data structures and algorithms lecture notes 5 prepared by İnanç tahrali

43
DATA STRUCTURES AND ALGORITHMS Lecture Notes 5 Prepared by İnanç TAHRALI

Upload: rudolf-jefferson

Post on 01-Jan-2016

245 views

Category:

Documents


5 download

TRANSCRIPT

DATA STRUCTURES

ANDALGORITHMS

Lecture Notes 5

Prepared by İnanç TAHRALI

2

ROAD MAP TREES

Definitions and Terminology Implementation of Trees Tree Traversals Binary Trees The Search Tree ADT-Binary Search

Trees AVL Trees

3

TREES: Definition

Recursive Definition : Tree is a collection of nodes

A tree can be empty A tree contains zero or more subtrees T1, T2,

… Tk connected to a root node by edges

4

TREES: Terminology

Family Tree Terminology child F is child of A parent A is the parent of F

each node is connected to a parent except the root sibling nodes with same parents (K, L, M) leaf nodes with no children (P, Q) Ancestor / Descendant

5

• Path : a sequence of nodes n1, n2, … nk, where ni is the parent of ni+1 1≤i<k

• Lenght : number of edges on the path (k-1)• Depth : depth of ni is the lenght of unique path from the

root to ni

– depth of root is 0– depth of a tree = depth of the deepest leaf

• Height : height of ni is the lenght of the longest path from ni to a leaf– height of a leaf is 0– height of a tree = height of the root = depth of the tree

6

Implementation of Trees 1. Each node contains a pointer to each of its children

number of children would be large2. Each node contains an array of pointers to its

children number of children may vary greatly (waste of

space)

7

Implementation of Trees3. Each node contains a linked list of the children

struct TreeNode {Object element;TreeNode *firstChild;TreeNode *nextSibling;

}

8

ROAD MAP TREES

Implementation of Trees Tree Traversals Binary Trees The Search Tree ADT-Binary Search

Trees AVL Trees

9

Tree Traversals One of the most popular applications of

trees is the directory structure of O/S

10

Preorder Tree Traversals

work on the node first before its children !

void FileSystem::listAll(int depth = 0)const{printName(depth);if (isDirectory())

for each file c in this directory (for each child)

c.listAll(depth+1);}

Pseudocode to list a directory in a hierarchical file system

11

Postorder Tree Traversals work on the node after its children !

Pseudocode to calculate the size of a directory

int FileSystem::size () const{int totalSize = sizeOfThisFile ();if (isDirectory())

for each file c in this directory totalSize += c.size();

return totalsize;}

12

ROAD MAP TREES

Implementation of Trees Tree Traversals Binary Trees The Search Tree ADT-Binary Search

Trees AVL Trees

13

Binary Trees Definition : A tree in which nodes have

at most two children

Generic Binary Tree

14

Binary Trees

Binary Tree Worst case binary tree

15

Implementation of Binary Trees

keep a pointer to left child and right child

struct BinaryNode{Object element;BinaryNode *left;BinaryNode *right;

}

16

Example: Expression Trees

Leaves contain operands Internal nodes contain operators

Inorder traversal => infix expression Preorder traversal => prefix expression Postorder traversal => postfix

expression

17

Expression Trees Entire tree represents (a+(b*c))+(((d*e)

+f)*g) Left subtree represents a+(b*c) Right subtree represents ((d*e)+f)*g

18

Constructing an Expression Tree

Algorithm to convert a postfix expresion into an expression tree read the expression one symbol at a time. if the symbol is operand

create a one-node tree push the tree onto a stack

if the symbol is operator pop two trees T1 and T2 from the stack form a new tree whose root is the operator and

whose left and right subtrees are T2 and T1

respectively This new tree is pushed onto the stack

19

Example:

input is ab+cde+** First two symbols are

operands create one-node trees push pointers to them onto

a stack

Next + is read pointers to trees are poped a new tree is formed a pointer to it is pushed

onto the stack

20

Example:

input is ab+cde+** c, d, e are read

for each a one-node tree is created

A pointer to the corresponding tree is pushed onto the stack.

21

Example:

input is ab+cde+** + is read

two trees are merged

22

Example:

input is ab+cde+** * is read

pop two tree pointers and form a new tree with a * as root

23

Example:input is ab+cde+** Last symbol is read

two trees are merged a pointer to the final tree is left on the stack

24

ROAD MAP TREES

Implementation of Trees Tree Traversals Binary Trees The Search Tree ADT-Binary

SearchTrees AVL Trees

25

Binary Search Trees

Each node in tree stores an item items are integers and distinct deal with dublicates later

Properties A binary tree for each node x

values at left subtree are smaller values at right subtree are larger

than the value of x

26

Binary Search TreesWhich one of the trees below is binary search tree ?

27

Binary Search Treestemplate <class Comparable>class BinarySearchTree

template <class Comparable>class BinaryNode {

Comparable element;BinaryNode *left;BinaryNode *right;

BinaryNode( const Comparable & theElement, BinaryNode *lt, BinaryNode *rt ) : element( theElement ), left( lt ), right( rt ) { }

friend class BinarySearchTree <Comparable>};

28

template <class Comparable>class BinarySearchTree{ public:

explicit BinarySearchTree( const Comparable & notFound);BinarySearchTree( const BinarySearchTree & rhs );~BinarySearchTree( );

const Comparable & findMin( ) const;const Comparable & findMax( ) const;const Comparable & find (const Comparable & x) const;

bool isEmpty( ) const;void printTree( ) const;void makeEmpty( );

void insert( const Comparable & x );void remove( const Comparable & x );const BinarySearchTree & operator=

( const BinarySearchTree & rhs );

private:BinaryNode < Comparable > *root;const Comparable ITEM_NOT_FOUND;

29

int main( ) {const int ITEM_NOT_FOUND = -9999;BinarySearchTree<int> t( ITEM_NOT_FOUND );int NUMS = 4000;const int GAP = 37;int i;

for( i = GAP; i != 0; i = ( i + GAP ) % NUMS ) t.insert( i );

for( i = 1; i < NUMS; i+= 2 ) t.remove( i );

if( NUMS < 40 ) t.printTree( );if( t.findMin( ) != 2 || t.findMax( ) != NUMS - 2 )

cout << "FindMin or FindMax error!" << endl;for( i = 2; i < NUMS; i+=2 )

if( t.find( i ) != i ) cout << "Find error1!" << endl;for( i = 1; i < NUMS; i+=2 ) {

if( t.find( i ) != ITEM_NOT_FOUND )cout << "Find error2!"<< endl;}

BinarySearchTree<int> t2( ITEM_NOT_FOUND );t2 = t;for( i = 2; i < NUMS; i+=2 )

if( t2.find( i ) != i ) cout << "Find error1!" << endl;return 0;

}

30

template <class Comparable>class BinarySearchTree{ public:

explicit BinarySearchTree( const Comparable & notFound);BinarySearchTree( const BinarySearchTree & rhs );~BinarySearchTree( );

const Comparable & findMin( ) const;const Comparable & findMax( ) const;const Comparable & find (const Comparable & x) const;

bool isEmpty( ) const;void printTree( ) const;void makeEmpty( );

void insert( const Comparable & x );void remove( const Comparable & x );const BinarySearchTree & operator=

( const BinarySearchTree & rhs );

private:BinaryNode < Comparable > *root;const Comparable ITEM_NOT_FOUND;

31

private:const Comparable & elementAt

( BinaryNode<Comparable> *t) const;

void insert ( const Comparable & x, BinaryNode<Comparable> * & t ) const;

void remove ( const Comparable & x, BinaryNode<Comparable> * & t ) const;

BinaryNode<Comparable> * findMin( BinaryNode<Comparable> *t ) const;

BinaryNode<Comparable> * findMax( BinaryNode<Comparable> *t ) const;

BinaryNode<Comparable> * find ( const Comparable & x, BinaryNode<Comparable> *t ) const;

void makeEmpty ( BinaryNode<Comparable> * & t ) const;void printTree ( BinaryNode<Comparable> *t ) const;

BinaryNode<Comparable> * clone ( BinaryNode<Comparable>) *t ) const;

};

32

find/* Find item x in the tree - Return the matching item or

ITEM_NOT_FOUND if not found. */

template <class Comparable>const Comparable & BinarySearchTree<Comparable>:: find( const

Comparable & x ) const{

return elementAt( find( x, root ) ); }

template <class Comparable> const Comparable & BinarySearchTree<Comparable>:: elementAt( BinaryNode<Comparable> *t ) const

{if( t == NULL ) return ITEM_NOT_FOUND; else return t->element;

}

33

find

34

find/* Find item x in the tree - Return the node containinig the

matching item or NULL if not found. */

template <class Comparable>BinaryNode<Comparable> * BinarySearchTree<Comparable>:: find ( const Comparable & x, BinaryNode<Comparable> *t ) const;{

if (t==NULL) return NULL;else if (x < t->element)

return find( x, t->left );else if (t->element < x)

return find( x, t->right );else

retun t; }

35

Recursive implementation of findMin

/* Internal method to find the smallest item in a subtree t. */

template <class Comparable> BinaryNode<Comparable> * BinarySearchTree<Comparable>::findMin( BinaryNode<Comparable> *t ) const

{if( t == NULL ) return NULL;if( t->left == NULL ) return t;return findMin( t->left );

}

36

Non-recursive implementation of findMax

template <class Comparable> BinaryNode<Comparable> * BinarySearchTree<Comparable>::findMax( BinaryNode<Comparable> *t ) const

{if( t != NULL )

while( t->right != NULL )t = t->right;

return t;}

37

insert into a binary search tree

38

insert into a binary search tree

template <class Comparable> void BinarySearchTree<Comparable>:: insert( const Comparable & x, BinaryNode<Comparable> * & t ) const

{if( t == NULL )

t = new BinaryNode<Comparable>( x, NULL, NULL );else if( x < t->element )

insert( x, t->left );else if( t->element < x )

insert( x, t->right ); else ; // Duplicate; do nothing

}

39

Remove

40

Remove template <class Comparable> void

BinarySearchTree<Comparable>:: remove( const Comparable & x, BinaryNode<Comparable> * & t ) const

{if( t == NULL ) return;if( x < t->element ) remove( x, t->left );else if( t->element < x ) remove( x, t->right );else if( t->left != NULL && t->right != NULL ) {

t->element = findMin( t->right )->element;remove( t->element, t->right );

}else {

BinaryNode<Comparable> *oldNode = t;t = ( t->left != NULL ) ? t->left : t->right; delete oldNode;

}}

41

Destructor and recursive makeEmpty

/* Destructor for the tree. */template <class Comparable>

BinarySearchTree<Comparable>::~BinarySearchTree( ){makeEmpty( );

}

template <class Comparable> void BinarySearchTree<Comparable>:: makeEmpty( BinaryNode<Comparable> * & t ) const {if( t != NULL ){

makeEmpty( t->left ); makeEmpty( t->right ); delete t;

} t = NULL;

}

42

Operator =template <class Comparable> const

BinarySearchTree<Comparable> & BinarySearchTree<Comparable>:: operator=( const BinarySearchTree<Comparable> & rhs )

{if( this != &rhs ){

makeEmpty( ); root = clone( rhs.root );

}return *this;

}

43

Recursive clone member function

template <class Comparable> BinaryNode<Comparable> * BinarySearchTree<Comparable>::clone( BinaryNode<Comparable> * t ) const

{if( t == NULL )

return NULL; else

return new BinaryNode<Comparable>( t->element, clone( t->left ),

clone( t->right ) ); }