lecture 10: anomalous diffusion outline: generalized diffusion equation subdiffusion superdiffusion...

71
Lecture 10: Anomalous diffusion Outline: • generalized diffusion equation • subdiffusion • superdiffusion • fractional Wiener process

Upload: tiffany-holland

Post on 18-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Lecture 10: Anomalous diffusion

Outline:• generalized diffusion equation• subdiffusion• superdiffusion• fractional Wiener process

Page 2: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

anomalous diffusionRecall derivation of Fokker-Planck equation:

Page 3: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

anomalous diffusionRecall derivation of Fokker-Planck equation:

∂P(x, t)

∂t= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

= −∂

∂xsr(x,s)ds∫( )P(x, t)[ ] +

∂ 2

∂x 212 s2r(x,s)ds∫( )P(x, t)[ ] +L

= −∂

∂xr1(x)P(x, t)( ) +

1

2

∂ 2

∂x 2r2(x)P(x, t)( ) +L

Page 4: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

anomalous diffusionRecall derivation of Fokker-Planck equation:

∂P(x, t)

∂t= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

= −∂

∂xsr(x,s)ds∫( )P(x, t)[ ] +

∂ 2

∂x 212 s2r(x,s)ds∫( )P(x, t)[ ] +L

= −∂

∂xr1(x)P(x, t)( ) +

1

2

∂ 2

∂x 2r2(x)P(x, t)( ) +L

But what if ?

s2r(x,s)ds∫ = ∞

Page 5: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

anomalous diffusionRecall derivation of Fokker-Planck equation:

∂P(x, t)

∂t= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

= −∂

∂xsr(x,s)ds∫( )P(x, t)[ ] +

∂ 2

∂x 212 s2r(x,s)ds∫( )P(x, t)[ ] +L

= −∂

∂xr1(x)P(x, t)( ) +

1

2

∂ 2

∂x 2r2(x)P(x, t)( ) +L

But what if ?

And what if the distribution of time steps has infinite mean?

s2r(x,s)ds∫ = ∞

Page 6: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

anomalous diffusionRecall derivation of Fokker-Planck equation:

∂P(x, t)

∂t= ds r(x − s;s)P(x − s, t) − r(x;−s)P(x, t)[ ]∫

= −∂

∂xsr(x,s)ds∫( )P(x, t)[ ] +

∂ 2

∂x 212 s2r(x,s)ds∫( )P(x, t)[ ] +L

= −∂

∂xr1(x)P(x, t)( ) +

1

2

∂ 2

∂x 2r2(x)P(x, t)( ) +L

But what if ?

And what if the distribution of time steps has infinite mean?

Go back and reformulate the problem: €

s2r(x,s)ds∫ = ∞

Page 7: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

continuous-time random walkdistribution of jump sizes r(x), distribution of waiting times w(t)

Page 8: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

continuous-time random walkdistribution of jump sizes r(x), distribution of waiting times w(t)

can have joint distribution ψ(x,t); here, ψ(x,t) = r(x)w(t)

Page 9: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

continuous-time random walkdistribution of jump sizes r(x), distribution of waiting times w(t)

can have joint distribution ψ(x,t); here, ψ(x,t) = r(x)w(t)

Let η(x,t) = probability density of x at a t right after a jump

Page 10: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

continuous-time random walkdistribution of jump sizes r(x), distribution of waiting times w(t)

can have joint distribution ψ(x,t); here, ψ(x,t) = r(x)w(t)

Let η(x,t) = probability density of x at a t right after a jump

η(x, t) = d ′ x d ′ t ψ (x − ′ x , t − ′ t )η ( ′ x , ′ t ) + δ(x)δ(t)∫∫

Page 11: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

continuous-time random walkdistribution of jump sizes r(x), distribution of waiting times w(t)

can have joint distribution ψ(x,t); here, ψ(x,t) = r(x)w(t)

Let η(x,t) = probability density of x at a t right after a jump

η(x, t) = d ′ x d ′ t ψ (x − ′ x , t − ′ t )η ( ′ x , ′ t ) + δ(x)δ(t)∫∫= d ′ x r(x − ′ x ) d ′ t w(t − ′ t )η ( ′ x , ′ t ) + δ(x)δ(t)∫∫

Page 12: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

continuous-time random walkdistribution of jump sizes r(x), distribution of waiting times w(t)

can have joint distribution ψ(x,t); here, ψ(x,t) = r(x)w(t)

Let η(x,t) = probability density of x at a t right after a jump

η(x, t) = d ′ x d ′ t ψ (x − ′ x , t − ′ t )η ( ′ x , ′ t ) + δ(x)δ(t)∫∫= d ′ x r(x − ′ x ) d ′ t w(t − ′ t )η ( ′ x , ′ t ) + δ(x)δ(t)∫∫

P(x, t) = d ′ t 1− d ′ ′ t w( ′ ′ t )0

t− ′ t

∫[ ]0

t

∫ η ( ′ x , ′ t )

Then

Page 13: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

continuous-time random walkdistribution of jump sizes r(x), distribution of waiting times w(t)

can have joint distribution ψ(x,t); here, ψ(x,t) = r(x)w(t)

Let η(x,t) = probability density of x at a t right after a jump

η(x, t) = d ′ x d ′ t ψ (x − ′ x , t − ′ t )η ( ′ x , ′ t ) + δ(x)δ(t)∫∫= d ′ x r(x − ′ x ) d ′ t w(t − ′ t )η ( ′ x , ′ t ) + δ(x)δ(t)∫∫

P(x, t) = d ′ t 1− d ′ ′ t w( ′ ′ t )0

t− ′ t

∫[ ]0

t

∫ η ( ′ x , ′ t )

Then

______________ prob to survive from t’ to t without a jump

Page 14: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier & Laplace transform:Fourier transform in space, Laplace transform in time:

Page 15: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier & Laplace transform:Fourier transform in space, Laplace transform in time:

P(k,s) =1− w(s)

s

1

1− r(k)w(s)

Page 16: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier & Laplace transform:Fourier transform in space, Laplace transform in time:

P(k,s) =1− w(s)

s

1

1− r(k)w(s)

The conventional case:

Page 17: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier & Laplace transform:Fourier transform in space, Laplace transform in time:

P(k,s) =1− w(s)

s

1

1− r(k)w(s)

The conventional case:

w(t) =1

τexp − t τ( ) ⇒ w(s) =

1

1+ sτ≈1− sτ

Page 18: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier & Laplace transform:Fourier transform in space, Laplace transform in time:

P(k,s) =1− w(s)

s

1

1− r(k)w(s)

The conventional case:

w(t) =1

τexp − t τ( ) ⇒ w(s) =

1

1+ sτ≈1− sτ

r(x) =1

4πξ 2exp −

x 2

ξ 2

⎝ ⎜

⎠ ⎟ ⇒ r(k) = exp −k 2ξ 2

( ) ≈1− k 2ξ 2

Page 19: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier & Laplace transform:Fourier transform in space, Laplace transform in time:

P(k,s) =1− w(s)

s

1

1− r(k)w(s)

The conventional case:

w(t) =1

τexp − t τ( ) ⇒ w(s) =

1

1+ sτ≈1− sτ

r(x) =1

4πξ 2exp −

x 2

ξ 2

⎝ ⎜

⎠ ⎟ ⇒ r(k) = exp −k 2ξ 2

( ) ≈1− k 2ξ 2

P(k,s) ≈sτ

s

1

1− 1− (kξ )2( ) 1− sτ( )

Page 20: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier & Laplace transform:Fourier transform in space, Laplace transform in time:

P(k,s) =1− w(s)

s

1

1− r(k)w(s)

The conventional case:

w(t) =1

τexp − t τ( ) ⇒ w(s) =

1

1+ sτ≈1− sτ

r(x) =1

4πξ 2exp −

x 2

ξ 2

⎝ ⎜

⎠ ⎟ ⇒ r(k) = exp −k 2ξ 2

( ) ≈1− k 2ξ 2

P(k,s) ≈sτ

s

1

1− 1− (kξ )2( ) 1− sτ( )

≈1

s + ξ 2 τ( )k 2

Page 21: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier & Laplace transform:Fourier transform in space, Laplace transform in time:

P(k,s) =1− w(s)

s

1

1− r(k)w(s)

The conventional case:

w(t) =1

τexp − t τ( ) ⇒ w(s) =

1

1+ sτ≈1− sτ

r(x) =1

4πξ 2exp −

x 2

ξ 2

⎝ ⎜

⎠ ⎟ ⇒ r(k) = exp −k 2ξ 2

( ) ≈1− k 2ξ 2

P(k,s) ≈sτ

s

1

1− 1− (kξ )2( ) 1− sτ( )

≈1

s + ξ 2 τ( )k 2=

1

s + Dk 2

Page 22: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier-Laplace inversion

2 ways: (D = 1)

Page 23: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier-Laplace inversion

2 ways:1. Invert the Laplace transform first:

(D = 1)

Page 24: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier-Laplace inversion

2 ways:1. Invert the Laplace transform first:

P(k,s) =1

s + k 2⇒ P(k, t) = exp −k 2t( )

(D = 1)

Page 25: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier-Laplace inversion

2 ways:1. Invert the Laplace transform first:

P(k,s) =1

s + k 2⇒ P(k, t) = exp −k 2t( )

P(x, t) =ds

2π∫ exp −ikx − k 2t( )

(D = 1)

Page 26: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier-Laplace inversion

2 ways:1. Invert the Laplace transform first:

P(k,s) =1

s + k 2⇒ P(k, t) = exp −k 2t( )

P(x, t) =ds

2π∫ exp −ikx − k 2t( )

= exp −x 2

4 t

⎝ ⎜

⎠ ⎟

ds

2π∫ exp −ikx − k 2t +

x 2

4t

⎝ ⎜

⎠ ⎟

(D = 1)

Page 27: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fourier-Laplace inversion

2 ways:1. Invert the Laplace transform first:

P(k,s) =1

s + k 2 ⇒ P(k, t) = exp −k 2t( )

P(x, t) =ds

2π∫ exp −ikx − k 2t( )

= exp −x 2

4 t

⎝ ⎜

⎠ ⎟

ds

2π∫ exp −ikx − k 2t +

x 2

4t

⎝ ⎜

⎠ ⎟

=1

4πtexp −

x 2

4 t

⎝ ⎜

⎠ ⎟

(D = 1)

Page 28: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

other way:

2. Invert the Fourier transform first:

Page 29: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

other way:

2. Invert the Fourier transform first:

P(k,s) =1

s + k 2⇒ P(x,s) =

1

2 sexp − x s( )

Page 30: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

other way:

2. Invert the Fourier transform first:

P(k,s) =1

s + k 2⇒ P(x,s) =

1

2 sexp − x s( )

P(x, t) =ds

2πi∫ 1

2 sexp − x s + st( )

Page 31: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

other way:

2. Invert the Fourier transform first:

P(k,s) =1

s + k 2⇒ P(x,s) =

1

2 sexp − x s( )

P(x, t) =ds

2πi∫ 1

2 sexp − x s + st( )

=du

2πexp −i x u − u2t( )∫ iu = s( )

Page 32: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

other way:

2. Invert the Fourier transform first:

P(k,s) =1

s + k 2⇒ P(x,s) =

1

2 sexp − x s( )

P(x, t) =ds

2πi∫ 1

2 sexp − x s + st( )

=du

2πexp −i x u − u2t( )∫ iu = s( )

=1

4πtexp −

x 2

4 t

⎝ ⎜

⎠ ⎟

Page 33: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

anomalous diffusion:

w(t)∝τ α

tα +1⇒ w(s) ≈1− (sτ )α (α <1)long waiting times:

Page 34: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

anomalous diffusion:

w(t)∝τ α

tα +1⇒ w(s) ≈1− (sτ )α (α <1)

r(x)∝ξ σ

x1+σ⇒ r(k) ≈1− (kξ )σ (σ < 2)

long waiting times:

long jumps:

Page 35: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

anomalous diffusion:

P(k,s) =1− w(s)

s

1

1− r(k)w(s)€

w(t)∝τ α

tα +1⇒ w(s) ≈1− (sτ )α (α <1)

r(x)∝ξ σ

x1+σ⇒ r(k) ≈1− (kξ )σ (σ < 2)

long waiting times:

long jumps:

=>

Page 36: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

anomalous diffusion:

P(k,s) =1− w(s)

s

1

1− r(k)w(s)

≈(sτ )α

s

1

1− 1− (kξ )σ( ) 1− (sτ )α

( )

w(t)∝τ α

tα +1⇒ w(s) ≈1− (sτ )α (α <1)

r(x)∝ξ σ

x1+σ⇒ r(k) ≈1− (kξ )σ (σ < 2)

long waiting times:

long jumps:

=>

Page 37: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

anomalous diffusion:

P(k,s) =1− w(s)

s

1

1− r(k)w(s)

≈(sτ )α

s

1

1− 1− (kξ )σ( ) 1− (sτ )α

( )

≈1

s1−α

1

sα + ξ σ τ α( )kσ

w(t)∝τ α

tα +1⇒ w(s) ≈1− (sτ )α (α <1)

r(x)∝ξ σ

x1+σ⇒ r(k) ≈1− (kξ )σ (σ < 2)

long waiting times:

long jumps:

=>

Page 38: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

anomalous diffusion:

P(k,s) =1− w(s)

s

1

1− r(k)w(s)

≈(sτ )α

s

1

1− 1− (kξ )σ( ) 1− (sτ )α

( )

≈1

s1−α

1

sα + ξ σ τ α( )kσ

=1

s1−α

1

sα + ˜ D kσ

w(t)∝τ α

tα +1⇒ w(s) ≈1− (sτ )α (α <1)

r(x)∝ξ σ

x1+σ⇒ r(k) ≈1− (kξ )σ (σ < 2)

long waiting times:

long jumps:

=>

Page 39: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Subdiffusion: long wait time distribution

P(k,s) =1

s1−α

1

sα + k 2

Page 40: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Subdiffusion: long wait time distribution

Invert Fourier transform first:

P(k,s) =1

s1−α

1

sα + k 2

Page 41: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Subdiffusion: long wait time distribution

Invert Fourier transform first:

P(k,s) =1

s1−α

1

sα + k 2

P(k,s) =1

s1−α

1

sα + k 2

Page 42: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Subdiffusion: long wait time distribution

Invert Fourier transform first:

P(k,s) =1

s1−α

1

sα + k 2

P(k,s) =1

s1−α

1

sα + k 2⇒ P(x,s) =

1

2s1−α / 2exp − x sα / 2

( )

Page 43: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Subdiffusion: long wait time distribution

Invert Fourier transform first:

P(k,s) =1

s1−α

1

sα + k 2

P(k,s) =1

s1−α

1

sα + k 2⇒ P(x,s) =

1

2s1−α / 2exp − x sα / 2

( )

P(x, t) =ds

2πi∫ 1

2s1−α / 2exp − x sα / 2 + st( )

Page 44: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Subdiffusion: long wait time distribution

Invert Fourier transform first:

P(k,s) =1

s1−α

1

sα + k 2

P(k,s) =1

s1−α

1

sα + k 2⇒ P(x,s) =

1

2s1−α / 2exp − x sα / 2

( )

P(x, t) =ds

2πi∫ 1

2s1−α / 2exp − x sα / 2 + st( )

=1

2tα / 2

du

2πiexp −i x / tα / 2

( )uα / 2 + u( )∫ u = st( )

Page 45: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Subdiffusion: long wait time distribution

Invert Fourier transform first:

P(k,s) =1

s1−α

1

sα + k 2

P(k,s) =1

s1−α

1

sα + k 2⇒ P(x,s) =

1

2s1−α / 2exp − x sα / 2

( )

P(x, t) =ds

2πi∫ 1

2s1−α / 2exp − x sα / 2 + st( )

=1

2tα / 2

du

2πiexp −i x / tα / 2

( )uα / 2 + u( )∫ u = st( )

=1

tα / 2f x / tα / 2( )

Page 46: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Subdiffusion: long wait time distribution

Invert Fourier transform first:

P(k,s) =1

s1−α

1

sα + k 2

P(k,s) =1

s1−α

1

sα + k 2⇒ P(x,s) =

1

2s1−α / 2exp − x sα / 2

( )

P(x, t) =ds

2πi∫ 1

2s1−α / 2exp − x sα / 2 + st( )

=1

2tα / 2

du

2πiexp −i x / tα / 2

( )uα / 2 + u( )∫ u = st( )

=1

tα / 2f x / tα / 2( )

x 2(t) = x 2P(x)dx = tα∫ y 2 f (y)dy∫

Page 47: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Subdiffusion: long wait time distribution

Invert Fourier transform first:

α < 1: subdiffusion

P(k,s) =1

s1−α

1

sα + k 2

P(k,s) =1

s1−α

1

sα + k 2⇒ P(x,s) =

1

2s1−α / 2exp − x sα / 2

( )

P(x, t) =ds

2πi∫ 1

2s1−α / 2exp − x sα / 2 + st( )

=1

2tα / 2

du

2πiexp −i x / tα / 2

( )uα / 2 + u( )∫ u = st( )

=1

tα / 2f x / tα / 2( )

x 2(t) = x 2P(x)dx = tα∫ y 2 f (y)dy∫

Page 48: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

long-tailed jump distribution:(α = 1, σ < 2)

P(k,s) =1

s + kσ

Page 49: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

long-tailed jump distribution:(α = 1, σ < 2)

First invert Laplace transform:

P(k,s) =1

s + kσ

Page 50: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

long-tailed jump distribution:(α = 1, σ < 2)

First invert Laplace transform:

P(k,s) =1

s + kσ

P(k, t) = exp −kσ t( )

Page 51: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

long-tailed jump distribution:(α = 1, σ < 2)

First invert Laplace transform:

P(k,s) =1

s + kσ

P(k, t) = exp −kσ t( )

P(x, t) =1

t1/σSσ (x / t1/σ )

Page 52: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

long-tailed jump distribution:(α = 1, σ < 2)

First invert Laplace transform:

P(k,s) =1

s + kσ

P(k, t) = exp −kσ t( )

P(x, t) =1

t1/σSσ (x / t1/σ ) Sσ = stable distribution

of order σ

Page 53: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

long-tailed jump distribution:(α = 1, σ < 2)

First invert Laplace transform:

P(k,s) =1

s + kσ

P(k, t) = exp −kσ t( )

P(x, t) =1

t1/σSσ (x / t1/σ )

x →∞ ⏐ → ⏐ ⏐ ∝

t

x1+σ

Sσ = stable distributionof order σ

Page 54: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

long-tailed jump distribution:(α = 1, σ < 2)

First invert Laplace transform:

P(k,s) =1

s + kσ

P(k, t) = exp −kσ t( )

P(x, t) =1

t1/σSσ (x / t1/σ )

x →∞ ⏐ → ⏐ ⏐ ∝

t

x1+σ

Sσ = stable distributionof order σ

x scales like t1/σ

Page 55: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

long-tailed jump distribution:(α = 1, σ < 2)

First invert Laplace transform:

P(k,s) =1

s + kσ

P(k, t) = exp −kσ t( )

P(x, t) =1

t1/σSσ (x / t1/σ )

x →∞ ⏐ → ⏐ ⏐ ∝

t

x1+σ

Sσ = stable distributionof order σ

x scales like t1/σ (superdiffusion: faster than √t ),

Page 56: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

long-tailed jump distribution:(α = 1, σ < 2)

First invert Laplace transform:

P(k,s) =1

s + kσ

P(k, t) = exp −kσ t( )

P(x, t) =1

t1/σSσ (x / t1/σ )

x →∞ ⏐ → ⏐ ⏐ ∝

t

x1+σ

Sσ = stable distributionof order σ

x scales like t1/σ (superdiffusion: faster than √t ), but <x2(t)> = ∞.

Page 57: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

long-tailed jump distribution:(α = 1, σ < 2)

First invert Laplace transform:

P(k,s) =1

s + kσ

P(k, t) = exp −kσ t( )

P(x, t) =1

t1/σSσ (x / t1/σ )

x →∞ ⏐ → ⏐ ⏐ ∝

t

x1+σ

Sσ = stable distributionof order σ

x scales like t1/σ (superdiffusion: faster than √t ), but <x2(t)> = ∞.fractional moments:

Page 58: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

long-tailed jump distribution:(α = 1, σ < 2)

First invert Laplace transform:

P(k,s) =1

s + kσ

P(k, t) = exp −kσ t( )

P(x, t) =1

t1/σSσ (x / t1/σ )

x →∞ ⏐ → ⏐ ⏐ ∝

t

x1+σ

Sσ = stable distributionof order σ

x scales like t1/σ (superdiffusion: faster than √t ), but <x2(t)> = ∞.

x λ (t) = x λ P(x)dx = t λ /σ∫ y λ f (y)dy∫ < ∞, λ < σ

fractional moments:

Page 59: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fractional Wiener process

For an ordinary Wiener process,

x 2(t) = σ 2t

Page 60: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fractional Wiener process

For an ordinary Wiener process,

How can we get ?

x 2(t) = σ 2t

x 2(t) ∝σ 2t H

Page 61: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fractional Wiener process

For an ordinary Wiener process,

How can we get ?

Consider

x 2(t) = σ 2t

x 2(t) ∝σ 2t H

x(t) = C d ′ t 1

(t − ′ t )a0

t

∫ ξ ( ′ t ); ξ (t)ξ ( ′ t ) = δ(t − ′ t ), a < 12

Page 62: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fractional Wiener process

For an ordinary Wiener process,

How can we get ?

Consider

Then

x 2(t) = σ 2t

x 2(t) ∝σ 2t H

x(t) = C d ′ t 1

(t − ′ t )a0

t

∫ ξ ( ′ t ); ξ (t)ξ ( ′ t ) = δ(t − ′ t ), a < 12

x 2(t) = σ 2C2 d ′ t 1

(t − ′ t )2a0

t

∫ =σ 2C2

1− 2at1−2a ⇒ a = 1

2 (1− H)

Page 63: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fractional Wiener process

For an ordinary Wiener process,

How can we get ?

Consider

Then

Laplace-transformed:

x 2(t) = σ 2t

x 2(t) ∝σ 2t H

x(t) = C d ′ t 1

(t − ′ t )a0

t

∫ ξ ( ′ t ); ξ (t)ξ ( ′ t ) = δ(t − ′ t ), a < 12

x 2(t) = σ 2C2 d ′ t 1

(t − ′ t )2a0

t

∫ =σ 2C2

1− 2at1−2a ⇒ a = 1

2 (1− H)

x(s) = C dt t−ae−st

0

∫[ ]ξ (s) = C ⋅Γ(1− a)

s1−a⋅ξ (s)

Page 64: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

Fractional Wiener process

For an ordinary Wiener process,

How can we get ?

Consider

Then

Laplace-transformed:

so choose

x 2(t) = σ 2t

x 2(t) ∝σ 2t H

x(t) = C d ′ t 1

(t − ′ t )a0

t

∫ ξ ( ′ t ); ξ (t)ξ ( ′ t ) = δ(t − ′ t ), a < 12

x 2(t) = σ 2C2 d ′ t 1

(t − ′ t )2a0

t

∫ =σ 2C2

1− 2at1−2a ⇒ a = 1

2 (1− H)

x(s) = C dt t−ae−st

0

∫[ ]ξ (s) = C ⋅Γ(1− a)

s1−a⋅ξ (s)

C =1

Γ(1− a)

Page 65: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

fractional derivatives

x(s) =1

s1−aξ (s)

Page 66: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

fractional derivatives

x(s) =1

s1−aξ (s) ⇒ x(t) =

d

dt

⎝ ⎜

⎠ ⎟−(1−a )

ξ (t)

Page 67: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

fractional derivatives

x(s) =1

s1−aξ (s) ⇒ x(t) =

d

dt

⎝ ⎜

⎠ ⎟−(1−a )

ξ (t) ≡1

Γ(1− a)d ′ t

1

(t − ′ t )a0

t

∫ ξ ( ′ t )

Page 68: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

fractional derivatives

x(s) =1

s1−aξ (s) ⇒ x(t) =

d

dt

⎝ ⎜

⎠ ⎟−(1−a )

ξ (t) ≡1

Γ(1− a)d ′ t

1

(t − ′ t )a0

t

∫ ξ ( ′ t )

d

dt

⎝ ⎜

⎠ ⎟(1−a )

x(t) = ξ (t)or

Page 69: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

fractional derivatives

x(s) =1

s1−aξ (s) ⇒ x(t) =

d

dt

⎝ ⎜

⎠ ⎟−(1−a )

ξ (t) ≡1

Γ(1− a)d ′ t

1

(t − ′ t )a0

t

∫ ξ ( ′ t )

d

dt

⎝ ⎜

⎠ ⎟(1−a )

x(t) = ξ (t)

d

dt

⎝ ⎜

⎠ ⎟−a

˙ x (t) = ξ (t)

or

or

Page 70: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

fractional derivatives

x(s) =1

s1−aξ (s) ⇒ x(t) =

d

dt

⎝ ⎜

⎠ ⎟−(1−a )

ξ (t) ≡1

Γ(1− a)d ′ t

1

(t − ′ t )a0

t

∫ ξ ( ′ t )

d

dt

⎝ ⎜

⎠ ⎟(1−a )

x(t) = ξ (t)

d

dt

⎝ ⎜

⎠ ⎟−a

˙ x (t) = ξ (t)

1

Γ(a)d ′ t

1

(t − ′ t )1−a0

t

∫ ˙ x ( ′ t ) = ξ (t)

or

i.e.,

or

Page 71: Lecture 10: Anomalous diffusion Outline: generalized diffusion equation subdiffusion superdiffusion fractional Wiener process

fractional derivatives

x(s) =1

s1−aξ (s) ⇒ x(t) =

d

dt

⎝ ⎜

⎠ ⎟−(1−a )

ξ (t) ≡1

Γ(1− a)d ′ t

1

(t − ′ t )a0

t

∫ ξ ( ′ t )

d

dt

⎝ ⎜

⎠ ⎟(1−a )

x(t) = ξ (t)

d

dt

⎝ ⎜

⎠ ⎟−a

˙ x (t) = ξ (t)

1

Γ(a)d ′ t

1

(t − ′ t )1−a0

t

∫ ˙ x ( ′ t ) = ξ (t)

or

i.e.,

or

nonlocal!