dinamika protoka fluida u buŠotini

31

Upload: malik-higgins

Post on 03-Jan-2016

88 views

Category:

Documents


2 download

DESCRIPTION

DINAMIKA PROTOKA FLUIDA U BUŠOTINI. SADRŽAJ. DINAMIKA PROTOKA FLUIDA U BUŠOTINI. HIDRODINAMIČKI MODEL. JEDNOFAZAN PROTOK. VIŠEFAZAN PROTOK. METODE ZA PRORAČUN DVOFAZNOG VERTIKALNOG PROTOKA. DINAMIKA PROTOKA FLUIDA U BUŠOTINI. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: DINAMIKA PROTOKA FLUIDA U BUŠOTINI
Page 2: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

SADRŽAJ

JEDNOFAZAN PROTOK

HIDRODINAMIČKI MODEL

DINAMIKA PROTOKA FLUIDA U BUŠOTINI

VIŠEFAZAN PROTOK

METODE ZA PRORAČUN DVOFAZNOG VERTIKALNOG PROTOKA

Page 3: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Gubici energije pri protoku fluida u bu{otini su uzrokovani:

•Gubitkom pritiska usled trenja•Kinetičke energije•Promene potencijalne energije

Gubitak toplote pri protoku fluida u bušotini uzrokuje smanjenje tempereture i promenu fizičkih karakteristike fluida, što utiče na povećanje ili smanjenje gubitka pritiska.

Od ukupno raspoložive energije na dnu bušotine, svega 20-30% se dobija na površini, dok preostali deo predstavlja gubitak pri protoku fluida kroz bušotinu

DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Page 4: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Karakteristike fluida pri vertikalnom protoku zavise od brojnih promenljivih, od kojih su najvažnije:

Protoka,Udela gasa i vode, Fizičkih karakteristika fluida (količine, viskoziteta, reoloških osobina), Karakteristika tubinga (prečnika, hrapavosti, termod. karakt., i dr.), Vrste protoka (laminarni i turbulentni),Temperature, Pritiska na dnu bušotine i, Termodinamičkih karakteristika fluida.

Page 5: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

HIDRODINAMIČKI MODELHidrodinamički aspekti proučavanja jednofaznog i višefaznog protokafluida kroz bušotinu baziraju se na jednodimenzionalnoj (1D) jednačinikontinuiteta i na zakonu očuvanja kinetičke energije, odnosno jednačini količine kretanja:

Jednačina kontinuiteta Jednačina održanja energije

0

x

v

tmmm

A

EF

z

P

z

v

t zm

2mmm

0dP

gdLvdvdP f

Zakon o održanju energije (Suma ukupne energije se ne menja sa vremenom u zatvorenom sistemu)

promena potencijalne energije pritiskapromena kinetičke energije usled brzine protoka

promena potencijalne energije položajapromena rada koji se utroši na trenje

Page 6: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

fmmmmdPgdLdvvdP

2

2

m

mmmm

vddvv dPC

P

dPvvdvvgmmmmm 1

P

vvC gmm

1

dLCdLD

vfdP

i

mm

f 2

2

2

i

mm

D

vfC

2

2

2

U izolovanom sistemu prilikom dvofaznog protoka dolazi do promene pritiska i temperature, a time i do promene odnosa gasne i tečne faze, čime se menjaju i fizička svojstva faza. Zbog toga se hidrodinamičko ponašanje fluida u razmatranom sistemu mora definisati u svakom promatranom delu cevi. Drugim rečima, nužno je odrediti promenu pritiska po jedinici dužine cevi, tj. promenu gradijenta dinamičkog pritiska.

Page 7: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

1

fm

C1dL

dPg

dL

dP

11 C

dL

dPg

dL

dPf

m

cos

Ako je bušotina pod uglom jednačina ima oblik:

Gde je - ugao između vertikalnog pravca i bušotine()

Prethodne jednačine predstavljaju osnovne jednačine za proračun gradijenta dinamičkog pritiska. Tačnost proračuna gradijenta pritiska zavisi od tačnosti proračuna brzine protoka smeše fluida (vm), zapreminske mase (m) i gradijenta koji nastaje usled trenja pri kretanju smeše fluida kroz bušotinu. Specifičnost pojedinačnih metoda proračuna dinamičkog pritiska, pri dvofaznom protoku kroz naftne i gasne bušotine, odnosi se na različiti pristup proračuna dvofaznog koeficijenta trenja, koeficijenta zaostajanja tečne faze, odnosno zapreminske mase smešei strukture protoka.

Page 8: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Za izračunavanje gradijenta pritiska analizirana su četiri modela koja koriste srednju vredsnost temperatrure i kompresibiliteta u posmtranom segmentu protoka

Glavne pretpostavke primenjene za izvođenje generelne jednačine za kompresibilni fluid u vertikalnoj bušotini ili bušotini pod uglom su:

promene kinetičke energije su male i mogu se zanemariti,protok se odvija u stacionarnim uslovima,na izabranom segmentu protoka temperatura je konstantna,kompresibilitet gasa se na segmentu ne menja ifaktor trenja je konstantan.

Osnovna diferencijalna jednačina za protok gasa ima oblik:

it

2gg

gg D2

vfcosq

dL

dP

JEDNOFAZAN PROTOK

Page 9: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

itg

ggRe D

q018.0N

Gde se Reynold-ov broj izračunava iz jednačine:

Parameteri STVD i SMVD:

TZ

L0683.0S TVDg

TVD

TZ

L0683.0S MDg

MVD

Model 1 je široku primenjen u gasnom inženjerstvu:

5itMD

Stg

2g

18S2

whwf DS

1eLfZTq10237.9ePP

MVD

TVD

Page 10: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Model 2:

5it

S222g

16S2

whwf Dsin

e1fZTq10444.5ePP

TZ

Lsin0683.0S g

gde je:

Model 3:

5itLTVD

Sg

2g

17S2

whwf DS

1eMDfZTq10683.3ePP

LMD

LTVD

Model 4:

5it

S222g

16S2

whwf D

1efZTq10352.1ePP

Page 11: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

LTVD

LMD

proizvodnja utiskivanje

=90– = –(90–)

Page 12: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Postupak izračunavanja dinamičkog pritiska

Izračunavanje dinamičkog pritisaka za sve modele predstavlja iterativni postupak i uključuje:

• Podelu tubinga na segmente

• Pretpostavku početnog Z1 = 0.9

•Izračunavanje pritiska na kraju segmenta, gde je Z = Z1 = 0.9

•Izračunavanje srednjeg pritiska (P = ...) i temperature

•Izračunavanje Z u funkciji srednjeg pritiska i temperature

•Upoređenje Z i Z1; ako vrednosti nisu priblž`no jednake, onda se uzima Ziz = Z1, i procedura se ponavlja, dok se ne zadovolji uslov da je (Ziz - Z1 )/Z0.001

Page 13: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

VI[EFAZAN PROTOK

Pri dvofaznom vertikalnom protoku gasa i tečnosti razmatra se veći broj faktora koji utiču na gubitak energije, odnosno na gubitak pritiska.

Najvažniji faktori su:

•raspodela faza pri protoku, ili struktura protoka,•efekat proklizavanja gasa u tečnosti, ili zaostajanja tečnosti za gasom•razlika u gustini smeše gasa i tečnosti duž tubinga i•međufazno delovanje.

Dijagram zavisnosti pritiska i temperature (P-T) je veoma pogodan način za opisivanje fizičkih promena smeše nafte i gasa u vertikalnom stubu. Uslovi pritiska i temperature u ležištu, kao i sastav i fizičke karakteristike nafte određuju tačku u kojoj dolazi do izdvajanja gasne faze i formiranja složene strukture protoka. Isto tako, količina gasa koja ostaje rastvorena u nafti na bilo kojim uslovima zavisi od pritiska itemperature u vertikalnom stubu bušotine.

Page 14: DINAMIKA PROTOKA FLUIDA U BUŠOTINI
Page 15: DINAMIKA PROTOKA FLUIDA U BUŠOTINI
Page 16: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Zavisno o količini i brzini protoka gasa i nafte uspostavlja se određeni raspored pojedinačnih faza dajući protoku specifičnu strukturu. Poznavanje strukture protoka predstavlja osnovu za proračun pada pritiska dvofaznog protoka u naftnoj bušotini. U literaturi još uvek nemapotpune usaglašenosti oko klasifikacije strukture protoka, ali se za daljarazmatranja može prihvatiti sledeća podela:

•mehuričasta struktura protoka (engl. bubble flow),•čepolika struktura protoka (engl. slug flow),•prelazna struktura protoka (engl. transition flow) i•prstenasto - magličasta struktura protoka (engl. annular-mist flow).

Strukture protoka

Page 17: DINAMIKA PROTOKA FLUIDA U BUŠOTINI
Page 18: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Mehuričasta struktura protoka

Pri relativno maloj brzini protoka tečnosti i gasa (0.3–0.6m/s) strukturaje mehuričasta. U kontinualnoj tečnoj fazi nalaze se dispergovani mehurići gasa. Mehurići gasa se kreću različitom brzinom od tečnosti. Bez obzira na to što veličina i broj mehurića gasa mogu biti različiti, odnos gasa i tečnosti pri ovoj strukturi manji je nego pri ostalim strukturama protoka. Pri velikoj proizvodnji bušotine, kada je gasni faktor (GLR) nizak, duž celog kanala bušotine preovlađuje ovaj tip protoka.Ako se mehurići gasa kreću u istom smeru protoka tečnosti, može se govoriti o mehuričastoj strukturi, a ukoliko se mehuri gasa kreću turbulentno, koristi se termin penasta struktura.

Page 19: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Čepolika struktura protoka

Povećavanjem količine gasa (povećava se relativni odnos zapremine pare i tečnosti), mehurići gasa se spajaju i pojedini spojeni mehurići gasa na određenoj dužini tubinga ispunjavaju skoro celu zapreminu tog dela cevi. Protoci faza su diskontinualni, tako da se može desiti da je tečnost dispergovana u čepu povećanih mehura gasa ili obrnuto, da je u čepu nafte dispergovana gasna faza. Dakle, pri čepolikoj strukturi u tubingu naizmenično protiču čepovi tečnosti i gasa koji su okruženi tankim filmom tečnosti. Brzina mehura gasa je veća od brzine tečnosti i dolazi često do pojave “proboja“ gasa kroz stub tečnosti i efekta povratnog slivanja, što znatno utiče na gradijent pritiska.Brzine agregovanih faza se povećavaju (2–2.5m/s), tako da se mogu stvoriti stabilni čepovi (veliki mehuri gasa), koji se uz dalje povećanje količine gasa i brzine protoka, usled nestabilnosti i turbulencije, u određenom trenutku deformišu, stvarajući prelaznu strukturu, a nakon toga, uz dalje povećanje količine gasa, stvara se prstenasto-magličasta struktura.

Page 20: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Prelazna struktura protoka

O prelaznoj strukturi protoka još uvek nema dovoljno podataka o nastanku, osobinama i trajanju, a za većinu praktičnih proračuna dovoljno dobri podaci se dobijaju korišćenjem modela za čepoliku strukturu.

Prstenasto-magličasta struktura protoka

Povećavanjem količine gasa, gasna faza će zauzeti središnji deo cevi, dok će tečna faza proticati uz zidove cevi. Pri takvim uslovima protoka i odnosa faza stvaraju se uslovi za nastanak prstenasto magličaste strukture. Konačno, ako se još povećava količina gasne faze, tečnost će se u celosti raspršiti u gasu stvarajući magličastu strukturu protoka.

Page 21: DINAMIKA PROTOKA FLUIDA U BUŠOTINI
Page 22: DINAMIKA PROTOKA FLUIDA U BUŠOTINI
Page 23: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Efekti zaostajanja tečne faze - proklizavanje gasa

Fenomen proklizavanja gasa pri istovremenom protoku sa naftom prevashodno je posledica velike razlike u brzini kretanja ovih faza, kao i razlika u gustini. Gasna faza ima veću brzinu kretanja, tako da uslovno rečeno, tečna faza "zaostaje" iza gasa. Posledica proklizavanja gasa, odnosno zaostajanja tečne faze je nejednaka distribucija ovih faza duž stuba bušotine. Zaostajanje tečne faze, odnosno udeo tečne faze u pojedinim segmentima bušotine predstavlja odnos ukupne jedinične zapremine tečnosti i ukupne jedinične zapremine cevi. Drugim rečima, to je odnos površine poprečnog preseka dela tečnosti i ukupnog poprečnog preseka.

Koeficijent zaostajanja tečne faze (engl: liquid holdup) definisan je na sledeći način:

gL

L

gL

L

t

LL AA

A

VV

V

V

V

Page 24: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Koeficijent klizanja gasne faze (engl: gas slippage) jednak je:

gL

g

t

LLg AA

A

V

V11

Razlika brzina protoka tečne i gasne faze menja se sa povećanjem udela gasne faze, tako da je u cilju pojednostavljenja proračuna uveden pojam "srednja brzina proklizavanja", koja se izračunava na sledeći način:

L

L

Lt

g

L

SL

L

Sggs

q

1A

qv

1

vv

Ukupna brzina protoka smeše tečne (naftne) i gasne faze jednaka je:

SgSot

go

t

tm vv

A

qq

A

qv

Page 25: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Kada je brzina protoka gasa veća od 15m/s, što je uglavnom slučaj kod bušotina sa visokim gasnim faktorom ili u slučaju bušotina kod kojih je primenjena metoda gaslifta, efekti proklizavanja postaju znatni i u stubu bušotine zaostaje veliki deo tečne faze.Kada su brzine tečne i gasne faze jednake, tada je brzina podizanja elementa zapremine tečnosti, koji se kreću naviše kroz stub bušotine, jednaka brzini mehurića gasa koji se izdvajaju iz nje.

Ag

AL

(a) (b)

Page 26: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Ukupna masa fluida koja ispunjava element zapremine jednaka je:

gtggtLtm A1AA Deleci sa poprečnim presekom tubinga (At), dobija se zapreminska masa dvofazne smeše, koja predstavlja najvažniji parametar pri proračunima gradijenta dinamičkog pritiska.

LgLLm

gggLm

1

1

Određivanje koeficijenta zaostajanja tečnosti, bilo laboratorijski ili analitički, predstavlja osnovu za primenu bilo kog modela za proračun dinamičkog gradijenta.

Page 27: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

METODE ZA PRORAČUN DVOFAZNOG VERTIKALNOG PROTOKA

Tačnost proračuna gradijenta dinamičkog pritiska zavisi od tačnosti izračunatih vrednosti brzine protoka smeše gasa i tečnosti, zapreminske mase smeše i višefaznog koeficijenta trenja.Dok je izračunavanje brzine smeše relativno jednostavno, izračunavanje zapreminske mase smeše i višefaznog koeficijenta trenja u razmatranim presecima cevi, pri uslovima protoka, vrlo je komplikovano. Specifičnost postojećih modela za proračun vertikalnog dvofaznog protoka odnosi se na različiti pristup pri proračunu višefaznog koeficijenta trenja i koeficijenta zaostajanja tečnosti za gasom (koji znatno utiču na zapreminsku masu smeše pri uslovima protoka).

Page 28: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Višefazni koeficijent trenja izračunava se na više načina:

•na osnovu krivih utvrđenih eksperimentalno, kao funkcija Reynolds-ovog broja (Poettmann-Carpenter, Baxendell-Thomas itd),

•na osnovu poznatog Reynolds-ovog broja i relativne hrapavosti (Hagedorn-Brown, Orkiszewzki, itd Moody-jevog dijagrama u funkciji dvofaznog ) i

•kombinovanjem podataka dobivenih eksperimentalno i Moody-jevog dijagrama, odnosno analitičkih modela koji važe za jednofazni protok (Beggs-Brill, Duns-Ros).

Page 29: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

Zapreminska masa smeše gasa i tečnosti, izračunava se na dva načina:

•na osnovu odnosa mase i zapremine smeše pod uslovom da je protok faza homogen, odnosno da nema proklizavanja između gasne i tečne faze(Poettmann-Carpenter, Baxendell-Thomas) i

•na osnovu vrednosti koeficijenta zaostajanja za koji postoji više matematičkih izraza, zavisno o načinu izvođenja eksperimenata (Duns-Ross, Orkiszewski, Hagedorn-Brown itd.).

Page 30: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

I GRUPAKORELACIJA

II GRUPAKORELACIJA

III GRUPAKORELACIJA

Ne uzima se u obzir strukturaprotoka

Ne uzima se u obzir strukturaprotoka

Razmatra se struktura protoka

Ne razmatra se efekatproklizavanja gasa kroz tečnufazu. Zapreminska masa fluida

se računa pomoću GLR.

U proračun zapreminske maseje uključen efekat

proklizavanja

U proračun zapreminske maseje uključen efekat

proklizavanja

Pad pritiska se izračunava naosnovu faktora trenja pri

jednofaznom protoku

Gubici pritiska usled trenja seizračunavaju korišćenjem

karakteristika smeše fluida

Gubici pritiska usled trenja seizračunavaju korišćenjem

parametara kontinualne fazeAUTORI: AUTORI: AUTORI:

1. Poettmann-Carpenter2. Fancher-Brown3. Hagedorn-Brown I4. Baxendel-Thomas5. Gilbert6. Gaither i dr.

1. Krylov2. Moore Wilde3. Hagedorn-Brown II4. Griffith Wallis

1. Begas-Brill2. Duns-Ros3. Orkiszewski4. Aziz i dr.5. Chierici i dr.6. Kompozit modeli7. Mehanistički modeli

Page 31: DINAMIKA PROTOKA FLUIDA U BUŠOTINI

U daljem izlaganju detaljno će biti analizirane matematičke osnove ipraktična primena sledećih korelacija:

•Poettmann-Carpenter

•Hagedorn-Brown II

•Duns-Ros

•Orkiszewski

•Beggs-Brill

•Model sastava

•Gray (gasokondenzatne bušotine)