-SEIKI

    Module:

    64 cells of 10 x 10

    cm2 connected in

    series

    10 µm film

    15 nm TiO2 particles

    N3 sensitizer

    MPN electrolyte with

    LiI, DMII, I2, TBP

    Kariya City; N. 35010‟

    facing South; 300 tilt

    Outdoor performance of large

    scale DSC modules

    T. Toyoda et al, J. Photochem. Photobiol. A:

    Chem.

    164 (2004) 203-207

    Division of Energy Engineering,

    AISIN, SEIKI, Japan

    TOYOTA Central R&D Lab.

    Japan

    monolithic series module design

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Series interconnect design

    2005

    Dyesol, Australia

    • materials & equipment

    for

    fabrication of DSC

    • flexible panels for

    military

    • panels on flexible steel

    with Corus; roofs, etc.

    www.dyesol.com

    „camouflage‟ panel

    IPS 17, Sydney, 2008

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    M.A

    . Gre

    en e

    t al, P

    rog. P

    hoto

    volt: R

    es. A

    ppl.

    2010; 1

    8:3

    46

    –352

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Advantages DSC:

    • inexpensive materials• inexpensive production process• low energy content; payback in a few months instead of years

    • performance increases with higher temperature• better performance under low light intensity conditions• efficiency is less sensitive to the angle of incidence

    • flexible cells• bifacial configuration• transparency for power windows• colorful cells• near-infrared sensitizers: non-colored, transparent PV cells are possible

    • outperforms amorphous silicon

    Disadvantages

    • sealing• questions on performance stability• low efficiency compared to silicon and thin films

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Operational mechanisms

    • absorption of light by the dye, D0, results in a molecule in the excited state, D*

    • an electron is injected from D* into the TiO2 conduction band

    • the electron is transported through the nanostructured film to the TCO back

    contact

    • the dye is regenerated by the electron donor in the solution

    • the oxidized redox species is, in turn, reduced at the Pt/TCO counter

    electrode.

    e-

    dye

    donor

    acceptor

    CB

    Eredox

    E

    TCO TiO2 electrolyte solution

    h

    TCO

    D0/D+

    D*/D+

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    e-

    dye

    donor

    acceptor

    CB

    Eredox

    E

    TCO TiO2 electrolyte solution

    h

    D0/D+

    D*/D+

    recombination

    Recombination processes

    • electron transfer from the TiO2 to:

    - the oxidized dye

    - the electron acceptor in

    solution

    • electron transfer from the TCO to

    the

    electron acceptor in solution

    3I-

    3I-

    I -

    I -

    I -

    +

    Transport processes

    • electron transport in the nanostructured,

    mesoporous film is complicated, and

    accompanied by ion transport in the solution

    • transport is dominated by (ambipolar) diffusion,

    due to screening effects in the permeating

    solution

    • transport is described by a multiple trapping

    mechanism, and is non-linear in electron density

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    New Architectures for Dye-Sensitized Solar Cells

    Alex B. F. Martinson, Thomas W. Hamann, Michael J. Pellin,

    and Joseph T. Hupp

    Chem. Eur. J. 2008, 14, 4458 – 4467

    Interface Kinetics Transport Kinetics

    • transport is trap-limited

    • transport kinetics become faster at higher EF• recombination kinetics become faster at higher E

    CB

    EF

    ENtraps

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    The nanostructured, mesoporous TiO2 electrode

    • large internal surface area: roughness factor 1000

    • adequate surface chemistry for dye adsorption

    • good internal connectivity for electron transport

    C. J. Barbé, F. Arendse, P. Comte, M. Jirousek

    F. Lenzmann, V. Shklover, and M. Graetzel

    J. Am. Ceram. Soc., 80 [12] 3157–71 (1997)

    Current research topics

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    A 4.2% efficient flexible

    dye-sensitized TiO2 solar

    cells using stainless steel

    substrate, M G Kang et

    al.,

    Sol Energ Mater Sol C

    2006, 90, 574.

    8.6% efficiency:

    J. Electrochem. Soc.

    2008, 155(7), F145.

    Collector electrode substrates

    Plastic/ ITO: efficiencies 2 - 6 %

    Optimization of dye-sensitized solar cells prepared by compression

    method

    G Boschloo, H Lindström, E Magnusson, A Holmberg, A Hagfeldt

    Journal of Photochemistry and Photobiology A: Chemistry 2002, 148,

    11.

    Low-temperature fabrication of dye-sensitized solar cells by

    transfer of composite porous layers,

    M Dürr et al., Nature Materials 2005, 4, 607

    Flexible dye-sensitised nanocrystalline semiconductor solar

    cells

    S A Haque, E Palomares, H M Upadhyaya, L Otley, R J

    Potter,

    A B Holmes and J R Durrant, Chem. Commun. 2003, 24,

    3008.

    High-efficiency (7.2%) flexible dye-sensitized solar cells

    with

    Ti -metal substrate for nanocrystalline-TiO2 photoanode

    S Ito, et al., Chem. Commun. 2006, 38, 4004.

    Eff = 2.5% at 1 sun

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    New materials, concepts

    K. Shankar, G. K Mor, H. E Prakasam, S. Yoriya,

    M. Paulose, O. K Varghese and C. A Grimes,

    Nanotechnology 2007, 18, 065707 (11pp)

    TiO2 nanotubes

    20 µm long

    efficiency: 6.9%

    Lower temp. processing

    Faster electron transport

    C.-Y. Kuo and S.-Y. Lu,

    Nanotechnology 2008, 19, 095705

    inverse opal solid TiO2 structure

    lined with TiO2 nanoparticles:

    - thickness: 12 µm

    - efficiency: 4%

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    N

    M

    M

    Ru

    MLCT

    recombination

    back transfer

    C

    C

    O

    O

    N

    O

    O

    injection

    IPCE (%)

    TiO2

    400 500 600 700 800 900 1000

    20

    80

    60

    40

    0

    wavelength (nm)

    A B C D

    A: RuL3C: RuL2(SCN)2 (N3)

    D: RuL‟(SCN)3

    L = 4,4‟-dicarboxy-2,2‟-bipyridyl-

    L‟ = 4,4‟,4”-tricarboxy-2,2‟:6‟,2”-terpyridyl-

    “black dye” N719

    Successful Dyes - Grätzel group

    Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells

    Md. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte,

    P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel

    J. Am. Chem. Soc. 2001, 123, 1613-1624

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    New dyes & electrolyte solutions

    Temperature stability: molecular engineering of ruthenium-based dyes

    Z907

    1000 hrs at 80 oC: 94% of initial

    performance

    in a quasi-solid state cell.

    DSC with eutectic melt of

    three ionic liquids:

    8.2% efficiency

    maintaining 93% of initial

    performance after light

    soaking at 1 sun at 60 oC.

    Y. Bai et al., Nature Materials 2008, 2224.

    Wang et al, Nature Materials 2003, 2, 402

    1,3-dimethyl-imidazolium iodide

    N N+DMII I

    -

    N N+

    EMII I-N N+

    I-AMII

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Ruthenium-based dyes: (max) = 1.4 x 104 mol-1 L

    cm-1

    Novel organic dyes: (max) 3 to >10 times higher

    allows thinner films!

    More viscous electrolyte solutions, ionic liquids, or

    even

    solid-state hole conductors can become more

    efficient

    stability is still an issue

    Organic dyesD205

    D149: Ito et al., Adv. Mater. 2006, 18,

    1202

    D205: Kuang et al., Angew. Chem. Int.

    Ed.

    2008, 47, 1923

    Indoline dyes

    D149: (max) = 6.9 x 105 mol-1 L cm-1

    D205: (max) = 6.9 x 105 mol-1 L cm-1

    DSC with low viscosity solvent:

    D149: 9.0% efficiency

    DSC with ionic liquid electrolyte:

    D205: 7.2% efficiency

    N719

    10.3%

    JK-45

    7.4%JK-46

    8.6%

    Choi et al, Angew. Chem. Int. Ed. 2008, 47, 327

    low viscosity solvent

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Nanoparticle synthesis

    • introduction

    • nucleation and growth of ZnO nanoparticles from solution

    • synthesis of phase-pure TiO2 nanoparticles: anatase, brookite, and rutile

    Dye-sensitized solar cells

    • efficiency of cells based on TiO2 and ZnO; organic dyes

    • numerical calculations of the electrical properties of dye-sensitized solar cells

    Research at Cinvestav - Mérida

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    • control over nucleation and growth

    processes

    • control over aging process

    Controlled Synthesis of Monodisperse Nanoparticles

    Which experimental parameters affect the nucleation,

    growth, and phase formation processes?

    Solution-phase synthesis of ZnO nanoparticles:

    ethanol

    ZnCl2 + 2 NaOH water, RT ZnO + 2 NaCl +

    H2O

    Solution-phase synthesis of TiO2 nanoparticles:

    Ti(IV) iso-propoxide + 2 H2O TiO2 + 4 iso-

    propanol

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    nucleation

    growth

    coarsening

    Synthesis kinetics: ZnO nanoparticles

    1 mM ZnCl2 + 1.6 mM NaOH + 50 mM H2O

    Absorbance is proportional to the total volume of ZnO (for r

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    1 mM ZnCl2 + 1.6 mM NaOH + x M H2O

    no added

    water

    200 mM

    water

    50 mM

    water

    220

    min

    270

    min

    Effect of Water

    • ZnO formation does not occur in the absence of water

    • the ZnO formation rate increases with increasing water concentration

    • at 200 mM water, nucleation is very fast, and only coarsening is observed

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Reaction scheme:

    reactants precursor ZnO nuclei growth &

    coarsening

    Precursor Formation:

    ZnCl2 + NaOH + H2O ZnnClx(OH)y(H2O)z

    The final structure of the precursor depends on the concentrations of all

    reactants.How does the water concentration affect the nucleation kinetics?

    • through the solubility of the solid materials:

    at higher water content, the solubility and dissociation of the salts are

    expected to increase, which would lead to a faster

    formation of precursor molecules.

    • through the precursor structure:

    at higher water content, condensation can occur through olation,

    which is expected to be faster than oxolation. In the case where n >

    1, the precursor formation rate would increase with water

    concentration. If n = 1, nucleation could be faster.

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Autohydrolysis

    (J. Phys. Chem. B 2005, 109, 11209)

    Zn(OOC-CH3)2 + H2O ZnO + 2 HOOC-CH3

    solvent: iso-propanol (ethanol, etc.)

    Particle size distribution can be obtained from

    the absorbance spectrum:

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    ZnO nanopowders

    Preparation

    • 0.1 M ZnCl2 + 0.2 M NaOH in ethanol

    • T = 55 ˚C / 1 hour

    • filtered & washed with water to remove

    NaCl

    • dried at 50 ˚C for 20 hours

    • Yield: 4 g for a 500 mL synthesis;

    practical yield ≈ 90%

    Particle size control

    • heat at elevated temperature to increase

    particle size

    • increasing water concentration results in

    increased particle size

    dried

    450 ˚C

    1 hour

    450 ˚C

    2 hours

    500 ˚C

    3 hours

    0

    0.5

    1

    rel. In

    ten

    sity

    47 47.5 48 48.5

    2theta (Þ)

    r = 16 nm

    0

    0.5

    1

    rel. I

    nte

    nsity

    r = 12 nm

    0

    0.5

    1

    rel.

    Inte

    nsi

    ty

    r = 10 nm

    0

    0.5

    1

    rel. I

    nte

    nsity

    r = 6.4 nm

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Crystalline TiO2 Nanoparticles from Amorphous TiO2

    anatase

    rutile

    brookite

    X-ray Diffraction

    1.5 M acetic

    acid; 200 oC4 M HCl

    200 oC

    3 M HCl

    175 oC

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    anatase brookiterutile

    anatase brookiterutile

    Scherrer equation: relation between

    the peak width and the grain or

    particle size.

    radius

    rutile: 5 nm to >100 nm

    brookite: 4 nm to 11 nm

    anatase: 3 nm to 15 nm

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Amorphous TiO2

    AnataseTEM

    Amorphous Titania:

    short-range ordering suggests

    presence of chains of

    octahedral species with Ti - O

    - Ti bridges

    of 2 - 4 octahedra.

    Anatase:

    highly-crystallized, facetted

    nanoparticles of uniform size

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Rutile

    After 5 hrs of hydrothermal treatment at 200 oC: presence of nanoparticles, as well as large,

    compact, rod-shaped agglomerates of

    nanoparticles which tend to be aligned

    (oriented attachment of nanoparticles).

    After 21 hours (after the change of

    mechanism observed in the growth

    kinetics): the nanoparticles recrystallize into

    large rods.

    Dynamic light scattering

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Brookite

    large particles:

    hydrothermal treatment in

    NaOH

    What determines phase formation?

    Total energy considerations:

    • bulk energy: rutile < anatase < brookite

    • surface energy: anatase < brookite < rutile

    for nanoparticles: anatase has the lowest total energy

    lower surface energy results in faster nucleation kinetics

    Precursor chemistry:

    composition and symmetry of precursor molecules determine the crystal structure

    (kinetics approach)

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Dye-Sensitized Solar Cells

    Fabrication:• synthesis of TiO2 or ZnO nanoparticles from solution

    • deposit thin, porous film on FTO-glass

    • soak film in dye-solution for 24 hours

    • put the platinum-coated TCO-glass on the top, a Surlyn spacer to seal

    the cell

    • add electrolyte solution through holes in the counter electrode

    (0.6 M DMPII + 0.1 M LiI + 0.05 M I2 + 0.5 M TBP in MPN)

    • seal the small holes with microscope cover glass and Surlyn.

    Anatase-based cell

    with N-719

    ZnO-based cell

    with N-719

    Isc = 31 mA

    Voc = 2.1 V

    15 cm2

    65 mW cm-2

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Dye-sensitized solar cells

    100 mW/cm2

    (Nanomaterials prepared in our laboratory)

    Cells: 0.5 cm2

    anatase cells: 6.8%

    brookite cells: 4.0%

    rutile cells: 2%

    ZnO cells

    (forced hydrolysis): 3.0%

    ZnO cells

    (electrodeposition): 2.0%

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    ZnO dye-sensitized solar cells

    ZnO cells from Degussa ZnO

    2 sun

    T = 50 oC

    cell stability

    Photovoltaic performance of nanostructured zinc oxide

    sensitised with xanthene dyes

    E Guillén, F Casanueva, J A Anta, A Vega-Poot, G Oskam,

    R Alcántara, C Fernández-Lorenzo, J Martín-Calleja,

    J. Photochem. Photobiol. A: Chem. 200, 364-370 (2008).

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Absorbance

    x

    e-

    e-e-

    gla

    ss

    TCO

    light

    electron density

    x

    electron acceptors

    ionsions

    • Particles are too small for band bending

    • Solution with ions provide shielding

    • Electron transport is impeded by transfer

    to electron acceptor in the solution

    steady-state measurements (Lindquist et al.): photocurrent is dominated by diffusion

    Electron Transport in Dye-sensitized TiO2 Films

    Electron

    density

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Conduction Band

    Valence Band

    EF,n

    k1 k-1Band diagram showing trap states in the band gap. The

    rate constants k1 and k-1 denote trapping and de-trapping

    of electrons, respectively. The Fermi-energy determines

    which traps dominate the transport kinetics.

    n

    t

    1

    e

    J

    xR G

    J en nx

    eDn

    x

    Continuity equation

    n is the electron density under illumination

    J is the current density in the film

    G and R are the generation and recombination ratesCurrent density

    n is the electron mobility

    is the electrical potential

    D is the electron diffusion coefficient

    n(x, t)

    tD

    2n(x, t)

    x2

    n(x, t) n0

    0

    exp( x) 0

    Diffusion transport equation

    electron injectionrecombinationflux

    The diffusion coefficient and recombination term are dependent to the light intensity

    transport equation is more complex: numerical methods to model electron transport

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Electron Transport in Porous Nanocrystalline TiO2 Photoelectrochemical

    Cells Fei Cao, Gerko Oskam, Gerald J. Meyer, and Peter C. Searson

    J. Phys. Chem. 1996, 100, 17021-17027.

    Rise time

    IMPS

    D is a power law function of the light intensity,i.e, the electron density

    Experimental current transients under short circuit conditions

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    n(x,t)

    t x(D(n)

    n(x,t)

    x) R G

    max

    min0 )(exp )( )( dxIxG CellCellinj

    Dye absorption

    coefficient

    Injection quantum

    yield

    (0 < inj < 1) 350 400 450 500 550 600 650 700 750 8000.00.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    N3-Dye, CSol

    = 0.16 mM

    AS

    ol

    (nm)

    GENERATION

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    D(n) Dref f (n) Drefn

    nref

    1

    Electron density-dependent

    - or Fermi level-dependent -

    diffusion coefficient

    DIFFUSION

    = 0.2-0.5

    n(x,t)

    t x(D(n)

    n(x,t)

    x) R G

    g(E)Nt

    kTexp

    E

    kT

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    RECOMBINATIONnanostructured film

    kR kRref f (n) kR

    ref n

    nref

    1

    g(E)Nt

    kTexp

    E

    kT

    n(x,t)

    t x(D(n)

    n(x,t)

    x) R G

    Recombination depends the same way

    on the Fermi-level as diffusion

    R kr[n(x,t) n0]

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    CHARGE TRANSFERFROM TCO SUBSTRATE

    (Butler-Volmer equation) a 0.5

    JTCO JTCO0 exp

    (1 a)eV

    kBTexp

    aeV

    kBT

    RECOMBINATIONFrom TCO

    Open circuit voltage decay

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    EXPERIMENTS & SIMULATION

    0.0 1.0x10-2

    2.0x10-2

    3.0x10-2

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    14.0

    Experimental

    Model = 0.22

    Model = 0.26

    J (

    mA

    cm

    -2)

    t (s)

    TiO2 Cell

    1E-4 1E-3 0.01 0.1 1 10

    0.0

    0.2

    0.4

    0.6

    0.8

    Experimental

    Model

    V (

    V)

    t (s)

    TiO2 Cell

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    14.0

    16.0

    J (

    mA

    cm

    -2)

    V(V)

    Experimental

    Model

    Model R=0

    TiO2 CellTiO2/N719/organic electrolyte

    Numerical simulation: Solving the continuity equation using FTCS + Lax scheme

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    J (

    mA

    cm

    -2)

    V(V)

    Experimental

    Model

    Model R=0

    ZnO Cell

    ZnO/N719/solvent-free electrolyte

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Parameter Z Cell (ZnO) T Cell (TiO2)

    CCell (M) 0.14 0.25

    kR0 (s-1) 9.0 10-7 3.1 10-9

    0.18 0.20

    b 0.50 0.55

    J0 (A cm-2) 1.0 10-4 1.1 10-5

    R ( ) 37.5 11.3

    L ( m) 10.5 180

    Numerical Simulation of the Current-Voltage Curve in Dye-Sensitized

    Solar Cells Julio Villanueva, Juan A. Anta, Elena Guillén, and Gerko Oskam

    J. Phys. Chem. C 2009, 113, 19722–19731.

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    “transport-limited

    recombination”

    “transfer-limited

    recombination”

    Alternative Recombination Mechanism

    n(x,t)

    t

    1

    e x(D(n)

    n(x,t)

    x) R G

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    “Influence of the recombination mechanism on the IV-curve of dye-

    sensitized solar cells”, J Villanueva, G Oskam and J A Anta,

    Solar Energy Materials & Solar Cells, 94 (2010) 45–50.

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    “Influence of the recombination mechanism on the IV-curve of dye-

    sensitized solar cells”, J Villanueva, G Oskam and J A Anta,

    Solar Energy Materials & Solar Cells, 94 (2010) 45–50.

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    How do materials properties affect the transport & recombination characteristics?

    • Through the trap distribution parameters Nt and

    • Through the recombination characteristics

    - interactions traps – solution

    - electron transfer properties from the conduction band

    - surface chemistry

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Current projects & activities

    Synthesis and characterization of metal oxide nanoparticles: TiO2, ZnO, core-shell

    - mechanisms of nucleation, growth, and controlled aging

    Optimization and application of nanomaterials in the dye-sensitized solar cell

    - TiO2 and ZnO nanoparticles

    - electrodeposition and electrophoretic deposition of nanostructures

    New organic and natural dyes for application in the dye-sensitized solar cell

    - extraction, separation, purification, synthesis (Dr. Gonzalo Mena Rejón)

    - TD-DFT calculations optoelectronic structure (Dr. Andreas Köster)

    Electron transport and recombination mechanisms

    - numerical simulations (Dr. Juan A. Anta)

    - experimental studies (Professor Laurie Peter; Dr. Petra Cameron)

    Hydrogen generation using solar energy

    - tandem cells using DSCs and new materials - Fe2O3 and WO3

    Nanotoxicology

    - interaction of TiO2 nanoparticles with cell membranes in Tilapia

    (Dr. Omar Zapata, Dr. Romeo de Coss)

    Conservation of national monuments – Mayan structures

    - nanomaterials for prevention of biofilm formation (Dr. Juan José Alvarado

    Gil; Dr. Patricia Quintana Owen)

  • Centro de Investigación y de Estudios Avanzados del I.P.N. - Mérida, Yucatán - México

    Departamento de Física Aplicada [email protected]

    Gerko Nikté Germán Julio Alberto

    Manuel Iván

    GroupDr. Gerko Oskam

    M. Sc. Alberto Vega Poot (PhD student)M. Sc. Iván Lizama TzecM. Sc. Nikté Gómez OrtízM. Sc. Manuel Rodríguez PérezIng. Humberto Mandujano Ramírez

    (Master’s student – not in photo)Ing. Jairo Góngora Lizama

    (Master’s student – not in photo)

    Funding:

    Conacyt projects 33171-A (2002-2003); 43828-Y (2004-2007); 80002-Y (2008-2011)

    British Council Amerlinks; FOMIX Yucatán; LENERSE; Red de Fuentes de Energía.

    Current undergraduate students:

    Nalleli Ruiz Tabasco, Israel Juárez Pérez, Renán Escalante Quijano, Esdras Canto

    Aguilar

    Graduates:

    Dr. David Reyes Coronado (2008); Dr. César Cab Cauich (2010); Dr. Julio Villanueva Cab

    (2010)Ex-postdocs:

    Dr. Geonel Rodríguez Gattorno (2007-2008); Dr. Germán Pérez Hernández (2009 –

    2010)