digital circuits & fundamentals of microprocessor

86
Nagpur Institute of Technology, Nagpur Department of Computer Science & Engineering Question Bank with Solutions Digital Circuits & Fundamentals of Micro Processor (III Sem-CSE) Compiled By Ms. Shital Tiwaskar Email: [email protected]

Upload: freeprog

Post on 12-Mar-2015

456 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Digital Circuits & Fundamentals of Microprocessor

Nagpur Institute of Technology, Nagpur

Department of Computer Science & Engineering Question Bank with Solutions

Digital Circuits & Fundamentals of Micro Processor

(III Sem-CSE) Compiled By

Ms. Shital Tiwaskar Email: [email protected]

Page 2: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Q.1) Perform the following conversions.

I] (110101.011) binary = (?) decimal Solutions: = 4321012345 21212120212021202121 −−−− ×+×+×+×+×+×+×+×+×+× Ans: ( )decimal4375.53

a] ( ) ( )DO ?7

2273.155.2

=⎟⎟⎠

⎞⎜⎜⎝

⎛×

Solutions: (15.73) octal = 2101 83878581 −− ×+×+×+×

= (13.92136) decimal

(22) octal = 01 8282 ×+× = (18) decimal

(7) octal = 087 × = (7) decimal

(2.5)octal = ( )10 8582 −×+× =(2.653)decimal

Ans: decimal

⎟⎟⎠

⎞⎜⎜⎝

⎛×

653.2

71892136.13

b] ( )( ) DHDCA (?)2110 =÷

Solutions: (110)H = ( )012 160161161 ×+×+×

= (272) decimal (2A) H = ( )01 16162 ×+× A

= (42)D (DC)H = ( )01 1616 ×+× CD

= (220)D Ans: ( ) ( )[ ]decimal

22042272 ×

Page 3: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

IV] (243.62) D = (?) octal Solutions:

Ans: ( )O4753.363

c] ( ) ( )H?25.9310 10=

Solutions:

Decimal no × Base (8) = Quotient

result

0.25 × 16 = 4.0 Ans: ( )HE 4.245

VI] ( ) ( )HO ?45.273 =

Solutions: ( ) ( ) ( )HBO ==

(273.45) = (0 10 11 1011 . 1001 01)

Ans: ( )HBB 94.0

d] (10110111) gray = (?)B

Solutions:

Decimal no ÷ Base (8) = Quotient Remainder

243 ÷ 8 = 30 3 30 ÷ 8 = 3 6 3 ÷ 8 = 0 3

Decimal no ÷ Base (8) = Quotient

Remainder

9310 ÷ 16 = 581 14 581 ÷ 16 = 36 5 36 ÷ 16 = 2 4 2 ÷ 16 = 0 2

Page 4: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

1 0 1 1 0 1 1 1

1 0 1 0 0 1 0 1 Ans: ( )B10100101

e) i] BCD Additions: ( ) ( )DD 9.7432.256 +

Solutions: 0 0 1 0 0 1 0 1 0 1 1 0 . 0 0 1 0

0 1 1 1 0 1 0 0 0 0 1 1 . 1 0 0 1

1 0 0 1 1 0 0 1 1 0 0 1 . 1 0 1 1 (invalid BCD)

0 0 0 0 0 0 0 0 0 0 0 0 . 0 1 1 0

1 0 0 1 1 0 0 1 1 0 1 0 . 0 0 0 1 (invalid BCD)

0 0 0 0 0 0 0 0 0 1 1 0 . 0 0 0 0

1 0 0 1 1 0 1 0 0 0 0 0 . 0 0 0 1 (invalid BCD)

0 0 0 0 0 1 1 0 0 0 0 0 . 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 . 0 0 0 1 (invalid BCD)

0 1 1 0 0 0 0 0 0 0 0 0 . 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 1 (Valid BCD)

Ans: ( )1.10001

Decimal no × Base (8) = Quotient

result 0.62 × 8 = 4.96 0.96 × 8 = 7.68 0.68 × 8 = 5.44 0.44 × 8 = 3.52

Page 5: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

f] BCD Subtraction

(76.53)D – (59.27)D

Solutions: 0 1 1 1 0 1 1 0 . 0 1 0 1 0 0 1 1

0 1 0 1 1 0 0 1 . 0 0 1 0 0 1 1 1

0 0 0 1 1 1 0 1 . 0 0 1 0 1 1 0 0 (invalid BCD)

0 0 0 0 0 1 1 0 . 0 0 0 0 0 1 1 0

0 0 0 1 0 1 1 1 . 0 0 1 0 0 1 1 0 (valid BCD)

Ans: ( )decimal26.17

g] (253) D – (315) D Solutions:

(253)D + (315)D (?)D (253)D = (128 + 64 + 32 + 16 + 8 + 4 + 1)

=(11111101)B

(315)D= 256 + 32 + 16 + 8 + 2 +1

=(100111011)B

(+253) (+315)

1’s Compliment of (315)D = ( 1 0 1 1 0 0 0 1 0 0 )

+ 1

2’s Compliment of (315)D = ( 1 0 1 1 0 0 0 1 0 1 )B

= (-315)D

(+253)D + (-315)D

=

0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 1 1 0 1 1

0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0

Page 6: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Verification:- (z)=

1’s Compliment =

+ 1

h] Excess 3 Code Additions i] (956.2) D + (873.4)D

(?)D Solutions:

1 1 0 0 1 0 0 0 1 0 0 1 . 1 0 1 0

1 0 1 1 1 0 1 0 0 1 1 0 . 0 1 1 1

1 0 0 0 0 0 1 0 1 1 1 1 . 1 1 0 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 . 0 0 1 1

0 1 0 0 1 0 1 1 1 1 0 1 . 1 1 0 0 1 0 0 1

1 8 2 . 9 6

i] Excess 3 code Subtractions (47.59)D - (28.38)D

(?)D Solutions: 0111 1010 . 1000 1100

0101 1011 . 0110 1011

0001 1111 . 0010 0001

0011 0011 . 0011 0011

0000 0000 . 1111 0100

1 1 1 1 0 0 0 0 1 0

0 0 0 0 1 1 1 1 0 1

0 0 0 0 1 1 1 1 1 0

Page 7: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Q.2) a] Why NAND gate and NOR gates are called universal gates? Answer: all the logical ckt. are made by using basic 3 logic gates OR, AND, NOT gates, by using only NAND gate . We can design these 3 basic gates OR, AND, NOT gates. Hence any logical ckt. can be completely by using only NAND gate. So NAND gate is called UNIVERSAL gate. Similarly, OR, AND, NOT gate can be designed by using only NOR gats, so any logical ckt. can be completely designed by using only NOR gates. Hence NOR gate is also universal gate.

(a) NAND gate as universal gate: 1] Not gate using NAND gate.

Input AAAY == . NOT gate is obtained by shorting by both the input of NAND gate as shown in fig.

2] AND gate using NAND gate:

AND gate is opposite of NAND gate. So, AND gate is Obtained by Connecting NOT at the output of NAND gate as shown in fig.

3] OR gate using NAND gate:

The output of NOR gate is BABABAY .=+=+= [de-morgan’s 1st thermo then]………….. (1) The logical ckt. og eg.(1) can be obtained by using NAND gate. OR, AND, NOT gate are designed by using only NAND gate. So, NAND gate is Universal.

(a) NOR gate as universal gate: 1] NOT gate using NOR gate:

i/p AAAY =+= NOT gate is obtained from NOR gate by shorting both inputs as shown in fig.

2] OR gate using NOR gate:

OR gate is opposite of NOR gate. So, gate is obtained by connecting NOT gate at the output of NOR gate as shown in Fig. 3] AND gate using NOR gate:

Page 8: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

The output of 2 input AND gate is BABAY +== . [De- morgans 2nd theorem]…………..(2) The logical ckt. of eg.(2) can be obtained by using NOR gate as shown in fig. Q.2) b] Prove that:

( )[ ] ( )[ ]( )[ ] ( )[ ]

( ) ( )

...

1.1...

....

.....

...

SHRBA

BABAABBA

BABABABA

BABABASHL

BABABABA

=+=

+=+++=

+++=

++=

+=++

2)

( ) ( )[ ]

[ ]SHR

NGPLUSANYTHIAAXYZXYZZY

XXZYXYZXYZ

XYZZXYXYZZYXSHL

XYZZXYXYZZYX

..111

111

..

1

==∴=

=+∴=+∴+=

+++=

+++=

=+++

Q.2 ) c] State principal of duality. Answer: Principal of duality is used for writing dual equations or for designing dual ckt. for a given local equations, replace each term on L.H.S. and R.H.S. by the corresponding dual terms. The equations obtained will be dual equation of the given equations. Similarly, if any logical ckt. is given then replace each gate by corresponding dual gate. The logical ckt.obtained will be dual of the given ckt. In dual logical ckt. the output will be dual of each other. The different dual terms and dual gates are given in the table below, 0 1

OR gate AND gate

+ .

NOR gate NAND gate

X-OR gate X-NOR gate

Page 9: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

(+) (.)

De-morgans 1st theorem Demorgans 2nd theorem

Product term(.) Sum term (+)

SOP equations POS equations

Q.2) d] Prove that De-morgans theorem.

Answer: DEMORGANS FIRST THEROM:

The logical equations of De-morgans 1st theorem for two input is, BABAY .=+= ……..(1)

Similarly for 3 inputs is, CBACBAY ..=++= ……………(2)

STATEMENT: De-morgans first theorem state that complement of ORing will be equal to the ANDing of complements. PROOF: De-morgans first theorem can be proved by using truth table.

Truth table: Inputs A B (A+B) ( )BA +

(L.H.S)

BA . (R.H.S) A B

0 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0

As L.H.S. =R.H.S. of equations (1) hence 1st theorem is proved that. The logical Ckt. of L.H.S. and R.H.S. is shown in fig. below.

= BAY += BABA .=+ NOR gate L.H.S = Bubbled input AND gate R.H.S DE-MORGANS SECOND THEROM:

The logical equations of De-morgans 2nd theorem for two input is, BABAY +== . ……..(3)

Similarly for 3 inputs is, CBACBAY ++== .. ……..(4)

STATEMENT: De-morgans second theorem state that complement of ANDing will be equal to the ORing of complements. PROOF: De-morgans second theorem can be proved by using truth table.

Page 10: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

As LThe

Q.3 aSoluHenc

7*7=

As obits

If a 6 bit Desi

estion Ban

pur Institute o

Truth tab

L.H.S. =R.H.S

logical Ckt. o

BAY .=

NAND

a] design a sution: as i/pce the maxi

= (49) = 32+ (11

o/p is of 6 bas given in

logical ckt ts, we have

ign for Y5 A BC BC

A

A

0 m0

0 m4

nk : DCFM

of Technolog

ble: Inp

A 0 0 1 1

S. of equationof L.H.S. and

gate L.H.S

squaring cktp is a 3 bits imum value

+16+1 10001)Binarybits so we ha the truth taInputs A B C 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

is designedto design lo

CB

0 0

m1 0

4 0

m5 1

M III Sem 

gy, Nagpur 

puts B 0 1 0 1

ns (3) hence d R.H.S. is s

= = Bu

t. Which will so the maxof o/p will

y ave to desigable.

Dec. X0 1 2 3 4 5 6 7

d using k maogical ckt. F

BC CB

0 m3

0 m

1 m7

1 m

 CSE 

A B

1 1 0 0

2nd theorem shown in fig.

ABA =.

ubbled input

generate squimum vale be,

gn a logical

no. X

ap then we wFor each o/

C

AY 5 =

m2

m6

B (A.B

1 00 11 10 1 is proved thabelow.

BA +

OR gate R.H

uare of the 3be (ABC) =

ckt. In whi

Output X2 0 1 4 9

16 25 36 49

will get onlp bit separa

B.

B) ( BA.(L.H.

1000

at.

H.S

bit no. appli= (111) = (7

ich i/p will

Y5 Y 0 0 0 0 0 0 1 1

ly one bit ouately.

)B S)

BA +

(R.H

1 0 0 0

ied at the i/p7)Binary

be of 3 bits

Binary outpuY4 Y3 Y2 Y0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0

utput. Henc

C+ H.S)

p?

s and o/p wi

ut Y1 Y0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

ce for obtain

ill be of 6

ning o/p of

Page 11: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for Y4 A BC BC CB BC CB A

A BAY =4 + AC

Design for Y3 A BC BC CB BC CB A A CBABCAY +=3

Design for Y2 A BC BC CB BC CB A A CBY =2

Design for Y1 A BC BC CB BC CB A A 01=Y

Design for Y0 A BC BC CB BC CB A A CY =0

0

m0

0

m1

0

m3

0

m2 1

m4

1

m5

1

m7

0

m6

0 mo

0 m1

1 m3

0 m4

0 m5

1 m6

0 m7

0 m6

0 mo

0 m1

0 m3

1 m4

0 m5

0 m6

0 m7

1 m6

0 mo

0 m1

0 m3

0 m4

0 m5

0 m6

0 m7

0 m6

0 mo

1 m1

1 m3

0 m4

0 m5

1 m6

1 m7

0 m6

Page 12: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Logi

Obta

A

estion Ban

pur Institute o

ical ckt.

aining from eq

A B

nk : DCFM

of Technolog

q. (1) to (6) an

B

Gnd.

M III Sem 

gy, Nagpur 

nd it is shown

B C

 CSE 

n in the fig. be

C

Gnd.

elow.

Y

Y Y

Y

Y5

Y2 Y1

Y0

Y4

Y3S

Page 13: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Q.3.equiSolu

Desig

A

A Logi

A

0

0

0

1

1

1

1

estion Ban

pur Institute o

.b] Design aivalent Grautions:

The i/p w

gn for G2 A BC BC

A

A

ical Ckt:

INPUT

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 mo 1

m5

nk : DCFM

of Technolog

a Code Conay Code.

will be 3 bit

CB

OUTP

G2 G1

0 0

0 0

0 1

0 1

1 1

1 1

1 0

1 0

0 m1 1

m6

M III Sem 

gy, Nagpur 

nverter Wh

t binary no.

D

D

BC CB

PUT

1 G0

0

1

1

0

0

1

1

0

0 m3 m1

m7 m

 CSE 

hich Will C

. ABC . so,

Design for G0 A BC A

A

Design for G1 A BC A

A

C

G =2

m

m

0 m4 1

m6

onvert 3 Bi

the o/p gray

0 C BC B

1

BC CB

A=

0 mo

1m1

0 m4

1m5

0 mo

0 m1

1 m4

1 m5

its Binary N

y code will

C BC

BC

1

0 m3

5

0 m7

1 m3 0

m7

N0. Applie

also be of

CB

CB

1 m2 1

m6

1 m2 0

m6

s at the Inp

3 bits i.e., G

BCBG +=0

BAG +=1

put into

G2 G1 G0

CB

BA+

.

Page 14: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Q.3 Solu

INP

Desig Desig Desig Logi

estion Ban

pur Institute o

C] Design utions:

PUT GRAY G2 G1 G

0 0 00 0 10 1 10 1 01 1 01 1 11 0 11 0 0

gn for B2 A BC A

A

gn for G1 A BC BC A

A

gn for G0 A BC

A

A

ical Ckt:

0m1

m

0 mo1

m4

nk : DCFM

of Technolog

a NAND ga

CODE OG0 0

0 0

0

BC CB

C CB

BC CB

0 mo

0 m1

1 m5

1 m6

o 0

m1

4 1

m5

0 mo

1m

1 m4

0m

M III Sem 

gy, Nagpur 

ate ckt. To

OUTPUT BI B2

0 0 0 0 1 1 1 1

BC

BC

C BC

0 m3 1

m7

1 m3 0

m7

1 m1

0 m3

0 m5

1 m7

 CSE 

convert 3 b

INARY NUM B1 B0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1

CB

CB

B

CB

0 m4 1

m6

1 m2 0

m6

1 m2 0

m6

bit gray co

MBER

AB =2

ABAB +=1

CABB =0

de into equ

BA

BACBA ++

uivalent 3 b

ABCBC +

bit binary n

numbers.

Page 15: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Q.3 d] Design a NAND gate ckt. To detect illegal or invalid BCD number applied at the input.

Solutions: if 4 bit number ABCD applied at the input is valid BCD(0000 to 1001)then output Y should be zero. If input ABCD is invalid BCD (1010 to 1111) then output should be 1. Truth Table:

Valid BCD

Invalid BCD

Design k-map : AB CD CD DC CD DC

AB

BA

AB

BA

ABACY +=

Inputs Output Symbol of Output A B C D Y

0 0 0 0 0 m0 0 0 0 1 0 m1 0 0 1 0 0 m2 0 0 1 1 0 m3 0 1 0 0 0 m4 0 1 0 1 0 m5 0 1 1 0 0 m6 0 1 1 1 0 m7 1 0 0 0 0 m8 1 0 0 1 0 m9 1 0 1 0 1 m10 1 0 1 1 1 m11 1 1 0 0 1 m12 1 1 0 1 1 m13 1 1 1 0 1 m14 1 1 1 1 1 m15

0 mo

0 m1

0 m3

0 m2

0 m4

0 m5

0 m7

0 m6

1 m12

1 m13

1 m15

1 m14

0 m8

0 m9

1 m11

1 m10

Page 16: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Logi

Q.3.codeSolubelo

f thecorr

Desig

estion Ban

pur Institute o

ical Ckt: A B

. E] Designe. utions: The w.

e , 4 bit numesponding o

gn k-map for AB CD

AB

BA

AB

BA

nk : DCFM

of Technolog

C D

a code con

truth table

As 4 bit

mber from 1output bits.

r Y3: CD

Deci

0 m0 0

m4 X

m12 1

m8

M III Sem 

gy, Nagpur 

nverter whi

showing de

input ill be

010 to 111m 10 to m

DC

mal digit

0 1 2 3 4 5 6 7 8 9

0 m1 m1

m5 mX

m13 X

m1

m9 X

m

 CSE 

ich convert

ecimal digit

BCD numb

1 will not b15= X(don’

CD DC

BCD A B

0 00 00 00 00 10 10 10 11 01 0

0 m3

0m2

1 m7

1m6

X m15

Xm1

X m11

Xm1

t 4 bit BCD

, BCD num

ber from 00

e applied at’t care).

D

Y =3

D Input B C D0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1

2

6

4

0

ACY =

input num

ber input an

00 to 1001

t the input.

BCBDA ++

X- Y3 Y

0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1

AB+

mber into co

nd required

, heance res

So have to

C

S3 output 2 Y1 Y0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0

orrespondi

X-S3 code

set o

take the

ng X-S3

given

Page 17: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design k-map for Y2: AB CD CD DC CD DC AB

BA

AB

BA CBDBCDBY ++=2

Design k-map for Y1: AB CD CD DC CD DC

AB

BA

AB

BA CDCDY +=1

Design k-map for Y0: AB CD CD DC CD DC

AB

BA

AB

DY =0 BA

0 m0

1 m1

1 m3

1 m2

1 m4

0 m5

0 m7

0 m6

m12

X m13

X m15

X m14

0 m8

1 m9

X m11

X m10

1 m0

0 m1

1 m3

0 m2

1 m4

0 m5

1 m7

0 m6

X m12

X m13

X m15

X m14

1 m8

0 m9

X m11

X m10

1 m0

0 m1

0 m3

1 m2

1 m4

0 m5

0 m7

1 m6

X m12

X m13

X m15

X m14

1 m8

0 m9

X m11

X m10

Page 18: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Logi

Q.3 inpuSolu

m10

estion Ban

pur Institute o

ical Ckt:

F] Design Nut. ution:

A0000000011

0 TO m15=X

nk : DCFM

of Technolog

NAND gate

Input BCDnumber

A B C 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 0

X(DON’T C

M III Sem 

gy, Nagpur 

e ckt. To ob

D Decimdig

D X0 01 10 21 30 41 50 61 70 81 9

CARE)

 CSE 

btain 9’s co

mal git comX

ompliment

9’s mpliment

9-X 9 8 7 6 5 4 3 2 1 0

of the 4 bit

9’s com

Y3 1 1 0 0 0 0 0 0 0 0

t BCD num

mpliment o

Y2 Y1 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0

mber applied

output

Y0 1 0 1 0 1 0 1 0 1 0

d at the

Page 19: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design k-map for Y3: AB CD CD DC CD DC

AB

BA

AB

ABCY =3 BA

Design k-map for Y2: AB CD CD DC CD DC

AB

BA

AB

CBCBY +=2 BA Design k-map for Y1: AB CD CD DC CD DC

AB

BA

AB

BA CY =1 Design k-map for Y0: AB CD CD DC CD DC AB

BA

AB

BA DY =0

1 m0

1 m1

0 m3

0 m2

0 m4

0 m5

0 m7

0 m6

X m12

X m13

X m15

X m14

0 m8

0 m9

X m11

X m10

0 m0

0 m1

1 m3

1 m2

1 m4

1 m5

0 m7

0 m6

X m12

X m13

X m15

X m14

0 m8

0 m9

X m11

X m10

0 m0

0 m1

1 m3

1 m2

0 m4

0 m5

1 m7

1 m6

X m12

X m13

X m15

X m14

0 m8

0 m9

X m11

X m10

1 m0

0 m1

0 m3

1 m2

1 m4

0 m5

0 m7

1 m6

X m12

X m13

X m15

X m14

1 m8

0 m9

X m11

X m10

Page 20: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Logi

Q.3 Solu

estion Ban

pur Institute o

ical Ckt:

G] Design utions:

AB CD AB

BA

AB

BA

nk : DCFM

of Technolog

NAND gate

CD C

1 m0 m0

m4 m1

m12 m0

m8 m

M III Sem 

gy, Nagpur 

e ckt. For t

DC CD

1 m1

X m3

1 m5

X m7

0 m13

X m15

1 m9

X m11

 CSE 

the function

D DC 0

m2 0

m6

5 0

m14

0

m10

n f= ∑m(0

CABF =

0,1,5,9,12 )+

ABCCD ++

+ d(3,7,11,1

DADB +

15)

Page 21: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Logi

Q.3

For

Solu“f”. k-maDesig

estion Ban

pur Institute o

ical Ckt:

h] Design N

the functio

utions: the fBut don’t c

ap for functgn k-map: AB CD

AB

BA

AB

BA

nk : DCFM

of Technolog

NAND gate

on f’.

functions “fcares will retions f is,

CD C

X m0 1

m4 X

m12 X

m8

M III Sem 

gy, Nagpur 

e ckt. For t

f” is opposiemain uncha

DC CD

0 m1 m1

m5 m1

m13 m0

m9 m

 CSE 

he function

ite of “f’”. Hanged. Henc

D DC 1

m3 0

m20

m7 1

m60

m15 1

m141

m11 1

m10

n f= ∑m(1,

Hence logicce f’= (3,4,

Bf =

2

6

4

0

,2,7,9,15 ) +

c zero of fun5,6,10,11,1

ACBDB ++

+ d(0,8,12)

nction. “f w3,14) + d(0

CDBCBA +

design NAN

will be logic,8,12)

ND ckt.

c input in

Page 22: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Logi

Q.3

Solumaxfor 4

estion Ban

pur Institute o

ical Ckt:

i] Design a

utions: The imum value4 bit output

nk : DCFM

of Technolog

a multiplier

maximum ve of output r.

in A1 A (A) (B)

0 00 00 00 00 10 10 10 11 01 01 01 01 11 11 11 1

M III Sem 

gy, Nagpur 

r ckt. which

value of inpresult will b

nput 0 B1 B0 ) (C) (D)

0 0 0 0 0 1 0 1 0 0 1 1

0 0 0 1 1 0 1 1

0 0 0 0 0 1 0 1 0 0 1 1

0 0 0 1 1 0 1 1

 CSE 

h will mult

put 2 bit numbe (A1A0)*

Decimal

(A1A0)

0 *0 *0 *0 *1 *1 *1 *1 *2 *2 *2 *2 *3 *3 *3 *3 *

iply 2 num

mber will b(B1B0)=3*

result

*(B1B0)

0 = 0 1 = 0 2 = 0 3 = 0 0 = 0 1 = 1 2 = 2 3 = 3 0 = 0 1 = 2 2 = 4 3 = 6 0 = 0 1 = 3 2 = 6 3 = 9

ber A1A0*

e A1A0 = (3=9=(1001)

Binary resY3 Y2 Y1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0

B1B0

(11)B =(3)D)B. So we h

sult 1Y0

0 m0 0 m1 0 m2 0 m3 0 m4 1 m5 0 m6 1 m7 0 m8 0 m9 0 m10 0 m11 0 m12 1 m13 0 m14 1 m15

D=B1B0. Hehave to desi

ence the gn the ckt

Page 23: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design k-map for Y3:

AB CD CD DC CD DC AB

BA

AB

ABCDY =3 BA

Design k-map for Y2:

AB CD CD DC CD DC AB

BA

AB

CBADACY +=2 BA

Design k-map for Y1:

AB CD CD DC CD DC AB

BA

AB

BCADBCDCADBAY +++=1 BA

Design k-map for Y3: AB CD CD DC CD DC AB

BA

AB

0 m0

0 m1

0 m3

0 m2

0 m4

0 m5

0 m7

0 m6

0 m12

0 m13

1 m15

0 m14

0 m8

0 m9

0 m11

0 m10

0 m0

0 m1

0 m3

0 m2

0 m4

0 m5

0 m7

0 m6

0 m12

0 m13

0 m15

1 m14

0 m8

0 m9

1 m11

1 m10

0 m0

0 m1

0 m3

0 m2

0 m4

0 m5

1 m7

1 m6

0 m12

1 m13

0 m15

1 m14

0 m8

1 m9

1 m11

0 m10

0 m0

0 m1

0 m3

0 m2

0 m4

1 m5

1 m7

0 m6

0 m12

1 m13

1 m15

0 m14

0 m8

0 m9

0 m11

0 m10

Page 24: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Logi

Q.4)

Soluoutp

(((

DES

The com

Usin

Desig

estion Ban

pur Institute o

BA

ical Ckt:

) a] Design

utions: Comput result.

(a) One bit (b) One bit (c) One bit

SIGN OF SI

truth tableparator is

ng two inpu

gn k-map for .A B

nk : DCFM

of Technolog

BDY =3

and explai

mparator is

for A < B for A > B for A = B

INGLE BIT

e showing tgiven below

uts K-map ,

r (A < B) B

0

M III Sem 

gy, Nagpur 

in of two bi

a device w

T COMPAR

two single bw,

2 i/p nu

A

0 0 1 1

, we have to

B

1

co

 CSE 

it compara

which will c

RATOR

bit number

umber

B

0 1 0 1

o design th

 One bit omparator 

tor.

compare th

A < A > A=B

r A and B a

O

A < B

0 1 0 0

hree differe

e given two

B B

B

and the corr

Output

A = B A

1 0 0 1

nt ckt. For

o input num

responding

A > B

0 0 1 0

r 3 bit outp

mber and g

g output of

ut.

ives 3 bit

Page 25: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Desig

Desig

Logi

Q.4

SoluLetsIf thapplcondA<B

So, (A=B

So, (A>B

So, (Two

estion Ban

pur Institute o

A

A (A <

gn k-map for .A B A

A

gn k-map for .A B A

A

ical Ckt:

b] Design a

utions: Two first numb

he first two ied first on

ditions for tB:-

(A1<B1)(A<B) = (A

B:- (A1=B1)

(A=B) = (AB:-

(A1>B1)(A>B) = (A

o bit compar

nk : DCFM

of Technolog

) BAB =<

r (A = B) B

r (A > B) B

and explain

o bit comparer A=A1 A0bit number e bit compa

three bit out

)OR [(A1=BA1<B1) + [(A

)AND (A0=A1=B1). (A0

)OR [(A1=BA1>B1) + [(Arator using

0

1

0

0

1

 One b

compara

M III Sem 

gy, Nagpur 

B

(A

B

(A

n of two bit

rator is used0 and seconis A=A1 A

arator and Ltput of com

B1) AND (AA1=B1). (A

=B0) 0=B0)………

B1) AND (AA1=B1). (Aone bit com

0

0

1

0

0

it ator 

 CSE 

) ABB +==

) BAB =>

t comparat

d to comparnd number B0 and the se

LSB’s A0,Bmparator are

A0<B0)] A0<B0)]……

………… (2)

A0>B0)] A0>B0)]……mparator is o

A1 < B1

AB+

or.

re two numbB=B1B0. econd bit nu0 are appliegiven below

…………… (

)

…………. (3obtaining fr

bers of two

umber B=Bed to secondw.

(1)

) rom equatio

O

com

bits each.

1 B0,then thd one bit co

ns 1,2,3 an

 One bit mparator 

he MSB’s Aomparator. T

d it is show

A0 <

A1,B1are The

wn in below,

B0

,

Page 26: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Desig

estion Ban

pur Institute o

A1

B1

gn k-map for AB CD

AB

BA

AB

BA

nk : DCFM

of Technolog

r (A < B) D CD

A1 (A)

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 m0 0

m4 0

m12 0

m8

M III Sem 

gy, Nagpur 

DC

2 i/p nA0 (B) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 m1 0

m5 0

m13 m0

m9 m

 CSE 

A1=B1

A1>B1

CD

number B1 (C)

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 m3 m1

m7 m0

m15 m1

m11 m

A0 B0

DC

A <(

B0 (D)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 m2 1

m6 0

m14 0

m10

0

0

CAB +=< )

OuA<B A

0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0

CDBDAB +

tput =B A>B

1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0

A0 =

A0 >

D

B

B0

B0

Page 27: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design k-map for (A=B)

AB CD CD DC CD DC AB

BA

AB

DCBAABCDDCBAABCDBA +++== )( BA

Design k-map for (A > B) AB CD CD DC CD DC

AB

BA

AB

DABCDBCABA ++=> )( BA

Logical Ckt:

1 m0

0 m1

0 m3

0 m2

0 m4

1 m5

0 m7

0 m6

0 m12

0 m13

1 m15

0 m14

0 m8

0 m9

0 m11

1 m10

0 m0

0 m1

0 m3

0 m2

1 m4

0 m5

0 m7

0 m6

1 m12

1 m13

0 m15

1 m14

1 m8

1 m9

0 m11

0 m10

Page 28: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Page 29: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Q.5]

Solutbit da

((

(1)thgate Add

Parit Parity

(a) E

even will b1] If rema2] If

estion Ban

pur Institute o

what is a pa

tions: In ”n” ata is odd no.(a) If the pari(b) If the parihe truth table sis given belowall the input b

A 0 0 0 0 1 1 1 1

ty generator

y generator is(a

(b

Even parity g

Even pariparity genera

be of 9 bits (Dthe parity of

ain even. the parity of

nk : DCFM

of Technolog

arity generato

bits data, the then it is callity of input daity of input dashowing 3 bitw. bit’s and writ

Inpu

s used to genea)Even parity

b)Odd parity

generator:

ty generator iator. The pariDp and D7 to 8 bit input nu

8 bit input da

M III Sem 

gy, Nagpur 

or? Explain t

count of numled odd parityata of X-OR gata of X-OR gt input numbe

te the sum neg

ut number B 0 0 1 1 0 0 1 1

erate “n” bits y generator

y generator

is used to genity generator gD0) .The par

umber D7 to D

ata (D7 to D0)

 CSE 

the diagram

mber of one’s y data.X-OR ggate is alwaysgate is odd ther X-OR gate,

glecting the c

C 0 1 0 1 0 1 0 1

no. of a parti

nerate even pagenerates onerity of this 9 bD0 is already

) odd then pa

even and od

bit is called agate is used tos zero. en output of X, then parity o

arry for 3 I/P

X-ORO

01101001

icular parity. T

arity number. e parity bit Dpbits output wieven parity b

rity bit Dp=1

dd parity gen

as parity. If tho detect the p

X_OR gate isof input data a

X-or gate.

R gate O/P

0 1 1 0 1 0 0 1

There are two

The 8 bit nump. So, the outpill be always ebit output will

. So parity of

nerator.

he count of nuparity of “n” b

s always zero.and the corres

Parity

EOOEOEEO

o types of par

mber D7 to Dput number oeven. l be always ev

f 9 bits output

umber of oncbits data.

. sponding outp

y of output I/P

Even Odd Odd Even Odd Even Even Odd

rity generator

D0 is applied aof even parity

ven output da

t data will bec

e bit in “n”

put of X-OR

.

at the i/p of generator

ata will

come even.

Page 30: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

(b)O

Odd

gener

D7 to

rema

becom

Q.6]

Solut

into f

(1)R

(2)D

(3)TT

(4) E

(5)CM

chann

estion Ban

pur Institute o

Odd parity ge

parity genera

rator. The par

o D0). The pa

(1) If the pain odd.

(2) If the pme odd.

Explain clas

tions: Depen

following typ

TL [resistan

The logic

TL [diode tr

The main

TL [transisto

The logic

ECL [emitter

The logic

MOSEFET (

The logic

nel and one “

nk : DCFM

of Technolog

enerator:

ator is used to

rity genaerato

arity of this 9

parity of inpu

parity of 8 bit

ssification of

nding upon the

pes.

ce transistor

gates of RTL

ransistor logi

components

or transistor

gates of TTL

r couple logic

gates of ECL

(complement

gates of CMO

“n” channel M

M III Sem 

gy, Nagpur 

generate odd

or generates o

bits output w

ut number D7

t input numbe

f logic familie

e main compo

r logic] family

L family are m

ic] family:

of DTL fami

logic] family

L family are o

c] family:

L family are m

tary MOSEF

OSFET logic

MOSFET.

 CSE 

d parity numb

one parity bit

will be always

7 to D0 is alre

er D7 to D0 is

es and prope

onents which

y:

made by using

ly gates are d

y:

obtained from

made emitter c

FET) logic:

c family are m

ber. The 8 bit

Dp. Hence th

odd.

ady odd then

s even then p

rties of logic

are used to fa

g resistance an

diodes and tra

m logic gates o

coupled trans

made by using

number D7 to

he output parit

parity bit Dp

arity bit Dp=

families.

fabricate logic

nd transistor

ansistors.

of DTL family

sistor as main

g complement

o D0 is applie

ty generator w

p=0, So, the p

1. So the pari

c gate. Logic g

as main comp

y by replacing

n components.

tary pair of M

ed at the inpu

will be of 9 b

parity of 9 bit’

ity of 9 bits ou

gates families

ponents.

g diodes with

.

MOSFET i.e.,

ut odd parity

its. (Dp and

’s output will

utput will

s are divided

h transistors.

one P

Page 31: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Prop

The t

propa

meas

obtai

The p

logic

For b

logic

(td) a

vice

The m

is mo

The m

FAN

estion Ban

pur Institute o

perties or cha

(1)PROP

I/P

time differenc

agation delay

sured between

ined (b).

(2)POWE

power that is

c gate is better

(3)PROD

better logic ga

c gates Td is s

and power dis

versa.

(4) FAN I

maximum nu

ore than logic

(5) FAN O

maximum nu

N OUT is more

nk : DCFM

of Technolog

aracteristics

POGATION D

P A

ce between th

y time: if prop

n the instant a

ER DISSIPA

obtained in o

r and vice ver

DUCT OF TD

ates the value

small and Pd i

ssipation(Pd)i

IN

mber of o/p o

c gates is bette

OUT

mber of input

e than logic g

M III Sem 

gy, Nagpur 

of logic fami

DELAY TIM

O/P

he install at w

pagation time

at which 50%

ATION (PD):

one gate is cal

rsa.

D OR PD

e of propagatio

is large and v

is obtained. T

of gates which

er and vice ve

ts of other ga

gates is better

 CSE 

ilies

ME [TD OR T

P Y

which i/p is app

is less then lo

of the i/p sig

lled ad power

on delay time

vice versa. So

The logic fami

h can be conn

ersa.

ates which can

and vice vers

TP]:

plied and the

ogic gates is f

gnal is applied

r dissipation p

e as well as po

for selecting

ily in which t

nected to a sin

n be connecte

sa.

installed at w

fast and vice v

d (a) and the i

per gate. If po

ower dissipat

logic gates, t

this products (

ngle i/p of one

ed to output of

which o/p is o

versa the prop

instant at whi

ower dissipati

ion should be

the product of

(td * pd) is m

e gate is calle

f one gate is c

obtained is cal

pagation dela

ch 50% of the

on per gate is

e small be. Bu

f propagation

minimum is th

ed as FAN IN

called as FAN

lled as

ay time is

e o/p signals

s less then

ut in some

n delay time

e family and

N. if FAN IN

N OUT. If

Page 32: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

In log

super

volta

marg

Q. 9]

SolutB are

((

The lDesig

estion Ban

pur Institute o

(6) NOIS

gic gates, the

rimposed on o

age which can

gin.

] a] Explain h

tions: a logice applies ti the

(a) One bit fo(b) One bit fo

logical ckt. ofgn for Sum(S

A B

A

A

0

1

nk : DCFM

of Technolog

E MARGIN

gates input a

o/p voltage of

n be superpose

half adder C

c ckt. Which e input of Ha

or sum (S) andor carry gener

f half adder cS):

B B 0

m0 1

1 m2

0

M III Sem 

gy, Nagpur 

and output sig

f logic gates t

ed on o/p bec

Ckt.

performs addft Adder. HA

d rated (Co).

an be designe

B

S

InpA 0 0 1 1

m1

m3

 CSE 

gnals are in th

then the value

cause of which

ditions of onlyA performs the

The Truth T

ed using K-M

BABAS +=

ut (A + B) B 0 1 0 1

he form of vol

e of o/p voltag

h the o/p logi

y two binary be addition (A+

Table of half

Map:

SumS0110

ltage which is

ge will chang

ic remains un

bits is called a+B and gives A B

Co

f adder:

m CarC0001

Half Add

(A+B)

s denoted by l

ge. The maxim

changed is ca

as half adder.2 bit o/p resu

B

S

rry o

0 0 0 1

der 

logic 1. If noi

mum value of

alled ad noise

. The two binult.

ise voltage is

f noise

e voltage

ary bit A and

d

Page 33: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for Carry (Co): A B B B

A

A

ABCo =

Logical Circuit A B

BABAS +=

ABCo = Q. 9] b] Explain Full Adder Ckt.

Solutions: when we perform additions of two multibit number then we have to perfume additions of 3 bits. A logical ckt. Which is used to perform additions of 3 binary bits is called as full adder. The 3 binary bits A, B, C in applied of the i/p of Full adder. So, gives 2 bit output result.

(1) One bit for sum(A + B + Cin) (2) One bit for carry out(Co.) A B

Cin

Co S

The truth able for full adder ckt. Inputs (A + B + Cin) Sum Carry

A B Cin So Co 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1 1

Design K Map For Full Adder Ckt.

0 m0

0 m1

0 m2

1 m3

Full Adder (A +B + Cin) 

Page 34: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Half Subtractor (A­B) 

Design for Sum(S):

A BC CB CB BC CB

A

A

ABCBCACBACBAS +++= Design for Sum(S):

A BC CB CB BC CB

A

A

BCABACCo ++= The logical ckt of full adder

Q. 9] c] Explain Half Subtractor Ckt. Solutions: A logic ckt. Which performs Subtractions of only two binary bits is called as half Subtractor. The two binary bit (A – B). Is called as Half Subtractor A B

(a) One bit for Difference (D) and (b) One bit for Borrow Required to perfume the subtraction

(A-B) i.e., borrow out (Bo). The truth table of half Subtractor:

Bo D

The logical ckt. of half Subtractor can be designed using K-Map:

0 m0

1 m1

0 m3

1 m2

1 m4

0 m5

1 m7

0 m6

0 m0

0 m1

1 m3

0 m2

0 m4

1 m5

1 m7

1 m6

Input (A - B) Difference Borrow A B D Bo 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 0

Page 35: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for Difference (D): A B B B

A

A

BABAD +=

Design for Borrow (Bo): A B B B

A

A

BACo =

A A B

BABAD +=

BABo =

Q. 9] d] Explain Full Subtractor Ckt.

Solutions: when we perform Subtractions of two multibit number then we have to perfume Subtractions of 3 bits. A logical ckt. Which is used to perform Subtractions of 3 binary bits is called as full Subtractor. The 3 binary bits A, B, C in applied of the i/p of Full Subtracto. So, gives 2 bit output result.

(1) One bit for Difference(A - B - Cin) (2) One bit for Borrow out(Bo.) A B

Cin The truth able for full Subtracto ckt. Bo D

Inputs (A - B - Cin) Difference Borrow A B Cin D Bo 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0

0 m0

1 m1

1 m2

0 m3

0 m0

1 m1

0 m2

0 m3

Full Subtractor (A ­ B ­ Cin)  

Page 36: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

DesigDesig

Desig

Q. 10Solut

estion Ban

pur Institute o

1 1

gn K Map Fogn for Sum(S

A BC

A

gn for Borro

A BC

A

Logical C A

0] Explain intions:

A The blocknumber w If A3 A2 below,

0

1

0

0

Fu

nk : DCFM

of Technolog

1 0 1 1

or Full Adder S):

C CB

ow(Bo):

C CB

Ckt. of Full Su B

n parallel bin

A3 B3

C3 S3

k diagram of 4without carry

A1 A0 and B

0 m0

1

1 m4

0

0 m0

0 m4

ull Adder 3 

M III Sem 

gy, Nagpur 

0 1

Ckt.

CB

CB

ubtractor CS

nary adder.

A2

C2

4 bits parallel

B3 B2 B1 B0 a

m1 0

m5 1

1 m1

0 m5

Full A2

 CSE 

0 1

BC

BC

B2

2 S2

l binary adder

are two 4 bit

m31

m7 0

1 m3

1 m7

Adder 2

CB

D =

CB

A1

C1

r is shown in

number then

m2

m6

1 m2

0 m6

Full Add1 

CBACBA +=

CABo =

B1

S1

figure; it is u

parallel binar

Differen

Borrow

der

A

ABCAC ++

BCBAC ++

A0 B0

C0 S

sed to perform

ry adder perfo

ce

Full Adder 0 

ABC

A

0

S0

m additions o

orms the addi

of two 4 bit

itions as givenn

Page 37: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Carry generated

1st number

2nd number

Result FA3 FA2 FA1 FA0

The 4 bit parallel binary adder performs the additions of two 4 bit number and given 5 bit result of additions. To performs additions of two C1 bit number with carry. We have to replace half adder HA0 by Full adder FA0. Q.11] explain parallel binary subtractor. Solutions: A3 B3 A2 B2 A1 B1 A0 B0 B3 D3 B2 D2 B1 D1 B0 Do The block diagram of 4 bits parallel binary Subtractor is shown in figure; it is used to perform subtractions of two 4 bit numbers. If A3 A2 A1 A0 and B3 B2 B1 B0 are two 4 bit number then parallel binary Subtractor performs the Subtractions as given below,

FA3 FA2 FA1 FA0 1st number

2nd number

Borrow Required Result B’3 If the last borrow B’3=1 then it indicates that the result is –ve represented in 2’s compliment from. If the last borrow B’3=0 then it indicates that result is either zero or +ve. This 4 bit parallel binary subtractor performs subtractions of two 4 bit number without borrows. To performs subtractions of two 4 bit numbers with borrow, we have to replace half subtractor HDo by full Subtractor FSo.

C2 C1 CO

A3

B3

A2

B2

A1

B1

A0

BO

C3 S3 S2 S1 S0

A3

B3

A2

B2

A1

B1

A0

BO

B’2 B’1 B’0

D3 D2 D1 D0

Full Subtractor

Full Subtractor

Full Subtractor

2

Full Subtractor

Page 38: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Q. 12

Solut

The lOper

(

(

If logvalue

Q. 13

Solut

                                                  

estion Ban

pur Institute o

2] design and

tions: B

logical ckt of rations: (1) B3 B2 B1

B = B. Henc theY3 Y2 Y1

(2) If control1 (+) B =Hence the

Y3 Y2 Y1That is; o

gic 1 is addede i.e. (-B3 B2

3] Design and

tions:   A3     B3  I      

                        A3       

                                            

                       C3       

Full Ad

nk : DCFM

of Technolog

d explain 1’s

B3

Y3

f 4 bit controll

1 Bo is 4 bit n

e 4 bit output1 Yo = B3 Bl input “I” isB e 4 bit outpu

1 Yo = BB 23output = 1’s cd to this 1’s co B1 Bo)

d explain pa

3                     

 

          

        Y3         

              C2                      

   S3                  

B3 dder  

M III Sem 

gy, Nagpur 

compliment

B2

Y2

led inverter is

number appl

t will be 2 B1 Bo i.e.,

s made 1, the

ut will be,

BoB12 compliment ompliment the

rallel arithm

          A2    B

   

            

           A2     

                     

       C2         S2

BFull Adde

2

 CSE 

t ckt or contr

B1

Y1

s shown in fig

lied at the inp

output = inpen in X-OR g

of input. en we will ge

metic unit or e

B2                   

             

           Y2     

        C1          

2                          

B2 er

rolled inverto

Bo

Y0

g.

put .if contro

put. gate,

et 2’s complim

element.

            A1    

 

       

             A1   

                     

 C1         S1      

B1 Full Adder

ors.

I Cont

ol input “I” i

ment of B3 B2

 B1               

 

                   

      Y1           

     Co             

                       C

Fu

rol Input

is made zero

2 B1 Bo and

               Ao  

          

    

                Ao

                      

Co         So  

Bo ull Adder

then in X-O

it will represe

   Bo 

                     

o                Yo

        I/O 

R gate; 0 (+)

ent its –ve

I/O   

Control I/P

)

Page 39: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

The bloc diagram of 4 bit parallel arithmetic unit is shown in fig. it can additions as well as subtractions using 2’s compliment method. OPERATIONS: (1)Additions operations: The two 4 bit binary numbers A3 A2 A1 Ao and B3 B2 B1 Bo are applied at the i/p and control input is made zero. So output of X-OR gate will be Y3 Y2 Y1 Yo = B3 B2 B1 Bo. Hence 4 bit parallel binary adder performs the following additions. Carry generated

1st number

2nd number

Controlled i/p

Result FA3 FA2 FA1 FAo (2)Subtraction operations: To perfoms the subtraction A3 A2 A1 Ao minus (-) B3 B2 B1 Bo the two number applied at the i/p and control i/p “I” is made. So, output of X-OR gate will be 1’s compliment of the input that is;

Y3 Y2 Y1 Yo = BoBBB 123 Hence the 4 bit parallel binary adder performs the following additions. Carry generated

1st number

2nd number (2’s compliment) Controlled i/p

Result FA3 FA2 FA1 FAo If the last carry C3 is neglected then we will get 4 bit result of subtractions i.e., S3, S2, S1, So. Q.14] Design and explain BCD ADDER or 8421 ADDER or SINGLE DIGIT DECIMAL ADDER. Solutions: the block diagram of 4 bit or single adder is shown in fig.(1) OPERATIONS: (1) If A3 A2 A1 Ao and B3 B2 B1 Bo are two 4 bit BCD number, then using FA’s. FAo to FA3. These two BCD

number are added with carry (Cin). To performs additions without carry Cin is made zero. The additions of BCD number with carry is perfomed as given below,

C2 C1 CO A3

B3

A2

B2

A1

B1

Ao

Bo

0 C3 S3 S2 S1 S0

C2 C1 CO

A3

B3

A2

B2

A1

B1

Ao

Bo

0 C3 S3 S2 S1 S0

Page 40: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

                      

         

      

            Cou(Car 

(2) T

If 4 LLSBY= (This (3) U Carr4 LS

Num

Corr

estion Ban

pur Institute o

                      

                         

                      

 

                         

ut rry Out) 

   

The logical ck

23ss

23ss

23ss

23ss

23ss

LSB’s of resu’s of result S3S3 S2 S1 S0)logical ckt. O

Using HAo, H

ry generated SB’S of Resul

mber 0YY0 (6

rect BCD res

nk : DCFM

of Technolog

                      

                       

         

          

 

kt to detect 4

sos1 sos1

ult S3 S2 S1 S3 S2 S1 So . t) + (C3)………Of eq. (1) can

HA1,FA4 ,(0

lt

6)

sult

0 m0

0 m4

1 m12

0 m8

M III Sem 

gy, Nagpur 

                     A

                       

 

    

             

LSB’s of res

sos1

So is greater ththe logical ckt……….(1) be designed

Y Y 0)numb

0 m1

0

0 m5

0

1 m13

1

0 m9

1

 CSE 

A3      B3     

         C3      S

            C’3      

sult S3 S2 S1

sos1 s

han 9 (invalidt. To check th

using AND-O

er is added to

m30

m70

m151

m111

HA1

C’2

S3

Y

Z3

Full Adder 3 

Full Adder 3 

        A2      B

S3        C2      

 

Z3               C

So for invalid

sos1

Y =

d BCD)OR lahese two cond

OR gate or NA

o the 4 LSB’s

m2

m6

m14

m10

FA4

C’1

S2

Y

HA

S1

Y

Z2 Z1

FAdd 

FAdd 

B2               A1

       S2        C

   

C’2     Z2       

d BCD can de

13.32 ssss=

ast carry C3=1ditions is obta

AND-NAND

of result S3 S

Ao

1

Y

S0

0

1 Z0

Full der 2

Full der 2

1       B1        

C1             S1

      Y 

      C’1     Z1

esigning usin

1then we havained using th

D gate.

S2 S1 So, as

Full Adder 1 

Full Adder 1 

    Ao        Bo

1       Co          

1                     

g K-map as g

e to add 6(01he equations.

given below.

FulAdd

    So     

      Zo 

given below.

10)to the 4

ll der

Page 41: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

If 4 LSB’s of result is greater than, 9 or last carry C3=1 then Y= 1. So, 0 Y Y 0=0 1 1 0=6. Hence 6 is added to the 4 LSB’s of result S3 S2 S1 S0 and the final result obtained Z3 Z2 Z1 Z0 is correct BCD result, the last carry out will be equal to “Y”.

Q.15] Obtain using MUX the logical ckt. For the SOP eq. ABCCABAY ++= Solutions: the standard form of given eq. is;

ABCCABCBACBACBAY ++++= ………………… (1) The given SOP equations can be expressed. F=∑ m (2, 3, 4, 6, 7)………………….. (2)

+ve D0

D1

D2

D3 8 to 1

D4 MUX Output Y

D5

D6

D7

0 ve A B C

Control Inputs

Q. 15) B] using 8 to 1 MUX implement the eq. CAABDCABY ++= . Assume ABD as control inputs.

Solutions:

BCACABDCABABCDDCABCDABY +++++=

DBCADBCADCABDCABDCABABCDDCABCDABY +++++++= (0 0 1 1, 0 0 1 0 , 1 1 1 1 , 1 1 0 1 , 1 1 0 0 , 1 0 0 1 , 1 0 0 0 )

INPUTS OUTPUT

SYMBOL OF

RELATION OF

A B D C Y O/P Y & C

0 0 0 0 0 m0 Y=0=Do 0 0 0 1 0 m1

0 0 1 0 1 m2 Y=1=D1 0 0 1 1 1 m3

0 1 0 0 0 m4 Y=0=D2 0 1 0 1 0 m5

Page 42: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

0 1 1 0 0 m6 Y=0=D3 0 1 1 1 0 m7

1 0 0 0 1 m8 Y=1=D4 1 0 0 1 1 m9

1 0 1 0 0 m10 Y=0=D5 1 0 1 1 0 m11

1 1 0 0 1 m12 Y=1=D6 1 1 0 1 1 m13

1 1 1 0 0 m14 Y=B=D7 1 1 1 1 1 m15

+ 5ve

Do 

D1 

D2 

                    D3         8 TO 1 

                    D4      MUX 

D5 

     D6 

D7 

0 ve C A B D

Page 43: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Q.15Solut

((

         

         

         

                             

         

         

         

Q. 15

SolutAs oucorreNAN 

 

         

    

 

 

estion Ban

pur Institute o

5) E] Obtain tions:

(1) We have t(2) One IC of

                        

                  

                        

                        

                           

                     C   

                        

                        

                        

                        

5) f] impleme

tions: utput DE-Mesponding ou

ND gate ckt. 

                        

nk : DCFM

of Technolog

8 to 1 MUX

to use 2 Ic’s of 2 to 1 MUX

                       

                        

                       

                       

B  

                                             

                       

                       

                       

ent the funct

UX is low levutput of De= 

 

 

                 Di  

 

 

 

M III Sem 

gy, Nagpur 

Using 4 to 1

of 4 to 1 MUXX.

         Do 

        D1       4

         D2         

         D3          

                    

         D4 

         D5     4 T

         D6       M

        D7          

tions ∑=f

vel active, heMUX will be

                      

                        

                       D

     

 CSE 

MUX.

X.

4 TO 1             

MUX 

                          

          

 TO 1      

MUX 

)7,5,2,1(m u

ence in De-Me connected t

1 TO 8           

DEMUX          

           Y1 

                                             

     Y2   

 

sing 1:8 DE-

MUX , insteadto NAND gat

Y0 

 Y1             

      Y4             

      Y5 

Y6         

Y7 

                   Y1                                              Y2

    

-MUX having

d of AND gatte instead of

                       

                       

          

1                        2:12  MUX  

     A 

g low level ac

te NAND gatOR gate, tha

                        

              

Output Y    

ctive output.

te is used. So at is we get N

                        

     O

 

.

the NAND-

   

Output F 

Page 44: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Q.15

Solut

For sSo wFor c

           

   Q.16

Soluthave In them1 =So.mSo w 

estion Ban

pur Institute o

5) G] Design

tions: Full ad

sum m1 = m2we have to concarry out m3 =

                       D

6) A] implem

tions: as outpto connect N

e given functi= m2 = m4 = mm0 = m3 = m5we have to cor

nk : DCFM

of Technolog

Full Adder u

dder will perfo

2 = m4 = m7=nnect Y1, Y2,= m5 = m6 =

Di 

ent the funct

put of decodeNAND hate.

ion; m6 = 0

5 = m7 = 1 rrect the o/p’s

  

  

M III Sem 

gy, Nagpur 

using DE-Mu

forms addition

Inpu A + B

0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1

=1 , Y4, Y7 outpm7 = 1. So, w

A B

tion ∏=f

r’s low level

s Y0, Y3, Y5,

          1 TO 8 

         De‐Mux

 CSE 

ultiplexer.

n of 3 bit bina

ut B + C Su

0 1 0 1 0 1 0 1

put of De-Muxwe have to co

C

)6,4,2,1(m u

active, hence

Y7 of decod

Yo

Y1 

Y2 

x    Y3 

Y4 

Y5 

Y6 

Y7 

ary bits as giv

Outpuum(S) Ca

0 1 1 0 1 0 0 1

x. onnect Y3, Y5

sing decoder

e the decoder

der to NAND

ven in the trut

ut arry (Co)

0 0 0 1 0 1 1 1

5, Y6, Y7 out

 

  

r having low

consist of NA

gate.

th table.

m0 m1 m2 m3 m4 m5 m6 m7

tput of De-Mu

      S

    C

level active o

AND gates. S

ux.

um 

arry 

output.

o, instead of OOR gate we

Page 45: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

    

                Q.16

Solut

   

    

            

estion Ban

pur Institute o

                        

6) B] design f

tions: Truth Ta

      Input Di  

nk : DCFM

of Technolog

                       

full Subtracto

able

                        

 

 

           

       De

M III Sem 

gy, Nagpur 

 Input Di       

or using deco

Input A - B - 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1

                       

  Yo

  Y1

3 to 8  Y2

ecoder       Y3

Y4

Y5

Y6

Y7

 CSE 

                        

oder.

C Diffe0 1 0 1 0 1 0 1

                        

         

       D

                       

Outpuerence(D)

0 1 1 0 1 0 0 1

                       

Yo

  Y1

 3 to 8  Y2

Decoder       Y3

Y4

Y5

Y6

Y7

                        

ut Borrow (Bo)

0 1 1 1 0 0 0 1

                        

o

                        

)

m0 m1 m2 m3 m4 m5 m6 m7

 

   

 

Borrow 

   Difference

   output f 

Page 46: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

   

     

Q. 18) A] Explain BCD to 7 Segment Decode.

Solutions: (a) Segment display:

7 segment display consist of LED’s “a to g” in the form of segment . these 7 segments are physically arranged like decimal digit 8. There is one circular LED for a decimal point (dp).these 8 LED’s are connected either in common cathode configuration (Fig 2)or in common anode configuration (fig3) in fig(2) by giving logic 1/0 to the anode. LED can be made on/off resp. similarly in fig (3) by giving logic 0/1 to the cathode LED can be made on/off resp. a      a           b   ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ c                    f                                        b                                                                                                                                                                       0 ve                                                                                                                                 (Common cathode connection) Fig(2)                                                                         e                                      c                    +5 ve                                                                                                                                                                                                                                                                d                                                                                                                                      (Common anode connection) Fig(3)      

(b) Design of BCD to 7 segment decode: When 4 bit no is applied to the input of decoder then decoder will give corresponding will give corresponding 7 bit output Ya to Yg, if these 7 bits are applied to the 7 Led’s a to g of 7 segment display then the decimal digit corresponding to the BCD input is displayed on 7 segment display. If 7 segment display is connected in common cathode configuration then to make the LED on/off , decode will give logic input to the anode it LED.    Ya 

A  Yb 

B                             BCD   Yc 

C                               to   Yd 

D                       7 segment  Ye 

Decoder  Yf 

  Yg 

               

    (Physical structure)                                               (7 segment display in                                                                                                                                common cathode configuration) 

Page 47: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

  The truth table showing BCD input and the required output of decoder for displaying equivalent decimal digit to given below.

Input Equation Decimal Digit

7 segment output A B C D

Ya Yb Yc Yd Ye Yf Yg

0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 0 1 1 0 0 0 0

0 0 1 0 2 1 1 0 1 1 0 1

0 0 1 1 3 1 1 1 1 0 0 1

0 1 0 0 4 0 1 1 0 0 1 1

0 1 0 1 5 1 0 1 1 0 1 1

0 1 1 0 6 1 0 1 1 1 1 1

0 1 1 1 7 1 1 1 0 0 0 0

1 0 0 0 8 1 1 1 1 1 1 1

1 0 0 1 9 1 1 1 1 0 1 1 The logical ckt. Of decoder can be designed using K-Map,DRAW 4 INPUT K- MAP AB CD CD DC CD DC

AB

BA

AB

BA As inputs BCD, So, m10 to m15=X (Don’t care); Design for Ya AB CD CD DC CD DC

AB

BA

AB

BDBDCAYa +++= BA

m0

m1

m3 m2

m4

m5

m7 m6

m12

m13

m15 m14

m8

m9

m11 m10

1 0 1 1

0 1 1 1

X X X X

1 1 X X

Page 48: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design K-Map Yb AB CD CD DC CD DC

AB

BA

AB

BCDCDYb ++= BA Design K-Map for Yc:

AB CD CD DC CD DC AB

BA

AB

BA

BDCYc ++= Design K-Map for Yd:

AB CD CD DC CD DC AB

BA

AB

BA BDDCBCBADCYd ++++=

1 1 1 1

1 0 1 0

X X X X

1 X X X

1 1 1 0

1 1 1 1

X X X X

1 1 X X

1 0 1 1

0 1 0 1

X X X X

1 1 X X

Page 49: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for Ye: AB CD CD DC CD DC

AB

BA

AB

DCBDYe += BA

Design for Yf: AB CD CD DC CD DC

AB

BA

AB

BA DBCDCBAYf +++=

Design for Yg: AB CD CD DC CD DC

AB

BA

AB

BA CBDCDBAYg +++=

1 0 0 1

0 0 0 1

X X X X

1 0 X X

1 0 0 0

1 1 0 1

X X X X

1 1 X X

0 0 1 1

1 1 0 1

X X X X

1 1 1 X

Page 50: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Q.18

Solu

Whenthesedisplequiv

estion Ban

pur Institute o

8) b] Expla

utions:

A

B

C

D

n 4 bit binarye 7 bits are aplayed on 7 segvalent hexade

nk : DCFM

of Technolog

 

 

ain binary t

A

B

C

D

(Phy

y no. is appliepplied to the agment displayecimal digit is

M III Sem 

gy, Nagpur 

 

 

to 7 segmen

BCD

to

7 segment

Decoder

ysical structu

ed of the inputanode of 7 LEy .the table shs given below

 CSE 

 

nt decoder.

Ya

Yb

Yc

Yd

Ye

Yf

Yg

re)

t of decoder, ED’s “a to g” thowing 4 bit bw.

c

then decoder then the hexabinary input a

(7 segm com

will gate corradecimal digitand the requir

ment display immon cathode

responding 7 t correspondined output of d

in e configuration

bits output Yng to the binadecoder for d

n)

Ya to Yg. If ary input is isplaying

Page 51: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Input Equation Decimal Digit

7 segment output A B C D

Ya Yb Yc Yd Ye Yf Yg

0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 0 1 1 0 0 0 0

0 0 1 0 2 1 1 0 1 1 0 1

0 0 1 1 3 1 1 1 1 0 0 1

0 1 0 0 4 0 1 1 0 0 1 1

0 1 0 1 5 1 0 1 1 0 1 1

0 1 1 0 6 1 0 1 1 1 1 1

0 1 1 1 7 1 1 1 0 0 0 0

1 0 0 0 8 1 1 1 1 1 1 1

1 0 0 1 9 1 1 1 1 0 1 1

1 0 1 0 10(A) 1 1 1 0 1 1 1

1 0 1 1 11(B) 0 0 1 1 1 1 1

1 1 0 0 12(C) 1 0 0 1 1 1 1

1 1 0 1 13(D) 0 1 1 1 1 0 1

1 1 1 0 14(E) 1 0 0 1 1 1 1

1 1 1 1 15(F) 1 0 0 0 1 1 1

Design for Ya AB CD CD DC CD DC

AB

BA

AB

BDABADABCCABDYa +++++= BA

1 0 1 1

0 1 1 1

1 0 1 1

1 1 0 1

Page 52: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design K-Map Yb AB CD CD DC CD DC

AB

BA

AB

DCABDCDAACDABYb ++++= BA Design K-Map for Yc:

AB CD CD DC CD DC AB

BA

AB

DCBABADACAYc ++++= BA Design K-Map for Yd

AB CD CD DC CD DC AB

BA

AB

DCADBCCDBDCBCABCDYd +++++= BA

1 1 1 1

1 0 1 0

0 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0 1 0 0

1 1 1 1

1 0 1 1

0 1 0 1

1 1 0 1

1 1 1 0

Page 53: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for Ye AB CD CD DC CD DC

AB

BA

AB

DCACABBDYe +++= BA

Design for Yf AB CD CD DC CD DC

AB

BA

AB

BA

DBCBABABACDYf ++++=

Design for Yg AB CD CD DC CD DC

AB

BA

AB

BA

CBAADBADCCBYg ++++=

1 0 0 1

0 0 0 1

1 1 1 1

1 0 1 1

1 0 0 0

1 1 0 1

1 0 1 1

1 1 1 1

0 0 1 1

1 1 0 1

0 1 1 1

1 1 1 1

Page 54: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Logical Ckt.

Page 55: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Q.23) Conversions:

Solutions: Excitations Table of different Flip Flop.

Previous O/P

Qn Next Required O/P

Qn+1 Inputs to Flip/ Flop

J K S R D T 0 0 0 X 0 X 0 0 0 1 1 X 1 0 1 1 1 0 X 1 0 1 0 1 1 1 X 0 X 0 1 0

1) Convert J-K Flip Flop into S-R Flip Flops. Solutions:

Flip Flop available=> J-K Flip Flop. Flip Flop => S-R Flip Flop.

Inputs Next Required O/P Qn+1

Inputs to Flip/ Flop Available S R Qn J K 0 0 0 0 0 X 0 0 1 1 X 0 0 1 0 0 0 X 0 1 1 0 X 1 1 0 0 1 1 X 1 0 1 1 X 0 1 1 0 X X X 1 1 1 X X X

Truth table Excitation Table Design for J

Pr S RQn RQ QR RQ QR S S

SJ =

Clr

0 X X 0

1 X X X

J               Q 

 

K                        Q

Page 56: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for K S RQn RQ QR RQ QR S S

RK =

2) Convert S-R Flip Flop into J-K Flip Flops. Solutions:

Flip Flop available=> S-R Flip Flop. Flip Flop => J-K Flip Flop.

Inputs Next Required O/P Qn+1

Inputs to Flip/ Flop Available J K Qn S R 0 0 0 0 0 X 0 0 1 1 X 0 0 1 0 0 0 X 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 X 0 1 1 0 1 1 0 1 1 1 0 0 1

Truth table Excitation Table Design for S

J KQn KQ QK KQ QK

J

J

JQS =

Design for K J KQn KQ QK KQ QK J J

KQR =

X 0 1 X

X 0 X X

0 X 0 0

1 X 0 1

X 0 1 X

0 0 1 0

Page 57: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Logical Circuit

3) Convert S-R Flip Flop into D Flip Flops. Solutions:

Flip Flop available=> S-R Flip Flop. Flip Flop => J-K Flip Flop.

Inputs Next Required O/P Qn+1

Inputs to Flip/ Flop Available D Qn S R 0 0 0 0 X 0 1 0 0 1 1 0 1 1 0 1 1 1 X 0

Excitation table Design for S

D Q Q Q

D D

DS =

Design for R

D Q Q Q

D D

DR =

0 0

1 X

X 1

0 0

Page 58: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Logical Ckt.

4) Convert T Flip Flop into S-R Flip Flops. Solutions:

Flip Flop available=> T Flip Flop. Flip Flop Required => S-R Flip Flop.

Inputs Next Required O/P Qn+1

Inputs to Flip Flop Available

S R Qn T 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 0 1 X 1 1 1 0 X

Truth table Excitation Table Design for T S RQn RQ QR RQ QR

S S

QSRQT +=

0 0 1 0

1 0 X X

Page 59: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

5) Convert T Flip Flop into D Flip Flops. Solutions:

Flip Flop available=> D Flip Flop. Flip Flop Required => T Flip Flop.

Inputs Next Required O/P Qn+1

Inputs to Flip Flop Available

D Qn T 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1 0

Design for T

D Q Q Q

D

D

QDQDT +=

0 1

1 0

Page 60: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Logical Circuit.

6) Convert D Flip Flop into J-K Flip Flops. Solutions: Flip Flop available=> D Flip Flop.

Flip Flop Required => J-K Flip Flop.

Inputs Next Required O/P Qn+1

Inputs to Flip Flop Available

J K Qn D 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1

Truth table excitation table Design for D J KQn KQ QK KQ QK

J

J QD =

0 1 1 0

0 1 1 0

Page 61: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Logical Circuit:

7) Convert D Flip Flop into T Flip Flops. Solutions: Flip Flop available=> D Flip Flop.

Flip Flop Required => T Flip Flop.

Inputs Next Required O/P Qn+1

Inputs to Flip Flop Available

T Qn D 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0

Design for D

T Q Q Q T

T

QTQTD += Logical Circuit

0 1

1 0

Page 62: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Q. 24) Explain various types of shift register. Solutions:

“n bits are read together then it is called parallel output.” So, depending upon the type of input and output, shift register are divides into following types. A) SERIAL INPUT SERIAL OUTPUT (SISO) SHIFT REGISTER.

B) SERIAL INPUT PARALLEL OUTPUT (SIPO) SHIFT REGISTER.

C) PARALLEL INPUT SERIAL OUTPUT (PISO) SHIFT REGISTER.

D) PARALLEL INPUT PARALLEL OUTPUT (PIPO) SHIFT REGISTER.

A) SERIAL INPUT SERIAL OUTPUT (SISO) SHIFT REGISTER:

Serial I/P Serial O/P

The logical ckt. Of 4 bits SISO shift register using D-type flip flop is shown in Fig. (1) and using S-R/ J-K Flip Flop is shown in fig. (2). Operations:

(1) Initially Clr =0 So, Q3 Q2 Q1 Q0=0 0 0 0. During the operations Clr =1. (2) If ABCD=1011 is 4 bit number to br stored in 4 bit register , then initially MSB A=1 is applied at serial input Do.

After +ve edge of point clk cycle , as Do=1 . So, Qo become⊥ . (3) As Qo=1, so, D1=1. Hence after +ve edge if 2nd clk cycle Q1=1 and so on. (4) Finally after 4 clk cycles. 4 bit number ABCD=1011 is stored in the 4 flip flops i.e., Q3 Q2 Q1 Q0=1011 (5) As input binary bit applied as well as output binary bt read is serial hence it is called SISO shift register.

B) SERIAL INPUT PARALLEL OUTPUT (SIPO) SHIFT REGISTER:

Q3

Serial I/P Q2

Q1 Parallel O/P

Qo

The logical ckt. of 4 bit serial input parallel O/P shift register is shown in fig.(1). Operations:

(1) Initially Clr=0 So, Q3 Q2 Q1 Q0=0 0 0 0. During the operations Clr=1. (2) If ABCD=1011 is 4 bit number to br stored in 4 bit register , then initially MSB A=1 is applied at serial input Do.

So, Do = A = 1. Hence after +ve edge of 1st clk cycle, Q0 = A= 1.

4 bit SISO 

Shift 

Register 

4 bit SIPO 

Shift 

Register 

Page 63: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

(3) As Qo =A= 1, So, D1= A=1and the next bit B=0 is applied at serial input Do. Hence sfter +ve edge of 2nd clk cycle, Q1 = A= 1 and Qo =B= 0. In this way the binary bit goes on shifting from one flip flop to another towards right and finally in 4 clk cycles, the 4 bit number is stored I the register i.e., Q3 Q2 Q1 Qo = A B C D = 1 0 1 1.

(4) All these 4 bits are read together in parallel. As input is serial and output is parallel, so, it is called SIPO shift register.

C) PARALLEL INPUT SERIAL OUTPUT (PISO) SHIFT REGISTER.

Do

Parallel I/P D1 Serial I/P

D2

D3

The logical ckt. Of 4 bit PISO shift register is shown in fig.(1).

Operations:

(1) Initially Clr=0 . So, Q3 Q2 Q1 Qo= 0 0 0 0, during the operation clr=1.

(2) If ABCD is 4 bit number to be stored then these 4 bits are applied to the corresponding 4 parallel input pins x and

control signal I is made zero(0). When I=0 the And gates number ”0” are enabled, AND gates number 1 are

disables. So, the inputs ABCD are applied through gates 0, 2 ti the inputs of flip flop i.e., D3 D2 D1 Do= A B C

D, at the positive edge if 1st clk cycle, all these 4 bits are stored in the 4 flip flop i.e., Q3 Q2 Q1 Qo= A B C D.

(3) As output is serial hence for obtaining serial output at Q3, we have to performs shift operations. the control input I

is made 1. So, AND gates number 0 are disabled, And gats number 1 are enabled. Hence the output of one flip

flop gets connected to the input of next flip flop through gates 1, @ i.e., D3=q2. D2=Q1, D1= Q0. At +ve edge of

each clk cycle the binary data goes on shifting from one flip flop to another towards right and we get serial output

at Q3.

D) PARALLEL INPUT PARALLEL OUTPUT (PIPO) SHIFT REGISTER.

D1

D2

D3

D4

DESCRIPTIONS:

(1) INITIALLY Clr=0. So, Q3, Q2, Q1,Qo=0 0 0 0. During the operation Clr=1.

4 bit PISO 

Shift 

Register 

4 bit PIPO 

Shift 

Register 

Page 64: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

(2) If ABCD is 4 bit number to be stored then initially MSB A is applied at serial input.D3. At the +ve edge of 1st clk

cycle ,as input D3=A, So Q3=A.

(3) As D3=A. So,input D2=A and at the +ve edge of 2nd clk cycle Q2=A and so on. Hence the binary bit goes on

shifting from 1 flip flop to another towards left i.e., Q3= Q2, Q1 and Qo. And Q1, Q0. Hence it is called shift

register.

Q. 25) a] Design MOD 8 Synchronous Counter.

Solutions: MOD 8 counters will count 8 numbers from 0 to 7. (7) decimal = (111)binary i.e.

Maximum 8 bit binary number. So, we have to design 8 flip flop counter. Given synchronous counter.

Clk input Output Clk input Output

Q2 Q1 Qo Q2 Q1 Qo 1st 0 0 0 6th 1 0 1 2nd 0 0 1 7th 1 1 0 3rd 0 1 0 8th 1 1 1 4th 0 1 1 9th 0 0 0 5th 1 0 0

Page 65: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

e] Design a counter for the following sequence. 0 5 7 4 6 Solutions: (7) decimal = (111) binary

Previous flip flop output (n)

Next required output (n+1) Input to flip flop

Q2n Q1n Qon Q2(n+1) Q1(n+1) Qo(n+1) J2 K2 J1 K1 Jo Ko 0 0 0 1 0 1 1 X 0 X 1 X m0 1 0 1 1 1 1 X 0 1 X X 0 m5 1 1 1 1 0 0 X 0 X 1 X 1 m7 1 0 0 1 1 0 X 0 1 X 0 X m4 1 1 0 0 0 0 X 1 X 1 0 X m6

Design for J2 2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

12 =J

Design for K2 2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

oQQK 12 = Design for J1 2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

21 QJ =

1 X X X

X X X X

X X X X

0 0 0 1

0 X X X

1 1 X X

Page 66: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Desi

1=KDesi

Jo =Desi

Ko =

estion Ban

pur Institute o

ign for K1 2Q QQ1

2Q

2Q

1=

ign for J0 2Q Q1

2Q

2Q

2Q= ign for Ko 2Q Q1

2Q

2Q

1Q=

nk : DCFM

of Technolog

Qo oQQ 1

Qo1 oQQ 1

Qo1 oQQ 1

X

X

1

0

X X

X

M III Sem 

gy, Nagpur 

01QQ Q

01QQ

01QQ

X

X

X

X

X X

0 1

 CSE 

01Q Q

01QQ

01QQ Q

X X

1 1

X X

X 0

X

X

01Q

01QQ

01QQ

X

1

X

0

Page 67: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Q.25) g] Design lock free or lock out counter to count in the following sequence. 0 5 2 4 6 Solutions: in lock free counter or lock out counter if due to any error the counter enters into any unused state (1, 3, 7) then in the next clk cycle the output of counter should charge from unused state to the used state. 1 0 5 2 Unused state 3

7 4 6 TRANSITION TABLE

Previous flip flop output (n)

Next required output (n+1) Input to flip flop

Q2n Q1n Qon Q2(n+1) Q1(n+1) Qo(n+1) J2 K2 J1 K1 Jo Ko 0 0 0 1 0 1 1 X 0 X 1 X 0 1 0 1 0 1 0 X 1 1 X X 1 5 0 1 0 1 1 0 1 X X 0 0 X 2 1 1 0 1 0 0 X 0 X 1 0 X 6 1 0 0 0 0 0 X 1 0 X 0 X 4 0 0 1 0 0 0 0 X 0 X X 1 1 0 1 1 0 0 0 0 X X 1 X 1 3 1 1 1 0 0 0 X 1 X 1 X 1 7

Design for J2

2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

02 QJ = Design for K2

2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

QoQK += 12

1 0 0 1

X X X X

X X X X

1 1 1 0

Page 68: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for J1

2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

21 QJ = Design for K1

2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

QoQK += 21 Design for Jo

2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

12QQJO =

Design for Ko 2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

1=Ko

0 0 X X

0 1 X X

X X 1 0

X X 1 1

1 X X 0

0 X X 0

X 1 1 X

X 1 1 X

Page 69: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

h] De

If the Solut

estion Ban

pur Institute o

esign MOD 6 2

6

e counter cen

tions:

Previous outpu

Q2n Q10 11 10 01 01 01 10 00 1

nk : DCFM

of Technolog

6 lock free co

nters into un

2

6

flip flop ut (n) 1n Qon Q1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1

M III Sem 

gy, Nagpur 

ounter for th7

4

nused state th

7

4

Next requi

Q2(n+1) Q1 0 1 1 1 0 1 1

 CSE 

he following s1

5

hen the next o

ired output (

Q1(n+1) Q1 0 0 0 1 1 0 0

sequence.

output shoul

1

5

n+1)

o(n+1) J21 11 X1 10 X0 X0 X1 11 1

ld be 5

0

3

Inpu

2 K2 JX X

X 1 XX

X 0 X 0 X 0 X

X X X

ut to flip flop

J1 K1 X 0 X 1 0 X 0 X 1 X X 0 0 X X 1

p

Jo Ko 1 X X 0 X 0 X 1 0 X 1 X 1 X X 0

2 7 1 5 4 6 0 3

Page 70: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for J2 2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

12 =J

Design for K2

2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

012 QQK = Design for K1

2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

01 QK =

Design for J1

2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

QoQJ 21 =

X 1 1 X

X 1 1 X

X X X X

0 0 1 0

X X 1 0

X X 1 0

0 0 X X

1 0 X X

Page 71: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Desi

Jo = Desi

Ko =

estion Ban

pur Institute o

ign for Jo 2Q Q1

2Q

2Q

12 QQ +=

ign for Ko 2Q QQ1

2Q

2Q

12QQ=

nk : DCFM

of Technolog

Qo1 oQQ 1

Qo oQQ 1

1

0

X

X

M III Sem 

gy, Nagpur 

01QQ

01QQ Q

X

X

0

1

 CSE 

01QQ Q

01QQ Q

X

X

0

0

01QQ

01QQ

1

1

X

X

Page 72: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

i] Design 3 bit gray code counter. Solutions: The sequence of 3 bit gray code number is,

0 1 3 2

4 5 7 6

Previous flip flop

output (n) Next required output (n+1) Input to flip flop

Q2n Q1n Qon Q2(n+1) Q1(n+1) Qo(n+1) J2 K2 J1 K1 Jo Ko 0 0 0 0 0 1 0 X 0 X 1 X 0 0 0 1 0 1 1 0 X 1 X X 0 1 0 1 1 0 1 0 0 X X 0 X 1 3 0 1 0 1 1 0 1 X X 0 0 X 2 1 1 0 1 1 1 X 0 X 0 1 X 6 1 1 1 1 0 1 X 0 X 1 X 0 7 1 0 1 1 0 0 X 0 0 X X 1 5 1 0 0 0 0 0 X 1 0 X 0 X 4

Design for J2

2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

QoQJ 12 =

INPUT OUTPUT A B C G2 G1 G0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0

0 0 0 1

X X X X

Page 73: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for K2 2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

QoQK 12 = Design for J1

2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

QoQJ 21=

Design for K1

2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

QoQK 21 =

Design for Jo

2Q QoQ1 oQQ 1 01QQ 01QQ 01QQ

2Q

2Q

1212 QQQQJo +=

X X X X

1 0 0 0

0 1 X X

0 0 X X

X X 0 0

X X 1 0

1 X X 0

0 X X 1

Page 74: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Desi

Ko =

k] DeSolut

estion Ban

pur Institute o

ign for Ko 2Q QQ1

2Q

2Q

212 QQQ +=

esign Ex-3 cotions:

nk : DCFM

of Technolog

Qo oQQ 1

12Q

ode counter.

X

X

A 0 0 0 0 0 0 0 0 1 1

M III Sem 

gy, Nagpur 

01QQ Q

0

1

INPUT B 0 0 0 0 1 1 1 1 0 0

 CSE 

01QQ Q

1

0

C D0 00 11 01 10 00 11 01 10 00 1

01QQ

X

X

Y3 0 0 0 0 0 0 1 1 1 1

OUTPUT (Y2 0 1 1 1 1 0 0 0 0 1

(Ex-3 code) Y1 1 0 0 1 1 0 0 1 1 0

Y0 1 0 1 0 1 0 1 0 1 0

Page 75: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Example: (7)ex-3 = (10) decimal= (1010)binary

Previous flip flop output (n)

Next required output (n+1) Input to flip flop

Q3n Q2n Q1n Qon Q3(n+1) Q2(n+1) Q1(n+1) Qo(n+1) J3 K3 J2 K2 J1 K1 Jo Ko

0 0 1 1 0 1 0 0 0 X 1 X X 1 X 1 3

0 1 0 0 0 1 0 1 0 X X 0 0 X 1 X 4

0 1 0 1 0 1 1 0 0 X X 0 1 X X 1 5 0 1 1 0 0 1 1 1 0 X X 0 X 0 1 X 6 0 1 1 1 0 0 0 0 1 X X 1 X 1 X 1 7 0 0 0 0 1 0 0 1 X 0 0 X 0 X 1 X 8 1 0 0 1 1 0 1 0 X 0 0 X 1 X X 1 9 1 0 1 0 1 0 1 1 X 0 0 X X 0 1 X 10 1 0 1 1 1 1 0 0 X 0 1 X X 1 X 1 11 1 1 0 0 0 0 1 1 X 1 X 0 1 X 1 X 12

Design for J3

23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

0123 QQQJ = Design for K3

23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

23 QK =

X X 0 X

0 0 1 0

X X X X

X X X X

X X X X

X X X X

1 X X X

0 0 0 0

Page 76: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for J2 23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

012 QQJ = Design for K2

23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

012 QQK = Design for J1

23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

2301 QQQJ +=

X X 1 X

X X X X

X X X X

0 0 1 0

X X X X

0 0 1 0

0 X X X

X X X X

X X X X

0 1 X X

1 X X X

0 1 X X

Page 77: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for K1 23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

01 QK = Design for Jo

23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ 23QQ 23 QQ

1=Jo Design for Ko

23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

1=Ko

X X 1 X

X X 1 0

X X X X

X X 1 0

X X X X

1 X X 1

1 X X X

1 X X 1

X X 1 X

X 1 1 X

X X X X

X 1 1 X

Page 78: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

i] De

Solut

estion Ban

pur Institute o

esign5 4 -2 -1

tions:

nk : DCFM

of Technolog

code conver

5

Decimal

0

1

2

3

4

5

6

7

8

9

M III Sem 

gy, Nagpur 

rters.

5 4 -2 -1 code

l digits

 CSE 

e converters

5

0

0

0

0

0

1

1

1

1

1

is used for d

C

4

0

1

1

1

1

0

1

1

1

1

decimal digits

Code

-2

0

1

1

0

0

0

1

1

0

0

s as given be

-1

0

1

0

1

0

0

1

0

1

0

elow.

1

0

1

0

1

0

0

1

0

1

0

Page 79: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Previous flip flop output (n)

Next required output (n+1) Input to flip flop

Q3n Q2n Q1n Qon Q3(n+1) Q2(n+1) Q1(n+1) Qo(n+1) J3 K3 J2 K2 J1 K1 Jo Ko 0 0 0 0 0 1 1 1 0 X 1 X 1 X 1 X 0 1 1 1 0 1 1 0 0 X X 0 X 0 X 1 0 1 1 0 0 1 0 1 0 X X 0 X 1 1 X 0 1 0 1 0 1 0 0 0 X X 0 0 X X 1 0 1 0 0 1 0 0 0 1 X X 1 0 X 0 X 1 0 0 0 1 1 1 1 X 0 1 X 1 X 1 1 1 1 1 1 1 1 1 0 X 0 0 X X 0 1 X 1 1 1 0 1 1 0 1 X 0 X 0 X 1 X 1 1 1 0 1 1 1 0 0 X 0 X 0 0 X X X 1 1 0 0 0 0 0 0 X 1 X 1 0 X 0 1

Design for J3 23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

QoQQJ 123= Design for K3

23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

QoQQK 123 =

0 X X X

1 0 0 0

X X X X

X X X X

X X X X

X X X X

1 0 0 0

0 X X X

Page 80: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for J2 23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ 23QQ 23 QQ

12 QJ = Design for K2

23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

QoQK 12 = Design for J1

23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

21 QJ =

1 X X X

X X X X

X X 0 X

1 X X X

X X X X

1 0 0 0

1 0 X X

X X X X

1 X X X

0 0 X X

0 0 X X

1 X X X

Page 81: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for K1

23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

QoK =1 Design for Jo

23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ 23QQ 23 QQ

012 QQQJo += Design for Ko

23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

1=Ko (+5v)

X X X X

X X 0 1

X X 0 1

X X X X

1 X X X

0 X X 1

0 X X 1

1 X X X

X X X X

X 1 1 X

X 1 1 X

X X X X

Page 82: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

m] D

Solut

coun

If I =

Desi

Jo =

estion Ban

pur Institute o

Design MOD

tions: For up

nter and the co

= 1 then count

Up

cou

Dow

Cou

ign for J1 I Q1

I

I

IQoQoI +=

nk : DCFM

of Technolog

3 UP-DOWN

0

p-down counte

ounting seque

ter will operat

Control i

I 0

0

unter 0 1

wn 1

unter 1

Qo1 oQQ 1

1

0

M III Sem 

gy, Nagpur 

N counter to

3

er one additio

ence will be 0

tes as down c

input

01QQ

0

1

 CSE 

count the fo

onal control in

0,3,1.

counter and th

Previous flip flop

output (n)Q1n Q0n

0 0

1 1

0 1

0 1

1 1

0 0

01QQ

X

X

ollowing sequ

1

nput I will be

he counting se

)

Next routpu

n Q1(n+1)

1

0

0

1

0

0

01QQ

X

X

uence.

used. If I = 0

equence will b

required ut (n+1)

Q0(n+1)

1

1

0

1

0

1

0 then counter

be 1,3,0.

Input to

J1 K1

1 1

X X

0 X

X X

1 1

X X

r will operate

o flip flop

Jo Ko

1 X

X 0

X 1

X 0

X 1

1 X

es as up down

n

Page 83: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Desi

1K

Desi

0J

Desi

0K =

estion Ban

pur Institute o

ign for K1 I Q1

I

I

1=

ign for J0 I Q1

I

I

1=

ign for K0 I Q1

I

I

11 IQQI +=

nk : DCFM

of Technolog

Qo1 oQQ 1

Qo1 oQQ 1

Qo1 oQQ 1

1

X

1

1

X

X

M III Sem 

gy, Nagpur 

01QQ

01QQ

01QQ

X

X

X

X

1

0

 CSE 

01QQ

01QQ

01QQ

X

1

X

X

0

1

01QQ

01QQ

01QQ

X

X

X

X

X

X

Page 84: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

n] Design 3 bit synchronous UP-DOWN counter. Solutions:

Transition table:

Control input Previous flip flop output (n)

Next required output (n+1)

Input to flip flop

I Q2n Q1n Q0n Q2(n+

1) Q1(n+

1) Q0(n+

1) J2 K2 J1 K1 Jo Ko

0 0 0 0 0 0 1 0 X 0 X 1 X Up 0 0 0 1 0 1 0 0 X 1 X X 1 Counter 0 0 1 0 0 1 1 0 X X 0 1 X

0 0 1 1 1 0 0 1 X X 1 X 1 0 1 0 0 1 0 1 X 0 0 X 1 X 0 1 0 1 1 1 0 X 0 1 X X 1 0 1 1 0 1 1 1 X 0 X 0 1 X 0 1 1 1 0 0 0 X 1 X 1 X 1 1 1 1 1 1 1 0 X 0 0 X 1 X 1 1 1 0 1 0 1 X 0 1 X X 1

Down 1 1 0 1 1 0 0 X 0 X 0 1 X Counter 1 1 0 0 0 1 1 X 1 X 1 X 1

1 0 1 1 0 1 0 0 X 0 X 1 X 1 0 1 0 0 0 1 0 X 1 X X 1 1 0 0 1 0 0 0 0 X X 0 1 X 1 0 0 0 1 1 1 1 X X 1 X 1

Design for J2 23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

1=Ko (+5v)

0 0 1 0 X X X X

X X X X

1 0 0 0

  Jo = Ko = (+5V) = (LOGIC 1) 

Page 85: Digital Circuits & Fundamentals of Microprocessor

Question Bank : DCFM III Sem CSE  

Nagpur Institute of Technology, Nagpur 

Design for K2 23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ 23 QQ

1=Ko (+5v)

Design for J1

23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ

23 QQ 03031 QQQQJ +=

Design for K1 23QQ QoQ1 oQQ 1 01QQ 01QQ 01QQ

23QQ

23QQ

23QQ

23 QQ 03031 QQQQK +=

X X X X

0 0 1 0

1 0 0 0

X X X X

0 1 X X 0 1 X X

1 0 X X

1 0 X X

X X 1 0 X X 1 0

X X 0 X

X X 0 1

Page 86: Digital Circuits & Fundamentals of Microprocessor

Que 

Nagp

Ack

We MicrQueon th

estion Ban

pur Institute o

knowledge

are thankfroprocessorestions, answhe material

Referen

• D

• D

• D

• D

• F

• 8

• 8

nk : DCFM

of Technolog

ement:

ful to all thrs” that are wers and recited from vces:

Digital Design

Digital logic an

Digital Circuit

Digital Circuit

undamentals

bit microproc

bit microproc

M III Sem 

gy, Nagpur 

he authors cited during

elated informvarious cont

3rd edition by

d Computer D

& Design – R

& Design - A

Of Digital Ele

cessor & contr

cessor – Gaon

 CSE 

of Text Bg the compmation are ctributions fro

M. Morris Ma

Design by M.

R.P. Jain

A. P. Godse

ectronics – A.

roller – V. J. V

nkar

Books of Spilation of thcollectively om the auth

ano,

Morris Mano,

. Anand Kuma

Vibhute

ubject: “Dighis Questioncompiled a

hors and onl

ar

gital Circuitn Bank to pnd presenteline sources

ts & Fundaprovide to thed in single s.

amentals ohe students form based

of s. d