dsb-sc

13
1 uble Side Band Suppressed Carri Professor Z Ghassemlooy Electronics and IT Division School of Engineering Sheffield Hallam University U.K.

Upload: devesh-khurana

Post on 26-Oct-2014

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DSB-SC

1

Double Side Band Suppressed Carrier

Professor Z Ghassemlooy

Electronics and IT DivisionSchool of Engineering

Sheffield Hallam UniversityU.K.

Page 2: DSB-SC

2

Contents

• Theory• Implementation

– Transmitter

– Detector• Synchronous

• Square

• Power analysis• Summary

Page 3: DSB-SC

3

Double Side Band Suppressed Carrier

From AM spectrum:• Carries signal c carries no information m.

• Carries signal consumes a lot of power more than 50%

c - m c c + m

Carrier

USBLSB

Single frequencyQuestion: Why transmit carrier at all?Ans:

Question: Can one suppress the carrier?

Ans.: Yes, just transmit two side bands (i.e DSB-SC)

System complexity at the receiver

But what is the penalty?

Page 4: DSB-SC

4

DSB-SC - Theory

General expression: )(cos])([)( 1 cctCtmktc

Let k1 = 1, C = 0 and c = 0, the modulated carrier signal, therefore:

ttmtc c cos)()( ttmtc c cos)()(

Information signal m(t) = Em cos mt Thus

tME

tME

ttEtc

mcc

mcc

cmm

)(cos2

)(cos2

coscos)(

tME

tME

ttEtc

mcc

mcc

cmm

)(cos2

)(cos2

coscos)(

upper side bandupper side band lower side bandlower side band

Page 5: DSB-SC

5

DSB-SC - Waveforms

B = 2m

Mixer (Multiplier)

Mixer (Multiplier)

Notice: No carrier frequency

Page 6: DSB-SC

6

DSB-SC - Implementation

AMmod.AMmod.

CarrierEc cos ct

0.5 m(t)

-0.5 m(t)

++-

DSB-SCEc m(t) cos ct

+

Ec (1+ 0.5 m(t) cos ct

Ec (1- 0.5 m(t) cos ct

• Balanced modulator

• Ring modulator

• Square-law modulator

AMmod.AMmod.

Page 7: DSB-SC

7

DSB-SC - Detection

• Synchronous detection

MultiplierMultiplierLow passfilter

Low passfilter Message signal

DSB-SC

Local oscillatorc(t) = cos ct

Local oscillatorc(t) = cos ct

tttmty cc cos]cos)([)(

ttmtm

ttmty

c

c

2cos)()(

]2cos1[)()(

21

21

21

)()( 21 tmtv

Condition:•Local oscillator has the same frequency and phase as that of the carrier signal at the transmitter.

m 2c+m2c-m

Low pass filter

high frequencyinformation

Page 8: DSB-SC

8

DSB-SC - Synchronous Detection

• Case 1 - Phase error

MultiplierMultiplierLow passfilter

Low passfilter

Message signalDSB-SC

Local oscillatorc(t) = cos(ct+)

Local oscillatorc(t) = cos(ct+)

Condition:•Local oscillator has the same frequency but different phase compared to carrier signal at the transmitter.

m 2c+m2c-m

Low pass filter

high frequencyinformation

)(cos]cos)([)( tttmty cc

)2(cos)(cos)(

)(cos)()2(cos)()(

21

21

21

21

ttmtm

tmttmty

c

c

cos)()( 21 tmtv

Page 9: DSB-SC

9

Phase Synchronisation - Costa Loop

Recoveredsignal

• When there is no phase error. The quadrature component is zero

• When 0, yip(t) decreases, while yqp(t) increases

XX

VCOVCO

DSB-SC

Ec cos (ct+)

LPFLPF

Phasediscriminator

Phasediscriminator

In-phase0.5Ec m(t) cos

Vphase(t)

yip(t)

X.X.0.5Ec m(t) sin

90o

phase shift

LPFLPF

Ec sin (ct+)

Quadrature-phaseyqp(t)

•The out put of the phase discriminator is proportional to

Page 10: DSB-SC

10

DSB-SC - Synchronous Detection

• Case 1 - Frequency error

MultiplierMultiplierLow passfilter

Low passfilter

Message signalDSB-SC

Local oscillatorc(t)=Eccos(ct+)Local oscillator

c(t)=Eccos(ct+)

Condition:•Local oscillator has the same phase but different frequency compared to carrier signal at the transmitter.

m 2c+m2c-m

Low pass filter

high frequencyinformation

)(cos]cos)([)( tttmty cc

)2(cos)(cos)(

)(cos)()2(cos)()(

21

21

21

21

ttmtm

tmttmty

c

c

cos)()( 21 tmtv

Page 11: DSB-SC

11

DSB-SC - Square Detection

Regenerated carrier

z(t)

Band pass filter

Band pass filter

DSB-SCSi(t) C

Squaring circuit g =x2

Squaring circuit g =x2

g(t)

by 2

by 2

MultiplierMultiplierLow pass filterLow pass filter Message

signal

y(t)

2c

g(t) = Si2(t) = B2 cos2 mt cos2 ct

= B2 (½ + ½ cos 2 mt )(½ + ½ cos 2 ct ) = B2/4 [1 + ½ cos 2(c + m)t + ½ cos 2(c - m)t + cos 2mt + cos 2 ct ]

y(t) = B2/4 cos 2wct z(t) = B2/4 cos wct

Page 12: DSB-SC

12

DSB-SC - Power

• The total power (or average power):

R

ME

ME

RP

c

cSCDSBT

4

)(

2

2/2

2

2

R

ME

ME

RP

c

cSCDSBT

4

)(

2

2/2

2

2

• The maximum and peak envelop power

2)(

R

MEP c

SCDSBP

2)(

R

MEP c

SCDSBP

Page 13: DSB-SC

13

DSB-SC - Summary

• Advantages:– Lower power consumption

• Disadvantage: - Complex detection

• Applications: - Analogue TV systems: to transmit colour information - For transmitting stereo information in FM sound broadcast at VHF