dcm for fmri: advanced topics klaas enno stephan laboratory for social & neural systems research...

39
DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging University College London SPM Course, London 13 May 2011 0 10 20 30 40 50 60 70 80 90 100 0 0.1 0.2 0.3 0.4 0 10 20 30 40 50 60 70 80 90 100 0 0.2 0.4 0.6 0 10 20 30 40 50 60 70 80 90 100 0 0.1 0.2 0.3 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 0 10 20 30 40 50 60 70 80 90 100 -1 0 1 2 3 4 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 0 10 20 30 40 50 60 70 80 90 100 0 0.1 0.2 0.3 0.4 0 10 20 30 40 50 60 70 80 90 100 0 0.2 0.4 0.6 0 10 20 30 40 50 60 70 80 90 100 0 0.1 0.2 0.3 N euralpopulation activity 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 0 10 20 30 40 50 60 70 80 90 100 -1 0 1 2 3 4 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 0 10 20 30 40 50 60 70 80 90 100 -1 0 1 2 3 4 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 fM R Isignalchange (% ) x 1 x 2 x 3 x 1 x 2 x 3 Cu x D x B u A dt dx n j j j m i i i 1 ) ( 1 ) ( u 1 u 2

Upload: clemence-fisher

Post on 29-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

DCM for fMRI: Advanced topics

Klaas Enno Stephan

Laboratory for Social & Neural Systems Research (SNS)University of Zurich

Wellcome Trust Centre for NeuroimagingUniversity College London

SPM Course, London13 May 2011

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

Neural population activity

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

fMRI signal change (%)

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

Neural population activity

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

fMRI signal change (%)

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

0 10 20 30 40 50 60 70 80 90 100-1

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

fMRI signal change (%)

x1 x2

x3

x1 x2

x3

CuxDxBuAdt

dx n

j

jj

m

i

ii

1

)(

1

)(

u1

u2

Page 2: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

),,( uxFdt

dx

Neural state equation:

Electromagneticforward model:

neural activityEEGMEGLFP

Dynamic Causal Modeling (DCM)

simple neuronal modelcomplicated forward model

complicated neuronal modelsimple forward model

fMRIfMRI EEG/MEGEEG/MEG

inputs

Hemodynamicforward model:neural activityBOLD

Page 3: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Overview

• Bayesian model selection (BMS)

• Neurocomputational models:Embedding computational models in DCMs

• Integrating tractography and DCM

Page 4: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

inference on model structure or inference on model parameters?

inference on individual models or model space partition?

comparison of model families using

FFX or RFX BMS

comparison of model families using

FFX or RFX BMS

optimal model structure assumed to be identical across subjects?

FFX BMSFFX BMS RFX BMSRFX BMS

yes no

inference on parameters of an optimal model or parameters of all models?

BMABMA

definition of model spacedefinition of model space

FFX analysis of parameter estimates

(e.g. BPA)

FFX analysis of parameter estimates

(e.g. BPA)

RFX analysis of parameter estimates(e.g. t-test, ANOVA)

RFX analysis of parameter estimates(e.g. t-test, ANOVA)

optimal model structure assumed to be identical across subjects?

FFX BMS

yes no

RFX BMS

Stephan et al. 2010, NeuroImage

Page 5: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Model comparison and selection

Given competing hypotheses on structure & functional mechanisms of a system, which model is the best?

For which model m does p(y|m) become maximal?

Which model represents thebest balance between model fit and model complexity?

Pitt & Miyung (2002) TICS

Page 6: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

mypqKL

mpqKL

myp

dmpmypmyp

,|,

|,

),|(log

)|(),|()|(

Model evidence:

Various approximations, e.g.:- negative free energy, AIC, BIC

Bayesian model selection (BMS)

accounts for both accuracy and complexity of the model

allows for inference about structure (generalisability) of the model

all possible datasets

y

p(y

|m)

Gharamani, 2004

McKay 1992, Neural Comput.Penny et al. 2004a, NeuroImage

Page 7: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

pmypAIC ),|(log

Logarithm is a monotonic function

Maximizing log model evidence= Maximizing model evidence

)(),|(log

)()( )|(log

mcomplexitymyp

mcomplexitymaccuracymyp

In SPM2 & SPM5, interface offers 2 approximations:

Np

mypBIC log2

),|(log

Akaike Information Criterion:

Bayesian Information Criterion:

Log model evidence = balance between fit and complexity

Approximations to the model evidence in DCM

No. of parameters

No. ofdata points

AIC and BIC only take into account the number of parameters, but not the flexibility they provide (prior variance) nor their interdependencies.

Page 8: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

The (negative) free energy approximation

• Under Gaussian assumptions about the posterior (Laplace approximation), the negative free energy F is a lower bound on the log model evidence:

• F can also be written as the difference between fit and complexity:

mypqKLF

mypqKLmpqKLmyp

myp

,|,

,|,|,),|(log

)|(log

log ( | , ) , |q

F p y m KL q p m

Page 9: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

The complexity term in F

• In contrast to AIC & BIC, the complexity term of the negative free energy F accounts for parameter interdependencies.

• The complexity term of F is higher– the more independent the prior parameters ( effective DFs)– the more dependent the posterior parameters– the more the posterior mean deviates from the prior mean

• NB: Since SPM8, only F for is used for model selection !

y

Tyy CCC

mpqKL

|1

|| 2

1ln

2

1ln

2

1

)|(),(

Page 10: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Bayes factors

)|(

)|(

2

112 myp

mypB

positive value, [0;[

But: the log evidence is just some number – not very intuitive!

A more intuitive interpretation of model comparisons is made possible by Bayes factors:

To compare two models, we could just compare their log evidences.

B12 p(m1|y) Evidence

1 to 3 50-75% weak

3 to 20 75-95% positive

20 to 150 95-99% strong

150 99% Very strong

Kass & Raftery classification:

Kass & Raftery 1995, J. Am. Stat. Assoc.

Page 11: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

V1 V5stim

PPCM2

attention

V1 V5stim

PPCM1

attention

V1 V5stim

PPCM3attention

V1 V5stim

PPCM4attention

BF 2966F = 7.995

M2 better than M1

BF 12F = 2.450

M3 better than M2

BF 23F = 3.144

M4 better than M3

M1 M2 M3 M4

BMS in SPM8: an example

Stephan et al. 2008, NeuroImage

Page 12: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Fixed effects BMS at group level

Group Bayes factor (GBF) for 1...K subjects:

Average Bayes factor (ABF):

Problems:- blind with regard to group heterogeneity- sensitive to outliers

k

kijij BFGBF )(

( )kKij ij

k

ABF BF

Page 13: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

)|(~ 111 mypy)|(~ 111 mypy

)|(~ 222 mypy)|(~ 111 mypy

)|(~ pmpm kk

);(~ rDirr

)|(~ pmpm kk )|(~ pmpm kk),1;(~1 rmMultm

Random effects BMS for heterogeneous groups

Dirichlet parameters = “occurrences” of models in the population

Dirichlet distribution of model probabilities r

Multinomial distribution of model labels m

Measured data y

Model inversion by Variational Bayes (VB) or MCMC

Stephan et al. 2009a, NeuroImagePenny et al. 2010, PLoS Comp. Biol.

Page 14: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

-35 -30 -25 -20 -15 -10 -5 0 5

Su

bje

cts

Log model evidence differences

MOG

LG LG

RVFstim.

LVFstim.

FGFG

LD|RVF

LD|LVF

LD LD

MOGMOG

LG LG

RVFstim.

LVFstim.

FGFG

LD

LD

LD|RVF LD|LVF

MOG

m2 m1

m1m2

Data: Stephan et al. 2003, ScienceModels: Stephan et al. 2007, J. Neurosci.

Page 15: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r1

p(r 1

|y)

p(r1>0.5 | y) = 0.997

m1m2

1

1

11.8

84.3%r

2

2

2.2

15.7%r

%7.9921 rrp

Stephan et al. 2009a, NeuroImage

Page 16: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r1

p(r 1

|y)

p(r1>0.5 | y) = 0.986

Model space partitioning:comparing model families

0

2

4

6

8

10

12

14

16

alp

ha

0

2

4

6

8

10

12

alp

ha

0

20

40

60

80

Su

mm

ed

log

ev

ide

nc

e (

rel.

to R

BM

L)

CBMN CBMN(ε) CBML CBML(ε)RBMN RBMN(ε) RBML RBML(ε)

CBMN CBMN(ε) CBML CBML(ε)RBMN RBMN(ε) RBML RBML(ε)

nonlinear models linear models

FFX

RFX

4

1

*1

kk

8

5

*2

kk

nonlinear linear

log GBF

Model space partitioning

1 73.5%r 2 26.5%r

1 2 98.6%p r r

m1 m2

m1m2

Stephan et al. 2009, NeuroImage

Page 17: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Comparing model families – a second example

• data from Leff et al. 2008, J. Neurosci

• one driving input, one modulatory input

• 26 = 64 possible modulations

• 23 – 1 input patterns

• 764 = 448 models

• integrate out uncertainty about modulatory patterns and ask where auditory input enters

Penny et al. 2010, PLoS Comput. Biol.

Page 18: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Bayesian Model Averaging (BMA)

• abandons dependence of parameter inference on a single model

• computes average of each parameter, weighted by posterior model probabilities

• represents a particularly useful alternative– when none of the models (or

model subspaces) considered clearly outperforms all others

– when comparing groups for which the optimal model differs

1..

1..

|

| , |

n N

n n Nm

p y

p y m p m y

NB: p(m|y1..N) can be obtained by either FFX or RFX BMS

Penny et al. 2010, PLoS Comput. Biol.

Page 19: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

BMS for large model spaces

• for less constrained model spaces, search methods are needed

• fast model scoring via the Savage-Dickey density ratio:

2 3 4 5 610

0

101

102

103

104

105

Number of models

number of nodes

-600 -500 -400 -300 -200 -100 0 100-600

-500

-400

-300

-200

-100

0

100

Log-evidence

Savage-Dickey

Free

-ene

rgy

1 /22n niA m

assuming reciprocal connections

ln |

ln 0 | ln 0 |

i

i i i F

p y m

q m p m

Friston et al. 2011, NeuroImageFriston & Penny 2011, NeuroImage

Page 20: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

BMS for large model spaces

• empirical example: comparing all 32,768 variants of a 6-region model (under the constraint of reciprocal connections)

Friston et al. 2011, NeuroImage

0 0.5 1 1.5 2 2.5 3 3.5

x 104

-400

-300

-200

-100

0

100Log-posterior

model

log-

prob

abilit

y

0 0.5 1 1.5 2 2.5 3 3.5

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9Model posterior

model

prob

abilit

y

0 5 10 15 20 25 30 35-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8MAP connections (full)

0 5 10 15 20 25 30 35-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8MAP connections (sparse)

Page 21: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Overview

• Bayesian model selection (BMS)

• Neurocomputational models:Embedding computational models in DCMs

• Integrating tractography and DCM

Page 22: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Learning of dynamic audio-visual associations

CS Response

Time (ms)

0 200 400 600 800 2000 ± 650

or

Target StimulusConditioning Stimulus

or

TS

0 200 400 600 800 10000

0.2

0.4

0.6

0.8

1

p(f

ace)

trial

CS1

CS2

den Ouden et al. 2010, J. Neurosci.

Page 23: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Explaining RTs by different learning models

400 440 480 520 560 6000

0.2

0.4

0.6

0.8

1

Trial

p(F

)

TrueBayes VolHMM fixedHMM learnRW

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Categoricalmodel

Bayesianlearner

HMM (fixed) HMM (learn) Rescorla-Wagner

Exc

eed

ance

pro

b.

Bayesian model selection:

hierarchical Bayesian model performs best

5 alternative learning models:

• categorical probabilities

• hierarchical Bayesian learner

• Rescorla-Wagner

• Hidden Markov models (2 variants)

0.1 0.3 0.5 0.7 0.9390

400

410

420

430

440

450

RT

(m

s)

p(outcome)

Reaction times

den Ouden et al. 2010, J. Neurosci.

Page 24: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Hierarchical Bayesian learning model

observed events

probabilistic association

volatility

k

vt-1 vt

rt rt+1

ut ut+1

)exp(,~,|1 ttttt vrDirvrrp

)exp(,~,|1 kvNkvvp ttt

1kp

1: 1

1 1 1 1 1 1: 1 1 1

1:

1: 1

1: 1

prediction: , ,

, , , ,

update: , ,

, ,

, ,

t t t

t t t t t t t t t t

t t t

t t t t t

t t t t t t t

p r v K u

p r r v p v v K p r v K u dr dv

p r v K u

p r v K u p u r

p r v K u p u r dr dv dK

Behrens et al. 2007, Nat. Neurosci.

400 440 480 520 560 6000

0.2

0.4

0.6

0.8

1

Trial

p(F

)

Page 25: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Putamen Premotor cortex

Stimulus-independent prediction error

p < 0.05 (SVC)

p < 0.05 (cluster-level whole- brain corrected)

p(F) p(H)-2

-1.5

-1

-0.5

0

BO

LD

re

sp.

(a.u

.)

p(F) p(H)-2

-1.5

-1

-0.5

0

BO

LD

re

sp.

(a.u

.)

den Ouden et al. 2010, J. Neurosci .

Page 26: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Prediction error (PE) activity in the putamen

PE during reinforcement learning

PE during incidental sensory learning

O'Doherty et al. 2004, Science

den Ouden et al. 2009, Cerebral Cortex

According to current learning theories (e.g., free energy principle):

synaptic plasticity during learning = PE dependent changes in connectivity

Page 27: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Plasticity of visuo-motor connections

• Modulation of visuo-motor connections by striatal prediction error activity

• Influence of visual areas on premotor cortex:– stronger for

surprising stimuli – weaker for expected

stimuli

den Ouden et al. 2010, J. Neurosci .

PPA FFA

PMd

Hierarchical Bayesian learning model

PUT

p = 0.010 p = 0.017

Page 28: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Prediction error in PMd: cause or effect?

Model 1 Model 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-4

-3

-2

-1

0

1

2

3

4

5

log

mo

del

evi

den

ce

subject

Model 1 minus Model 2

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

r1p(

r 1|y

)

p(r1>0.5 | y) = 0.991

den Ouden et al. 2010, J. Neurosci .

model 1model 2

Page 29: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Overview

• Bayesian model selection (BMS)

• Neurocomputational models:Embedding computational models in DCMs

• Integrating tractography and DCM

Page 30: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Diffusion-weighted imaging

Parker & Alexander, 2005, Phil. Trans. B

Page 31: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Probabilistic tractography: Kaden et al. 2007, NeuroImage

• computes local fibre orientation density by spherical deconvolution of the diffusion-weighted signal

• estimates the spatial probability distribution of connectivity from given seed regions

• anatomical connectivity = proportion of fibre pathways originating in a specific source region that intersect a target region

• If the area or volume of the source region approaches a point, this measure reduces to method by Behrens et al. (2003)

Page 32: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

R2R1

R2R1

-2 -1 0 1 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-2 -1 0 1 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

low probability of anatomical connection small prior variance of effective connectivity parameter

high probability of anatomical connection large prior variance of effective connectivity parameter

Integration of tractography and DCM

Stephan, Tittgemeyer et al. 2009, NeuroImage

Page 33: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

LG LG

FGFG

DCM

LGleft

LGright

FGright

FGleft

13 15.7%

34 6.5%

24 43.6%

12 34.2%

anatomical connectivity

probabilistictractography

-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

6.5%

0.0384v

15.7%

0.1070v

34.2%

0.5268v

43.6%

0.7746v

Proof of concept study

connection-specific priors for coupling parameters

Stephan, Tittgemeyer et al. 2009, NeuroImage

Page 34: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

0 0.5 10

0.5

1m1: a=-32,b=-32

0 0.5 10

0.5

1m2: a=-16,b=-32

0 0.5 10

0.5

1m3: a=-16,b=-28

0 0.5 10

0.5

1m4: a=-12,b=-32

0 0.5 10

0.5

1m5: a=-12,b=-28

0 0.5 10

0.5

1m6: a=-12,b=-24

0 0.5 10

0.5

1m7: a=-12,b=-20

0 0.5 10

0.5

1m8: a=-8,b=-32

0 0.5 10

0.5

1m9: a=-8,b=-28

0 0.5 10

0.5

1m10: a=-8,b=-24

0 0.5 10

0.5

1m11: a=-8,b=-20

0 0.5 10

0.5

1m12: a=-8,b=-16

0 0.5 10

0.5

1m13: a=-8,b=-12

0 0.5 10

0.5

1m14: a=-4,b=-32

0 0.5 10

0.5

1m15: a=-4,b=-28

0 0.5 10

0.5

1m16: a=-4,b=-24

0 0.5 10

0.5

1m17: a=-4,b=-20

0 0.5 10

0.5

1m18: a=-4,b=-16

0 0.5 10

0.5

1m19: a=-4,b=-12

0 0.5 10

0.5

1m20: a=-4,b=-8

0 0.5 10

0.5

1m21: a=-4,b=-4

0 0.5 10

0.5

1m22: a=-4,b=0

0 0.5 10

0.5

1m23: a=-4,b=4

0 0.5 10

0.5

1m24: a=0,b=-32

0 0.5 10

0.5

1m25: a=0,b=-28

0 0.5 10

0.5

1m26: a=0,b=-24

0 0.5 10

0.5

1m27: a=0,b=-20

0 0.5 10

0.5

1m28: a=0,b=-16

0 0.5 10

0.5

1m29: a=0,b=-12

0 0.5 10

0.5

1m30: a=0,b=-8

0 0.5 10

0.5

1m31: a=0,b=-4

0 0.5 10

0.5

1m32: a=0,b=0

0 0.5 10

0.5

1m33: a=0,b=4

0 0.5 10

0.5

1m34: a=0,b=8

0 0.5 10

0.5

1m35: a=0,b=12

0 0.5 10

0.5

1m36: a=0,b=16

0 0.5 10

0.5

1m37: a=0,b=20

0 0.5 10

0.5

1m38: a=0,b=24

0 0.5 10

0.5

1m39: a=0,b=28

0 0.5 10

0.5

1m40: a=0,b=32

0 0.5 10

0.5

1m41: a=4,b=-32

0 0.5 10

0.5

1m42: a=4,b=0

0 0.5 10

0.5

1m43: a=4,b=4

0 0.5 10

0.5

1m44: a=4,b=8

0 0.5 10

0.5

1m45: a=4,b=12

0 0.5 10

0.5

1m46: a=4,b=16

0 0.5 10

0.5

1m47: a=4,b=20

0 0.5 10

0.5

1m48: a=4,b=24

0 0.5 10

0.5

1m49: a=4,b=28

0 0.5 10

0.5

1m50: a=4,b=32

0 0.5 10

0.5

1m51: a=8,b=12

0 0.5 10

0.5

1m52: a=8,b=16

0 0.5 10

0.5

1m53: a=8,b=20

0 0.5 10

0.5

1m54: a=8,b=24

0 0.5 10

0.5

1m55: a=8,b=28

0 0.5 10

0.5

1m56: a=8,b=32

0 0.5 10

0.5

1m57: a=12,b=20

0 0.5 10

0.5

1m58: a=12,b=24

0 0.5 10

0.5

1m59: a=12,b=28

0 0.5 10

0.5

1m60: a=12,b=32

0 0.5 10

0.5

1m61: a=16,b=28

0 0.5 10

0.5

1m62: a=16,b=32

0 0.5 10

0.5

1m63 & m64

0

01 exp( )ijij

Connection-specific prior variance as a function of anatomical connection probability

• 64 different mappings by systematic search across hyper-parameters and

• yields anatomically informed (intuitive and counterintuitive) and uninformed priors

Page 35: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

0 10 20 30 40 50 600

200

400

600

model

log

gro

up

Bay

es f

acto

r

0 10 20 30 40 50 60

680

685

690

695

700

model

log

gro

up

Bay

es f

acto

r

0 10 20 30 40 50 600

0.1

0.2

0.3

0.4

0.5

0.6

model

po

st.

mo

del

pro

b.

Models with anatomically informed priors (of an intuitive form)

Page 36: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

0 0.5 10

0.5

1m1: a=-32,b=-32

0 0.5 10

0.5

1m2: a=-16,b=-32

0 0.5 10

0.5

1m3: a=-16,b=-28

0 0.5 10

0.5

1m4: a=-12,b=-32

0 0.5 10

0.5

1m5: a=-12,b=-28

0 0.5 10

0.5

1m6: a=-12,b=-24

0 0.5 10

0.5

1m7: a=-12,b=-20

0 0.5 10

0.5

1m8: a=-8,b=-32

0 0.5 10

0.5

1m9: a=-8,b=-28

0 0.5 10

0.5

1m10: a=-8,b=-24

0 0.5 10

0.5

1m11: a=-8,b=-20

0 0.5 10

0.5

1m12: a=-8,b=-16

0 0.5 10

0.5

1m13: a=-8,b=-12

0 0.5 10

0.5

1m14: a=-4,b=-32

0 0.5 10

0.5

1m15: a=-4,b=-28

0 0.5 10

0.5

1m16: a=-4,b=-24

0 0.5 10

0.5

1m17: a=-4,b=-20

0 0.5 10

0.5

1m18: a=-4,b=-16

0 0.5 10

0.5

1m19: a=-4,b=-12

0 0.5 10

0.5

1m20: a=-4,b=-8

0 0.5 10

0.5

1m21: a=-4,b=-4

0 0.5 10

0.5

1m22: a=-4,b=0

0 0.5 10

0.5

1m23: a=-4,b=4

0 0.5 10

0.5

1m24: a=0,b=-32

0 0.5 10

0.5

1m25: a=0,b=-28

0 0.5 10

0.5

1m26: a=0,b=-24

0 0.5 10

0.5

1m27: a=0,b=-20

0 0.5 10

0.5

1m28: a=0,b=-16

0 0.5 10

0.5

1m29: a=0,b=-12

0 0.5 10

0.5

1m30: a=0,b=-8

0 0.5 10

0.5

1m31: a=0,b=-4

0 0.5 10

0.5

1m32: a=0,b=0

0 0.5 10

0.5

1m33: a=0,b=4

0 0.5 10

0.5

1m34: a=0,b=8

0 0.5 10

0.5

1m35: a=0,b=12

0 0.5 10

0.5

1m36: a=0,b=16

0 0.5 10

0.5

1m37: a=0,b=20

0 0.5 10

0.5

1m38: a=0,b=24

0 0.5 10

0.5

1m39: a=0,b=28

0 0.5 10

0.5

1m40: a=0,b=32

0 0.5 10

0.5

1m41: a=4,b=-32

0 0.5 10

0.5

1m42: a=4,b=0

0 0.5 10

0.5

1m43: a=4,b=4

0 0.5 10

0.5

1m44: a=4,b=8

0 0.5 10

0.5

1m45: a=4,b=12

0 0.5 10

0.5

1m46: a=4,b=16

0 0.5 10

0.5

1m47: a=4,b=20

0 0.5 10

0.5

1m48: a=4,b=24

0 0.5 10

0.5

1m49: a=4,b=28

0 0.5 10

0.5

1m50: a=4,b=32

0 0.5 10

0.5

1m51: a=8,b=12

0 0.5 10

0.5

1m52: a=8,b=16

0 0.5 10

0.5

1m53: a=8,b=20

0 0.5 10

0.5

1m54: a=8,b=24

0 0.5 10

0.5

1m55: a=8,b=28

0 0.5 10

0.5

1m56: a=8,b=32

0 0.5 10

0.5

1m57: a=12,b=20

0 0.5 10

0.5

1m58: a=12,b=24

0 0.5 10

0.5

1m59: a=12,b=28

0 0.5 10

0.5

1m60: a=12,b=32

0 0.5 10

0.5

1m61: a=16,b=28

0 0.5 10

0.5

1m62: a=16,b=32

0 0.5 10

0.5

1m63 & m64

Models with anatomically informed priors (of an intuitive form) were clearly superior than anatomically uninformed ones: Bayes Factor >109

Page 37: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Methods papers: DCM for fMRI and BMS – part 1

• Chumbley JR, Friston KJ, Fearn T, Kiebel SJ (2007) A Metropolis-Hastings algorithm for dynamic causal models. Neuroimage 38:478-487.

• Daunizeau J, Friston KJ, Kiebel SJ (2009) Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica, D 238, 2089–2118.

• Daunizeau J, David, O, Stephan KE (2011) Dynamic Causal Modelling: A critical review of the biophysical and statistical foundations. NeuroImage, in press.

• Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19:1273-1302.

• Friston KJ, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W (2007) Variational free energy and the Laplace approximation. NeuroImage 34: 220-234.

• Friston KJ, Stephan KE, Li B, Daunizeau J (2010) Generalised filtering. Mathematical Problems in Engineering 2010: 621670.

• Friston KJ, Li B, Daunizeau J, Stephan KE (2011) Network discovery with DCM. NeuroImage 56: 1202-1221.

• Friston KJ, Penny WD (2011) Post hoc model selection. NeuroImage, in press.

• Kasess CH, Stephan KE, Weissenbacher A, Pezawas L, Moser E, Windischberger C (2010) Multi-Subject Analyses with Dynamic Causal Modeling. NeuroImage 49: 3065-3074.

• Kiebel SJ, Kloppel S, Weiskopf N, Friston KJ (2007) Dynamic causal modeling: a generative model of slice timing in fMRI. NeuroImage 34:1487-1496.

• Li B, Daunizeau J, Stephan KE, Penny WD, Friston KJ (2011). Stochastic DCM and generalised filtering. NeuroImage, in press.

• Marreiros AC, Kiebel SJ, Friston KJ (2008) Dynamic causal modelling for fMRI: a two-state model. NeuroImage 39:269-278.

Page 38: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Methods papers: DCM for fMRI and BMS – part 2

• Penny WD, Stephan KE, Mechelli A, Friston KJ (2004a) Comparing dynamic causal models. NeuroImage 22:1157-1172.

• Penny WD, Stephan KE, Mechelli A, Friston KJ (2004b) Modelling functional integration: a comparison of structural equation and dynamic causal models. NeuroImage 23 Suppl 1:S264-274.

• Penny WD, Stephan KE, Daunizeau J, Joao M, Friston K, Schofield T, Leff AP (2010) Comparing Families of Dynamic Causal Models. PLoS Computational Biology 6: e1000709.

• Stephan KE, Harrison LM, Penny WD, Friston KJ (2004) Biophysical models of fMRI responses. Curr Opin Neurobiol 14:629-635.

• Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. NeuroImage 38:387-401.

• Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007) Dynamic causal models of neural system dynamics: current state and future extensions. J Biosci 32:129-144.

• Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. NeuroImage 38:387-401.

• Stephan KE, Kasper L, Harrison LM, Daunizeau J, den Ouden HE, Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for fMRI. NeuroImage 42:649-662.

• Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009a) Bayesian model selection for group studies. NeuroImage 46:1004-1017.

• Stephan KE, Tittgemeyer M, Knösche TR, Moran RJ, Friston KJ (2009b) Tractography-based priors for dynamic causal models. NeuroImage 47: 1628-1638.

• Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ (2010) Ten simple rules for Dynamic Causal Modelling. NeuroImage 49: 3099-3109.

Page 39: DCM for fMRI: Advanced topics Klaas Enno Stephan Laboratory for Social & Neural Systems Research (SNS) University of Zurich Wellcome Trust Centre for Neuroimaging

Thank you