mehanika fluida. statika fluida

44
1 Mehanika fluida. Statika fluida. 6. i 7. novembar 2013 godine hidrodinamika (kretanje fluida) Mehanika fluida (hidromehanika) hidrostatika (mirovanje fluida)

Upload: vankhue

Post on 30-Dec-2016

567 views

Category:

Documents


17 download

TRANSCRIPT

Page 1: Mehanika fluida. Statika fluida

1

Mehanika fluida.Statika fluida.

6. i 7. novembar 2013 godine

hidrodinamika(kretanje fluida)

Mehanika fluida(hidromehanika)

hidrostatika(mirovanje fluida)

Page 2: Mehanika fluida. Statika fluida

• Neprekidni kontakt sa raznim vrstama fluida – gasovi i tečnosti

živa bića -vazduh, voda, krv, ...

tenika, mašine i uređaji- voda vazduh, ulje za podmazivanje, gorivo.

• Medjutim, ako bi trebalo da ukratko definišemo ovaj pojam potrebno je da se udubimo u strukturu supstance makar domolekularnog nivoa i u analizu ukljuvčiti medjumolekularne sile.

Naravno, prirodno će se pojaviti i niz pitanja, kao što su:

da li fluide možemo da opišemo zakonima koje smo već uveli u okviru mehanike ili moramo da uvedemo nove?

U klasičnoj mehanici definisan model - fluid je materija koja je neprekidna, kontinualna, fluidni prostor je potpuno ispunjen.

22

Pojam fluida

Page 3: Mehanika fluida. Statika fluida

33

Pojam fluida

gasovita tela – ni stalna zapremina , ni oblik

čvrsta tela –stalan oblik i zapremina

tečna tela –(manje-više) stalna zapremina ali ne i oblik

Page 4: Mehanika fluida. Statika fluida

44

Agregatna stanja prethodna podela - uslovna i veštačka

asfalt? čvrsto agregatno stanje?

kada se zagreje slojevi “teku” jedan preko drugoga –ponaša se kao tečnost

stanje supstance zavisi od uslova pod kojima se nalazi (voda)

Page 5: Mehanika fluida. Statika fluida

AGREGATNA STANJA MATERIJE

tri agregatna stanja materije na osnovu stepena razređenosti, tj. odnosa termalne energije čestica i energije međumolekulskih inetrakcija:

gasovito

tečno

čvrsto

Većina supstancija se može jednovremeno pojaviti u više agregatnih stanja. Postojanje datog agregatnog stanja ili prelazak sistema iz jednog u drugo, generalno zavisi od temperature T, pritiska P, kao i prirode sistema.

5

Page 6: Mehanika fluida. Statika fluida

6

Page 7: Mehanika fluida. Statika fluida

gasno - neznatan intezitet privlačnih sila između čestica u datoj zapremini pa se čestice slobodno i haotično kreću kroz masu gasa.

tečno - međučestične privlačne sile su znatno izraženije nego kod gasova. Međutim, one ne sprečavaju da se čestice neprekidno kreću kroz masu tečnosti, ali uslovljavaju da se one nalaze u kontaktnom okruženju jedne u odnosu na druge. Zbog toga tečnosti imaju konstantu zapreminu V, ali ne i oblik.

čvrsto - međučestične privlačne sile su toliko jake da prouzrokuju praktično stalnost kontaktnog okruženja čestica. Preovlađujuće kretanje čestica je oscilovanje unutar datog prostora ograničenog drugim, njima okružujućim, česticama. Zbog toga supstancije u čvrstom stanju imaju stalnost oblika i zapremine.

Plazma - Plazma je jonizovan gas koji se zbog jedinstvenih osobina smatra posebnim agregatnim stanjem materije. Odlike plazme su stepen jonizacije, temperatura, gustina i magnetna indukcija. Javlja se na veoma visokim temperaturama kada su, usled snažnih međusobnih sudara, atomi razloženi na elektrone i jone. U stanju plazme nalazi se unutrašnjost Sunca, u kojem dolazi do snažne termonuklearne fuzije pri čemu se oslobađa ogromna količina energije

7

Page 8: Mehanika fluida. Statika fluida

Ostala agregatna stanja Pored osnovnih agregatnih stanja (čvrsto, tečno, gasovito i

plazma) postoji i čitava serija međustanja,

koja se nazivaju i tečni kristali ili mezomorfna stanja,

koja su po svojim osobinama između tečnog i čvrstog stanja.

Praktično radi se o anizotropnim tečnostima, dakle, sistemima u kojima čestice imaju pokretljivost tečnosti ali prostorni raspored kristala.

8

Page 9: Mehanika fluida. Statika fluida

Peto agregatno stanje materijeBoze-Ajnštajnov kondenzat,

Novootkriveno stanje materije, takozvano "peto“ stanje materije, koje se zvanično naziva Boze-Ajnštajnov kondenzat, ne postoji u svemiru, već su uspeli da ga stvore fizičari u svojim laboratorijama na temperaturama 15 miliona puta manjim od apsolutne nule (-273°C) - najniže temperature u svemiru. Postojanje ovog oblika materije predvideli su čuveni fizičari Boze i Ajnštajn još dvadesetih godina prošlog veka, ali je tek 70 godina kasnije, 1995. godine, eksperimentalno dokazana mogućnost njegovog postojanja. Za ovaj eksperiment fizičari Kornel, Viman i Keterle su 2001. godine dobili Nobelovu nagradu.

Peto agregatno stanje materije predstavlja jedinstven sistem izrazito netipičnih osobina. Stvaranjem ovog stanja otkrivena je i mogućnost da se iz njega emituju pulsevi atoma kao što se iz lasera emituju pulsevi svetlosti, što otvara perspektive raznovrsnih primena - u pravljenju veoma preciznih mehaničkih mehanizama, sprava za precizno merenje rastojanja, kvantnih kompjutera daleko bržih od današnjih, itd.

9

Page 10: Mehanika fluida. Statika fluida

1010

Pojam fluida Fluid možemo definisati: na osnovu njegovog ponašanja

kada se nađu pod dejstvom sila sile mogu da deformišu telo na sledeće načine:

istezanje komprimovanje uvrtanje

čvrsta tela se veoma malo deformišu pod dejstvom sile nakon prestanka deformacije se vraćaju u prethodni oblik

fluidi uglavnom se lako deformišu i ne vraćaju se u prethodni oblik mogu da “teku”

fluid - stanje materije u kome ona može da teče i menja oblik i zapreminu pod dejstvom veoma slabih međumolekularnih sila

Page 11: Mehanika fluida. Statika fluida

1111

Agregatna stanja – fazerazličite faze materije i njihove osobine mogu da se razumeju ako se podje od analize sila izmedju atoma posmatrane materije.

Čvrsta faza - atomi se nalaze relativno blizu

sile (privlačne i odbojne)dozvoljavaju atomima samo da osciluju oko ravnotežnih položaja ali ne i da menjaju mesto na kome se nalaze

sile - slične elastičnim oprugama koje povezuju atome – istežu se i sabijaju ali ne kidaju

zato se materija u čvrstom agregatnom stanju malo deformiše, a nakon prestanka dejstva sila vraća u prethodni oblik

ne treba im sud da bi imala oblik

odijanje privlačenje

Ep

Fmedjumolekularno

r

Page 12: Mehanika fluida. Statika fluida

1212

Tečna faza– atomi se, kao i u čvrstom stanju, nalaze relativno blizu jedni drugima, ali mogu da se pomeraju kroz tečnost – menjaju susede

opire se sabijanju, ali mogu lako da se deformišu –promene oblik (tečnost nema otpornost na deformacije uvrtanja) - teku

međumolekularne sile su samo privlačne

ne dozvoljavaju atomima da lako napuste tečnost

kada se nalaze u sudu poprimaju njegovo oblik i formira se slobodna površina odozgo

Page 13: Mehanika fluida. Statika fluida

1313

u gasovima - atomi udaljeni jedni od drugih

sile koje deluju između njih – slabe, osim u sudarima

usled toga atomi – mogu da teku, da menjaju zapreminu – da se šire ili sabijaju;- neotporni na deformacije smicanja

iz otvorenog suda izlaze

Page 14: Mehanika fluida. Statika fluida

14

Supstanca u prirodi se nalazi u jednom od tri agregatna stanja :

čvrstom (kolekcija čestica koje pri dejstvu spoljašnjih poremećaja zadržavaju svoj oblik i zapreminu),

tečnom (kolekcija čestica koja zadržava svoju zapreminu, ali oblik formira prema posudi u kojoj se nalazi) ili

gasovitom (kolekcija čestica koja i oblik i zapreminu prilagođava posudi u kojoj se nalazi).

Međutim, postoji veliki broj supstanci koje u zavisnosti od pritiska i temperature mogu menjati agregatno stanje.

Generalno gledano, vreme potrebno da supstanca promeni oblik pri dejstvu spoljašnje sile određuje da li se data supstanca tretira

kao tečnost, gas ili čvrsto telo.

Fluid je kolekcija slučajno raspoređenih molekula koje na okupu drži slaba koheziona sila i zidovi suda u kom se

nalazi. I tečnosti i gasovi spadaju u fluide. 14

Page 15: Mehanika fluida. Statika fluida

15

Definicija fluida i pritiskaModel fluida u stanju mirovanja se pojednosatvljuje još i time što se uzima da u fluidu nema sila trenja između delića. Trenje se javlja tek pri kretanju fluida.

Pod nestišljivim fluidom, kao što je već napomenuto, smatraju se fluidi kod kojih je zapremina nepromenjljiva.

Idealan fluid je onaj fluid kod koga između delića nema trenja.

Stišljiv fluid je fluid kod koga su elestične sile dominantne, te zbog toga dolazi do promena zapremine. Model se najčešće primenjuje u dinamici gasova.

Realan fluid se karakteriše postojanjem i elastičnih sila i sila trenja.

15

Fizička svojstva fluida pogodno je da se podele u tri grupe: • mehanička (gustina (ρ), pritisak (p)) • termička (temperatura(t, T), unutrašnja energija (u),

entalpija (h ), specifična toplota (c)) • uzrokovana (viskoznost(η,ν), stišljivost (s,ε ),

površinski napon (γ), napon pare (pk), toplotno širenje(β), kavitacija (κ)).

Page 16: Mehanika fluida. Statika fluida

16

Definicija fluida i pritiska

Pritisak je specifično predstavljanje unutrašnih elastičnih sila u fluidu.

Posmatra se jedan proizvoljni prostor ispunjen fluidom. Ako se odstrani jedan njegov deo kao na slici dejstvo tog dela može se zameniti normalnom silom ∆Fn

Pritisak se definiše kao:

Osnovna jedinica pritiska

je Pa (paskal)

Prikaz definicije pritiska16

0lim n nS

F d Fp

S dS

Page 17: Mehanika fluida. Statika fluida

17

Gustina je osobina materije koja opisuje na koji način je „spakovana“ materija, tj. na koji način su povezani atomi i samim tim koju zapreminu zauzima određena masa materije:

ρ = m / V [kg/m3], ρ gustina materije , m označena masa, V zapremina materije čija gustina se određuje.

Stišljivost

Pod dejstvom pritiska fluidi menjaju zapreminu. Ova pojava definiše se kao svojstvo fluida. Smanjenje zapremine je u lineranoj zavisnosti od povećanja pritiska. Ovo svojstvo fluida iskazuje se koeficijentom stišljivosti. On se definiše na sledeći način:

Znak "minus" u jednačini ukazuje na to da se zapremina smanjuje pri povećanju pritiska.

Osnovna fizička svojstva fluida

17

Page 18: Mehanika fluida. Statika fluida

18

Osnovne razlike izmedju fluida i čvrstih tela:

fluidi mogu da teku i menjaju oblik zapremine pod dejstvom vrlo malih sila.

Fluidi se ponašaju kao elastične sredine samo pri njihovom svestranom sabijanju.

Hukov zakon za fluide: V

VEE VV

Gde je EV modul sabijanja, a njegova recipročna vrednost je koeficijent stišljivosti.

ρ=const nestišljive tečnosti ρ= ρ(p) stišljive (gasovi)

Još neke osobine fluidatemperaturno širenje, kapilarnost, napon pare,

površinski napon,..

Page 19: Mehanika fluida. Statika fluida

19

PritisakPomeranje fluida izazivaju sile koje deluju na izvesnu njihovu površinu

(zbog toga što nemaju stalan oblik). Zato je uvedena fizička veličina

pritisak (skalarna veličina) koja predstavlja odnos normalne sile F koja

deluje na površinu nekog tela S .

Jedinica za pritisak je Paskal ([Pa]=[N/m2]).

1 bar = 105 Pa

F

Page 20: Mehanika fluida. Statika fluida

20

Page 21: Mehanika fluida. Statika fluida

2121

Pritisak Pritisak u fluidima u stanju

mirovanja uvek deluje silama pod pravim uglom u odnosu na zidove (površi sa kojima je u kontaktu)

kad bi se javila dodatna koponenta sile koja ne bila pod pravim uglom , izazvala bi pomeranje delova fluda sve dok ta sila ne bila uravnotežena. Auto guma

Pritisak deluje na sve površine u fludima (zamišljene ili ne) pod pravim uglom.

Page 22: Mehanika fluida. Statika fluida

22

Pritisak u tečnosti (fluidu) može da potiče ili od težine same tečnosti ili od delovanja spoljašnje sile.

Paskalov zakon: Pritisak koji se spolja vrši na neku tečnost (ili, u opštem slučaju, na fluid) prenosi se kroz nju

nesmanjenim intenzitetom na sve strane podjednako.

Ukoliko u fluidu postoji više nezavisnih izvora pritiska,po Paskalovom principu, ukupan pritisak u fluidu biće jednak zbiru pritsaka stvorenih iz nezavisnih izvora.

Moguće je menjati intenzitet, pravac i smer delovanja sile pomoću tečnosti u zatvorenom sudu.

Page 23: Mehanika fluida. Statika fluida

23

Paskalov zakon

Rad pri pomeranju klipa

Pritisak na zatvoreni fluid se pre nosi podjednako na sve zidove suda

Page 24: Mehanika fluida. Statika fluida

2424

Paskalov zakon-primena-hidraulični sistemi

2 spojena cilindra, napunjena fluidom i zatvorena pokretnim klipovima

na približno istoj visini –nema dodatnog pritiska usled razlike u visinama

ako hoćemo veću silu –primenjujemo silu na manji cilindar što prenosi pritisak na veći na koji deluje veća sila

Primer: S2=5S1

silom od F1=100N, dobija se F2=500N

Page 25: Mehanika fluida. Statika fluida

25

Pascalov zakon → princip rada hidrauličkih uređaja (dizalica, presa, kočnice, ...)

Sila F2 veća je od F1 jer je S2 veće od S1.

Povećava se sila ali ne i iznos rada!

A=Fd

Veći cilindar se pomera na manje rastojanje pa je rad jednak uloženom (ako nema trenja).

Page 26: Mehanika fluida. Statika fluida

2626

Dizalica

Page 27: Mehanika fluida. Statika fluida

27

Hidrostatički pritisak

=pritisak uzrokovan težinom samog fluida

U tečnostima postoji pritisak koji je posledica delovanja gravitacione silena sve čestice (molekule) tečnosti. Svaki delić tečnosti svojom težinomvrši pritisak na deliće ispod njega.

Hidrostatički pritisak stuba tečnosti gustine ρ i visine h:

Page 28: Mehanika fluida. Statika fluida

2828

Promena pritiska sa dubinom Voda: ronioci: na svakih 10 m raste za po 1 atmosferu

(atmosferski pritisak na nivou mora)

Atmosferski: opada sa visinom – značajno za planinarenje i let avionima

zaključci: pritisak zavisi od dubine fluida

brže se menja u vodi nego u vazduhu

to bi moglo da ima veze sa gustinom fluida

posledica težine vazduha iznad površine Zemlje

• Standardni atmosferski pritisak Patm prosečna vrednost atmosferskog pritiska na nivou mora.

Page 29: Mehanika fluida. Statika fluida

29

Hidrostatički pritisak u fluidu zavisi samo od dubine h , ne zavisi od oblika, ukupne količine ili težine , ili

oblika površine fluida (tečnosti) u sudu.

Ako se iznad slobodne površine tečnosti nalazi atmosfera, tada je ukupan pritisak na dubini h jednak zbiru atmosferskog p0 i hidrostatičkog ρgh :

težina mg vgpritisak gh

površina A A

Page 30: Mehanika fluida. Statika fluida

Hidrostatički paradoks.

Ukupni pritisak u tri različite posude na istoj dubini h jednak - ne zavisi od oblika posude, zapremine vode (težina stubova tečnosti), niti od površine suda.

Kako je to moguće?

30

Tečnost deluje normalnom silom na zidove suda. Silom istog intenziteta i pravca ali suprotnog smera i zidovi suda deluju na tečnost.

Ako bi tu silu razdvojili na horizontalnu i vertikalnu komponentu, horizontalne komponente bi se poništavale (suprotnih su smerova), a ostalo bi samo dejstvo vertikalnih komponenti koje su u ovom slučaju orijentisane vertikalno naviše pa praktično eliminišu težinu tečnosti u tom delu. Na taj način samo težina vertikalnog stuba tečnosti iznad posmatranog preseka utiče na pritisak.

Page 31: Mehanika fluida. Statika fluida

31

Zakon spojenih sudova

Koliki je pritisak u tačkaima

A, B, C, D?

U medjusobno spojenim posuda nivo tečnosti u svim posudama je istibez obzira na oblik posuda – jer je hidrostatski pritisak jednak u svimtačkama na istoj dubini.

Page 32: Mehanika fluida. Statika fluida

32

Zakon spojenih sudova

- dvije različite tečnosti, ρ1, ρ2

gustina nepoznate tečnosti ρ2

Prema zakonu spojenih sudova rade uredjaji za merenje pritiska :

- manometri, barometri

Page 33: Mehanika fluida. Statika fluida

33

Način rada manometra= korišćenje zakona za hidrostatski pritisak

Page 34: Mehanika fluida. Statika fluida

34

Potisak. Arhimedov zakon.

Na sva tela potopljena u tečnost deluje sila suprotnog smera od gravitacione, koja teži da istisne telo iz tečnosti - sila potiska.

Sila potiska je posledica činjenice da hidrostatički pritisak raste sa dubinom, tj. njen uzrok je razlika u hidrostatičkim pritiscima koji na uronjeno telo deluju na njegovoj gornjoj i donjoj strani.

x

p0

Page 35: Mehanika fluida. Statika fluida

35

Potisak. Arhimedov zakon.Svako telo uronjeno u tečnost prividno gubi od svoje težine toliko koliko teži istisnuta tečnost – Arhimedov zakon.

Efektivna težina tela (gustine ρt )

potopljenog u tečnost (fluid, gustine ρf ):

Page 36: Mehanika fluida. Statika fluida

36

Primer:

Koliki deo ledene sante viri iznad morske površine?

Gustina leda je 900 kg/m3, a gustina morske vode 1020 kg/m3.

V= 0,118 VV= 0,118 V

V2/V= 11,8% sante leda viri iznad morske površine

Page 37: Mehanika fluida. Statika fluida

37

Atmosferski pritisak

= pritisak zbog sopstvene težine stuba vazduha iznad Zemljine površine

Podpritisak- Otto von Guerick (1602 – 1682); magdeburške polulopte (2x8 konja)

Pribor:

Dve jednake čaše, sveća, upijajući papir.:Izvođenje pokusa:

U donju čašu stavite sveću, pa zatim odozgo drugu čašu. Između čaša stavite upijajući papir natopljen vodom. Posle kraćeg vremena sveća se gasi zbog nedostatka kiseonika- U čašama se stvorio podpritisak. Spoljašnj pritisak pritiska čaše jednu uz drugu. Ako podignemo gornju čašu, za njom se podiže i donja čaša i nije ih lako razdvojiti. Sličan ogledizveo je Otto von Guericke 1656. godine u Magdeburgu s dvije bakrene polulopte koje su razvlačile dvije grupe od po 8 upregnutih konja.

podpritisak

Page 38: Mehanika fluida. Statika fluida

38

U gasovima su međumolekulske sile slabe, a potencijalna energija koja teži da ih drži na okupu je manja od njihove kinetičke energije.

Nemaju stalan oblik ni zapreminu.

Pritisak u zatvorenim gasovima se prenosi podjednako u svim pravcima važi Paskalov zakon.

I u gasovima deluje sila potiska, ali je ona, zbog njihove male gustine,relativno mala.

Atmosferski pritisak

• Pritisak koji vrše gasoviatmosfere na sva tela naZemlji naziva se atmosferski pritisak.

Na nivou mora

Atmosferski pritisak

Page 39: Mehanika fluida. Statika fluida

Jedinice za pritisak koje nisu SI ali su u upotrebi:

E. Torricelli (1608 -1647)

p0 =gh=13 595,1 kg/m3 • 9,80665 m/s2 • 0,760 m

p0 = 101325 Pa ≈ 105 Pa

Normalni atmosferski pritisak iznosi:

101 325 Pa = 1 013,25 mbar = 760 tora =760 mm Hg

Tehnička atmosfera: 1 at = 98 066,5 Pa

Fizička atmosfera: 1atm = 101 325 Pa

Bar: 1 bar = 105 Pa

Tor: 1 tor = 1 mm Hg

Page 40: Mehanika fluida. Statika fluida

40

Atmosferski pritisakBarometarska formula – opadanje pritiska sa nadmorskom visinom

p0, ρ0 - pritisak i gustina vazduha na površini Zemlje.

Page 41: Mehanika fluida. Statika fluida

41

Barometarska formula –

opadanje pritiska sa nadmorskom visinom

Uz pretpostavku da se temperatura atmosfere ne menja sa visinom, može se izvesti tzv. barometarska formula:

Page 42: Mehanika fluida. Statika fluida

42

Površinski napon

Spontana težnja, u prirodi, za minimumom potencijalne energije usloviće da slobodna površina tečnosti ima minimalnu vrednost. Kap vode teži sfernom obliku, jer od svih tela iste zapremine sfera ima najmanju površinu.

Ovaj efekat smanjivanja granične površine javlja se između bilo koja dva fluida i naziva se površinski napon,

(naziv je dobio po sličnoj težnji zategnute membrane od gume, mada su u pitanju dva različita efekta).

Page 43: Mehanika fluida. Statika fluida

43

Površinski napon

Površinski napon je pojava narušavanja ravnoteže privlačnih međumolekulskih sila u površinskom (tj. graničnom) sloju u tečnostima.

Usled postojanja površinskog napona,

tečnosti teže da smanje svoju slobodnu površinu.

Koeficijent površinskog napona je rad na dovođenju molekula tečnosti na površinu koji je potrebno izvršiti za jedinično povećanje slobodne površine tečnosti.

Page 44: Mehanika fluida. Statika fluida

44