diffusion of neutrons overview basic physical assumptions generic transport equation diffusion...

69
DIFFUSION OF NEUTRONS OVERVIEW Basic Physical Assumptions Generic Transport Equation Diffusion Equation Fermi’s Age Equation Solutions to Reactor Equation

Upload: mavis-mathews

Post on 18-Dec-2015

222 views

Category:

Documents


0 download

TRANSCRIPT

DIFFUSION OF NEUTRONS

OVERVIEW

• Basic Physical Assumptions• Generic Transport Equation• Diffusion Equation• Fermi’s Age Equation• Solutions to Reactor Equation

HT2005: Reactor Physics T10: Diffusion of Neutrons 2

Basic Physical Assumptions

• Neutrons are dimensionless points

• Neutron – neutron interactions are neglected

• Neutrons travel in straight lines

• Collisions are instantaneous

• Background material properties are isotropic

• Properties of background material are known and time-independent

HT2005: Reactor Physics T10: Diffusion of Neutrons 3

Ep E

E

10

9

-7

4.55 10cm; is in eV

0.01eV 4.55 10 cm

D(H) 10 cm

(a) (b)

Physical Model

HT2005: Reactor Physics T10: Diffusion of Neutrons 4

θ

rm b

rc

rc

χm

v

Collision Model

HT2005: Reactor Physics T10: Diffusion of Neutrons 5

Initial Definitions

3 3

3 3 3 3

;

( , , ) Expected number of neutrons in within

x y zd dxdydz d dv dv dv

N t d d d d

r v

r v r v r v

2

1;

2( , )

vvmv

E

Ω v v Ω

Ω

r

ex

x

y

z

ey

v

ey

HT2005: Reactor Physics T10: Diffusion of Neutrons 6

3

22

0 0 0 0 4

( , ) ( , , ) ( , , )

( , , , ) sin ( , , , )

sin

x y zn t N t dv dv dv N t d

N v t v dvd d N E t d dE

d d d

r r v r v v

r Ω r Ω Ω

Ω

2

( , , , ) ( , , ) ( , , , ) ( , , )

( , , , ) ( , , )

1( , , , ) ( , , , )

vN E t N t N E t d dE N t d

mN v t v N t

N E t N v tmv

r Ω r v r Ω Ω r v v

r Ω r v

r Ω r Ω

Neutron Density

HT2005: Reactor Physics T10: Diffusion of Neutrons 7

Angular Flux and Current Density

( , , , )

( , , ) ( , , )

( , , , ) ( , , , ) ( , , , )

( , , , ) ( , , , )

( , , , ) ( , , , )

Et

t N t

E t N E t vN E t

E t vN E t

E t E t

r Ω

J r v v r v

J r Ω v r Ω Ω r Ω

r Ω r Ω

J r Ω Ω r ΩdS

J

number of neutrons

crossing per 1 second

d

d

J S

S

HT2005: Reactor Physics T10: Diffusion of Neutrons 8

Generic Transport Equation

.

changedue changedue changeduetimerate

of change to leakage to tomacro sources

collisions forcesof N throughS

We ignore macroscopic forces

Arbitrary volume V

3 3 3( , , ) ( , , ) ( , , )collV S V V

NN t d t d d Q t d

t t r v r J r v S r r v r

HT2005: Reactor Physics T10: Diffusion of Neutrons 9

3 3 3( , , ) ( , , ) ( , , ) ( , , )S V V V

t d t d N t d N t d J r v S J r v r v r v r v r v r

x y zx y z

e e er

Generic Transport Equation

0collV

N NN Q d

t t v r

( , , )( , , ) ( , , )

coll

N t NN t Q t

t t

r vv r v r v

Gauss Theorem:

HT2005: Reactor Physics T10: Diffusion of Neutrons 10

Substantial Derivative

r

xy

z

Leonhard Euler's (1707-1783) description:

We fix a small volumeNt

We let a small volume move

Joseph Lagrange's (1736-1813) description

dNdt

( , , )dN N N N

N N tdt t t t

N N Nt m

r vr v

r vF

vr v

( , , )coll

dN NQ t

dt t

r v

HT2005: Reactor Physics T10: Diffusion of Neutrons 11

( , , )coll

dN NQ t

dt t

r v

( , , )( , , ) ( , , )

coll

N t NN t Q t

t t

r vv r v r v

coll

N N N NQ

t m t

Fv

r v

Transport (Boltzmann) Equation

HT2005: Reactor Physics T10: Diffusion of Neutrons 12

Collision Term ,E Ω

r

x

y

z

,EΩ

2cm

, ,sterad eVs E E

Ω Ω

, , , ,s s BE E E E N Ω Ω Ω Ω

0 4

( )

( , , , ) ( , , , ) ( , ) ( , , , )tcoll Total absorption

Scatteringtothecurrent directionandenergy

NE E vN E t d dE E vN E t

t

r Ω Ω r Ω Ω r r Ω

HT2005: Reactor Physics T10: Diffusion of Neutrons 13

Neutron Transport Equation

( , , )( , , ) ( , , )

coll

N t NN t Q t

t t

r vv r v r v

0 4

, , ,1( , , , ) ( , , , )t

E tE E E t d dE Q

v t

r Ω

Ω r Ω Ω r Ω Ω

0( , , ,0) ( , , ) :

( , , , ) 0 0 : ( )s s

E E initial condition

E t boundary freesurface condition

r Ω r Ω

R Ω Ω n

( , , , ) ( , , , )E t vN E t r Ω r Ω

HT2005: Reactor Physics T10: Diffusion of Neutrons 14

Boundary Condition

( , , , ) 0 when 0sSE t

rr Ω n Ω

Ω

ns

xy

z

V

Volume V

Surface S

Outgoing direction

Outward normal

r

Ω

Incoming direction

Rs

HT2005: Reactor Physics T10: Diffusion of Neutrons 15

Difficulties• Mathematical structure is too involved• Mixed type equation (integro-differential), no way

to reduce it to a differential equation• Boundary conditions are given only for a halve of

the values• Too many variables (7 in general)• Angular variable

( , ) ( , , , ) ; ( , ) ( , , , )n t N E t d dE t E t d dE r r Ω Ω r r Ω Ω

HT2005: Reactor Physics T10: Diffusion of Neutrons 16

Angular Measures

180 Solar disks

HT2005: Reactor Physics T10: Diffusion of Neutrons 17

φ

RCR

Plane Anglesd dss n

nr

cos r ddsd

r r

e s

re

HT2005: Reactor Physics T10: Diffusion of Neutrons 18

2

AR

Solid Angles

d dAA n

nr e Ω

r

2 2

cosdA dd

r r

Ω A

Ω

HT2005: Reactor Physics T10: Diffusion of Neutrons 19

• Infinite homogeneous and isotropic medium• Neutron scattering is isotropic in Lab-system

• Weak absorption Σa << Σs

• All neutrons have the same velosity v. (One-Speed Approximation)

• The neutron flux is slowly varying function of position

One-Group Diffusion Model

HT2005: Reactor Physics T10: Diffusion of Neutrons 20

x

y

z ZJ J J

Derivation

J

Number of collisions s dV

2

cos

4 4Number of neutrons scattered within

Ω

Ω

s s

d dAdV dV

rd

dA

2

cos

4Number of neutrons reaching

srs

dAdV e

rdA

2 2

0 0 0

( ) cos sin4

srs

r

J r e d drd

Isotropic scattering

r = 0 is most important

HT2005: Reactor Physics T10: Diffusion of Neutrons 21

Taylor’s series at the origin: 00 00

...x y zx y z

sin cos ; sin sin ; cosx r y r z r

00 00

( ) sin cos sin sin cosr r rx y z

r

2 2

000 0 0

cos sin4

srs

r

J r e d drdz

Derivation II

HT2005: Reactor Physics T10: Diffusion of Neutrons 22

0

0

0

0

0

1

4 6

1

4 6

1

3

s

s

zs

Jz

Jz

Jz

Derivation III

0 0 0

1 1 1; ;

3 3 3z x ys s s

J J Jz x y

1

3x x y y z z x y zs

J J Jx y z

J e e e e e e

HT2005: Reactor Physics T10: Diffusion of Neutrons 23

Fick’s Law

1( ) ( ); ( )

3 x y zs x y z

J r r r e e e

1( ) ( );

3 3s

s

D D

J r r

CM-System → Lab-System:1

(1 );tr s trtr

1( ) ( );

3 3tr

tr

D D

J r r

HT2005: Reactor Physics T10: Diffusion of Neutrons 24

scos scos

tr s s s s s

n cos cos cos . . . . . cos

2 3

Transport Mean Free Path

s

tr

; 1 cos ; 1 cos1 cos

str tr s tr s

Transport correction =

A number of anisotropic collisions is replaced by one isotropic

Information about the original direction is lost

HT2005: Reactor Physics T10: Diffusion of Neutrons 25

Diffusion Equation

Change rate Production Leakage Absorption

of rate rate raten

3

Production( , ) ( , ) ( , )

rate f

nt t Q t

cms

r r r

3

Absorption( , ) ( , )

rate a

nt t

cms

r r

HT2005: Reactor Physics T10: Diffusion of Neutrons 26

Leakage Rate

(x,y,z)

x

y

z

dx

dy

dz

Jz2

2

( , , ) ( , , )z z z

z dz z

L J x y z dz dxdy J x y z dxdy

D dxdy D dxdydzz z z

2

2

2

2

2

2

x

y

z

L D dxdydzx

L D dxdydzy

L D dxdydzz

2 2 22

2 2 2Leakage from a unit volume D D

x y z

HT2005: Reactor Physics T10: Diffusion of Neutrons 27

Change rate Production Leakage Absorption

of rate rate raten

21;a ext fD Q Q Q

v t

Time-dependent:

Time-independent: 2 0aD Q

Time-independent from a steady source

2

2 22

0

1 10;

3 3

a

a s a tr

a

D Q

DQ L

L D

Diffusion Equation

HT2005: Reactor Physics T10: Diffusion of Neutrons 28

2 2 22

2 2 2

2 2

2 2 2

22

2 2 2 2 2

1 1

1 1 1sin

sin sin

x y z

rr r r r z

rr r r r r

Cartesian geometry

Cylindrical geometry

Spherical geometry

Laplace’s Operator

HT2005: Reactor Physics T10: Diffusion of Neutrons 29

Symmetries

2 1 nn

d dr

r dr dr

n = 0 for slab

n = 1 for cylindrical

n = 2 for spherical

x

y

z

Slab geometry

22

2x

r

Spherical geometry

2 22

1r

r r r

r

Cylindrical geometry

2 1r

r r r

z

HT2005: Reactor Physics T10: Diffusion of Neutrons 30

General Properties

• Flux is finite and non-negative

• Flux preserves the symmetry

• No return from a free surface

• Flux and current are continues

• Diffusion equation describes the balance of neutrons

HT2005: Reactor Physics T10: Diffusion of Neutrons 31

0 0

0 0

1 1,

4 6 4 6s s

J Jz z

for +z - direction: A trA A B trB B

z z4 6 4 6

A trA A B trB B

z z4 6 4 6

for -z - direction:

BA

Dz

DzA

AB

B

A B

z

AB

Interface Conditions

HT2005: Reactor Physics T10: Diffusion of Neutrons 32

00

0

00

0; 04 6

3

2

tr

tr

Jx

x

Straight line extrapolation from x = 0 towards vacuum: 0 0

3( )

2 tr

x x

2( ) 0 ( 0.71)

3 trx for x exact

extrapolation length = 0.71 tr

Free surface

Diffusion eq.

Transport equation

0.66 tr 0.71 tr

0 00 0

1 1

0.66 0.71tr trx x

Boundary Condition

HT2005: Reactor Physics T10: Diffusion of Neutrons 33

x = 0

( )x

2

2

20

2 2

( ) ( ) 0

( )1 ( )( )

a

dD x Q xdx

Q xd Q xx

dx L D D

2

2 2

0 0

0

1( ) 0 ( )

lim ( ) 0 0

lim ( )2 2

x L x L

x

x

dx x Ae Be

dx Lx B

Q Q LJ x A

D

Q0

0( )2

x LQ Lx e

D

Transport equation

3 s

Plane Infinite Source in Infinite Medium

HT2005: Reactor Physics T10: Diffusion of Neutrons 34

Point Source in Infinite Medium

r

22

22 2

1( ) ( ) 0

1 1( ) 0 0

a

d dD r r Q xr dr drd dr r r

r dr dr L

2 00

0

( )

lim ( ) 0

lim 4 ( )4

r L r L

r

r

e er A B

r rr B

Qr J r Q A

D

0( )4

r LQ er

D r

2

20 0

( )4n abs. ( , )( ) r La r r drr r dr rp r dr e dr

Q Q L

2 2 2

0

( ) 6r r p r dr L

HT2005: Reactor Physics T10: Diffusion of Neutrons 35

Plane Infinite Source in Slab Medium

( )x

Q0

0

2sinh

2( )2 cosh

2

a xQ L Lx

aDL

x = 0

2 22

1 1

0.71 a aa trx a

x = a/2x = -a/2

0( )2

x LQ Lx e

D

Slab:

Infinite:

HT2005: Reactor Physics T10: Diffusion of Neutrons 36

Plane Infinite Source with Reflector

Q0

a

21

12 21

1( ) 0

dx

dx L

12 21

22

22 22

1( ) 0

dx

dx L

Reflector Reflector

Bare slab

HT2005: Reactor Physics T10: Diffusion of Neutrons 37

• q(E) - number of neutrons, which per cubic-centimeter and second pass energy E.

• q(E) = [ncm-3 s-1]• X-sections depend on E: D(E),Σs(E),...

Energy

E q(E)

E0 Q0

2( )( )

( )

E

tE

D E dEE

Ecm

E

Slowing down medium: s a s t

log( )( )

( )

f

th

Ef th

th tht sE

E ED E dE DE

E E

1 ln1

21

6th s s mts sD n D L r

Mean Total Slowing down distance

Can be shown

Age of Neutrons

HT2005: Reactor Physics T10: Diffusion of Neutrons 38

2( ) ( , ) ( , ) ( , ) 0aD E E dE E dE Q E dE r r r

( , ) is the number of neutrons at with energies in ( , )E dE E E dE r r

( , )( , ) ( , ) ( , )

q EQ E dE q E dE q E dE

E

r

r r r

E+dE

E

q(E+dE)

q(E)

2 ( , )( ) ( , ) ( , ) 0a

q ED E E dE E dE dE

E

r

r r

( )Continuous slowing down: ( )

( )t

q E dEE dE

E E

2 ( , )( )( )( , ) ( , ) 0

( ) ( )a

t t

q EED Eq E q E

E E E E E

rr r

Fermi’s Age Equation

( ) ( ) ( )

( ) ( )

t

duu u du qu

u du E dE

HT2005: Reactor Physics T10: Diffusion of Neutrons 39

0 ( )ˆ ˆ( , ) ( , ) exp ; ( , ) ( , ) ( ) 0

( )

Ea

atE

E dEq E q E q E q E E

E E

r r r r

2 ( , )( )( )( , ) ( , ) 0

( ) ( )a

t t

q EED Eq E q E

E E E E E

rr r

2ˆ( , ) ( )ˆ( , )

( )t

q E D Eq E

E E E

r

r

0 ( )new variable: ( )

( )

E

tE

D E dEE

E E

2ˆ( , )

ˆ( , )q

q

r

r

Fermi’s Age Equation II

τ ~ time

HT2005: Reactor Physics T10: Diffusion of Neutrons 40

2

2

q qx

x = 0

No absorption

2

0 1 2

exp4

( , )4

pl

x

q x Q

r

22

1q qr

r r r

No absorption

2

0 3 2

exp4

( , )4

pt

r

q r Q

Solutions to the Age Equation

HT2005: Reactor Physics T10: Diffusion of Neutrons 41

-6 -4 -2 0 2 4 60.00

0.02

0.04

0.06

0.08

=0.5 =1.0 =1.5

q(r,

)

r

2

0 3 2

exp4

( , )4

pt

r

q r Q

Slowing Down Density for Different Fermi’s Ages

0 ( ) ( )Q r

HT2005: Reactor Physics T10: Diffusion of Neutrons 42

Migration Area (Length)Fast neutron borne

Thermal neutron absorbed

Fast neutron thermalized

r

rs rth

N N N

i s s i th th ii i i

r r r r r rN N N

2 2 2 2 2 2, ,

1 1 1

1 1 1; ;

2 21

6 thL r

M r2 216

s th

s th s s th th

s s th th s th

r r r

r r r r r

22 2 2

2 2 2 2 2

2

2

r r r

r r r r

r r

2 2

2 20

2

0

( , )4

6 6

( , )4

pt

s th

pt

r q r r dr

r r

q r r dr

th sM L L L 2 2 2 2

HT2005: Reactor Physics T10: Diffusion of Neutrons 43

Diffusion and Slowing Down Parameters for Various Moderators

Moderator g/cm3 tr

cmL

cmtth

ms

tss

0

cm2

H2O 1.0 0.43 2.7 0.21 0.92 1 27

D2O(pure)

1.1 2.5 165 130 0.51 8 131

D2O(normal)

1.1 2.5 100 50 0.51 8 115

Be 1.8 1.5 22 3.8 0.21 10 102

BeO 2.96 1.4 31 8.1 0.17 12 100

C (puregraphite)

1.6 2.6 59 17 0.158 24 368

C (normal.graphite)

1.6 2.6 50 12 0.158 24 368

HT2005: Reactor Physics T10: Diffusion of Neutrons 44

Neutrons in Multiplying Medium2

a

nD Q

t

2( , , )( ) ( , , ) ( ) ( , , ) ( , , )a

th th th th

n E tdE D E E t dE E E t dE Q E t dE

t

r

r r r

( , , ) ( ) ( ) ( )E t F G E T t r r

( , )( , , ) ( , ); ( , , ) ;

( ) ( , , ) ( , );

thth

avth th

a ac thth

tE t dE t n E t dE

v

E E t dE t

rr r r

r r

( ) ( , , )th

cth

D E E t dE

D

r

2( , )1( , ) ( , ) ( , )th

c th ac th thav

tD t t Q t

v t

rr r r

Assumption:

HT2005: Reactor Physics T10: Diffusion of Neutrons 45

Principles of a Nuclear Reactor

1

2

N

Nk

n/

fissi

onN1

N2Leakage

Fast fission

Resonance abs.

Non-fuel abs.

Leakage

Non-fissile abs.

Fission

Slo

win

g d

ow

n

Ene

rgy

E

2 MeV

1 eV

200 MeV/fission

ν ≈ 2.5

HT2005: Reactor Physics T10: Diffusion of Neutrons 46

Total number of fission neutronsFast fission factor 1.02

Number of fission neutrons from thermal neutrons

Ea

a sE

dEE

p E e

0

Resonance escape probability ( ) 0.87

F Fff

f F Fa a

P

Conditional probability

Ff

f Fa

P

Number of neutrons per absorption in fuel 1.65

Fa

a

f

Thermal utilization 0.71

FNL

TNL

NL FNL TNL

P

P

P P P

Fast non-leakage probability 0.97

Thermal non-leakage probability 0.99

Non-leakage probability

k fp

NL FNL TNLk k P fp P P

HT2005: Reactor Physics T10: Diffusion of Neutrons 47

f thCore

a thCore

p dV

kdV

Rate of neutron production in coreRate of neutron absorption in core

a f th f th a thk p Q p k

2( , )1( , ) ( , ) ( , )th

c th ac th thav

tD t t Q t

v t

rr r r

22

( , ) 11( , ) ( , )th

th thcav c

t kt t

t Lv D

rr r 2 c

cac

DL

2

2

1m

c

kB

L

22 ( )

In the stationary case: ( )th

mth

B

r

r

HT2005: Reactor Physics T10: Diffusion of Neutrons 48

Buckling as Curvature

B

2

aB 0

bBcB

a b cB B B

Large core

Small core

L SB B

HT2005: Reactor Physics T10: Diffusion of Neutrons 49

2 2( , )1( , ) ( , )th

th m thav c

tt B t

tv D

r

r r

( , ) ( ) ( )th t F T t r r

221 ( ) ( )

( )( )m

av c

dT t FB

dt Fv DT t

r

r

22 2 2( )

( ) ( )( ) g g

FB F B F

F

r

r rr

2 22

1In a critical reactor: g m

c

kB B

L

2 ( ) ( )F F r r

Criticality Condition

HT2005: Reactor Physics T10: Diffusion of Neutrons 50

2

2

1 2

1 2

2

2 2

12

matrix:

Differential operator: ( ) ( )

0 ( )

0 ( ) sin cos

BC1: (0) 0 0

BC2: ( ) 0 sin 0 ; 1,2,

; ( ) sin ; 1,2, ,

x x

n n

n n

dy x y x

dx

y x Ce C e

y x C x C x

y C

y a a n na

n ny x C x n

a a

Ax x

Eigenvalues

Transport operator

Differential operator

Matrix

HT2005: Reactor Physics T10: Diffusion of Neutrons 51

Eigenfunctions

0 a

2

1 1 12; ( ) siny x C x

a a

Only one is physically meaningful

HT2005: Reactor Physics T10: Diffusion of Neutrons 52

Solution of a Reactor Equation1

tr

tr

λ0.71RR

λ1.42LL

2 22

2 2

Φ 1 Φ ΦB Φ 0

r r r zΦ(r, z) F(r)G(z)

2( ) ( ) ( )2 2

2 2

2 22 2

2 2

1d F r 1 dF r 1 dG zB 0

F dr Fr dr G dz

1d F 1 dF 1 dGα β

F dr Fr dr G dz

2 2 2B α β

( ) sin cosG z A z C z

Symmetry: 0A

HT2005: Reactor Physics T10: Diffusion of Neutrons 53

( ) n

L π πzG(z) Ccos z z β n G(z) Ccos

2 L L

22 2

2

d F dFx αr x x x F 0

dx dx

0 0

0 0

( ) ( ) ( )

( ) ( ) ( )

F x DJ x EY x

or

F r DJ r EY r

0

00( )

Rr

F r DJR

1 2 3 4 5 6 7 8

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 ( )J x

0 ( )Y x

0 2.405

HT2005: Reactor Physics T10: Diffusion of Neutrons 54

00

max

0max 0

222 0

rπzΦ(r, z) A cos J

L R

A Φ

rπzΦ(r, z) Φ cos J

L R

πB

L R

B C

0max 0

rπzΦ(r, z) Φ cos J

L R

222 0π

BL R

max

ππ πΦ(r, z) Φ cos cos cos

yx za b c

2 2 22 π π π

Ba b c

max

πsin

Φ( ) Φ

rRrr

22 π

BR

Rectangular

Cylinder

Sphere

HT2005: Reactor Physics T10: Diffusion of Neutrons 55

Critical Size of a ReactorWe assume bare homogenous reactorFor thermal neutrons we get:

2 ( ) ( ) ( , ) 0a thD r r qr

Slowing down neutrons:2 ( , )

( , )qr

qr

Assumption:Reactor is sufficiently big to treat neutron spectrum independently of space variables

2

2

2

22

0

2 2

0

( )( , ) ( ) ( ) ( ) ( ) ( )

( ) 1 ( )( )

( ) ( )

0

( , ) ( )

B

B

Tqr R r T T R r R r

R r dTB T T e

R r T d

R BR

qr R r T e

At the beginning slowing down density is =0 aR r T q r f p 0( ) ( ,0)

p1

HT2005: Reactor Physics T10: Diffusion of Neutrons 56

For > 0 one has to take into account resonance capture through p – resonance passage factor.

2 2 2

2 2

B τ B τ B τ0 a a

R(r) Φ(r) Φ B Φ 0

q(r,τ) R(r)T pe Σ Φ(r)f ηpe Σ Φ(r)k e

2aD Σ Φ q 0

2

2

2

2 B τa a

B τ2

2 2

2 2 B τ

DB Σ Φ Σ Φk e 0

1 k eB 0

L L

(B L 1) k e 0

or

2

2 2 11

Bk eB L

HT2005: Reactor Physics T10: Diffusion of Neutrons 57

Non-Leakage Probability

1NL FNL TNLk k P k P P 2

2 2 11

Bk eB L

2 2 22

1

1

a thV a

TNLaa th th

V V

dVA

PA L DB LBdV D dV

2

2 2

1

1

thBFNL

TNL

P e

PLB

HT2005: Reactor Physics T10: Diffusion of Neutrons 58

Volume of an cylindrical reactor with buckling derived from a critical equation – the smallest critical size:

2 22

22 2

2

min 3

22

2.405We assume that L L and R R

(2.405)

3 2.405 3 1480 gives ; gives

2

1(s )

Generally:big reactor small B-value

BL R

LV R L V R L

BL

dVL R V

dL B B B

Bidesize

HT2005: Reactor Physics T10: Diffusion of Neutrons 59

Minimum Volume

R

L

L = L(R)

V = V(R)

L

D = 1.08 L

BL R

RV

B R

222 0

2 2

220

HT2005: Reactor Physics T10: Diffusion of Neutrons 60

Optimum Core Dimensions

Core shape

Optimum dimensions

Minimal volume

Cube

Cylinder

Sphere

3a b c

B

3

161V

B

03 3;

2L R

B B

3

148V

B

RB

3

130V

B

HT2005: Reactor Physics T10: Diffusion of Neutrons 61

2

2 2

2 2 2 2 2 2 2 22

11

(1 )(1 ) 1 ( ) 11

6

Bk eB L

k k k kB L B B L BM r

B

Migration Area

11

1xe x

x

HT2005: Reactor Physics T10: Diffusion of Neutrons 62

Improved Diffusion

(1) Isotropic Scattering: 1

(2) Boundary Condition: 0.66 0.71

(3) Migration Length:

s s

tr tr

L M

HT2005: Reactor Physics T10: Diffusion of Neutrons 63

The END

HT2005: Reactor Physics T10: Diffusion of Neutrons 64

CRITICALITY EQUATION - physical interpretation

reactorinfiniteinrateproduction ka

aBk e

2 production rate in the FINITE reactor

2

2 2

2 2 2 2 2 2 2 22

11

(1 )(1 ) 1 ( ) 11

6

Bk eB L

k k k kB L B B L BM r

B

HT2005: Reactor Physics T10: Diffusion of Neutrons 65

e PBs

2 non leakage factor for all epithermal neutrons

Thermal leakage:

D

D a

Thermal non - leakage factor:

1

1

1

11

2

2 2

2 2

2

D

D DB

B LP

k e

B Lk P P

a

a

a

t

B

s t

for critical reactor

HT2005: Reactor Physics T10: Diffusion of Neutrons 66

Z Z ZJ J J

;n vn J v

Derivation

Number of collisions in dV s dV

Neutrons scattered towards dA2

cos

4 4

Ω

s s

d dAdV dV

r

Neutrons through dA per 1 second 2

cos

4

srs

dAdV e

r2 2

0 0 0

( ) cos sin4

srs

r

J r e d drd

HT2005: Reactor Physics T10: Diffusion of Neutrons 67

( ) n

L π πzG(z) Ccos z z β n G(z) Ccos

2 L L

22 2

2

d F dFx αr x x x F 0

dx dx

0 0

0 0

( ) ( ) ( )

( ) ( ) ( )

F x DJ x EY x

or

F r DJ r EY r

1

Rr

DJrF

R405.2

)(

405.2

0

HT2005: Reactor Physics T10: Diffusion of Neutrons 68

Delayed Neutrons( , , , ) ( , , , ) ( , , , )f scE E E E E E r Ω Ω r Ω Ω r Ω Ω

6

10 4 0 4

1(1 )t sc fi i

i

d dE d dE C Qv t

Ω Ω Ω

0 4

6

1

0.0065

ii i i f

ii

CC d dE

t

Ω

( , , , ) ( , ) ( ; , , )

1( ; , , ) ( ; )

4( ; ) ( ; ) ( ; )

( ; ) 1; ( ; ) ( , )

( , )( , , , ) ( ; ) ( , )

4

r Ω Ω r r Ω Ω

r Ω Ω r

r r r

r r r

rr Ω Ω r r

f f f

f

f f

E E E f E E

f E E E E

E E E E E

E E dE E E E

EE E E E

HT2005: Reactor Physics T10: Diffusion of Neutrons 69

1

1

Optimum dimensions and critical mass of acylindrical core