dark energy: supernovae and gravitational shear · p. astier, cdf(12/16) 44 gravitational...

60
P. Astier, CdF(12/16) 1 Dark Energy: Supernovae and gravitational shear (seminar at Collège de France) Pierre Astier (LPNHE-Paris) (IN2P3/CNRS/UPMC)

Upload: others

Post on 15-May-2020

2 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)1

Dark Energy: Supernovae and gravitational shear

(seminar at Collège de France)

Pierre Astier (LPNHE-Paris)(IN2P3/CNRS/UPMC)

Page 2: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)2

The expansion (of the universe)

1929 : Edwin Hubble : « The faster , the fainter»

Recession velocity

Distance

Recession velocityof galaxies vs their « distance »

In fact, a paper by Lemaître in 1927 describes the same feature, usingthe same data, in French, and without a graphic….

Page 3: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)3

The expansion

D D

VV VV

Us

Page 4: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)4

The expansion

D D

VV VV

D 2D

VV 2V2V

UsThem

Some other point of view

Us

Page 5: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)5

The expansion :

Cosmological principle:

No special position nor direction

Velocity and distance are proportional (at least not too far away)

No dynamical argument involved : only symmetries.

Page 6: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)6

The expansion :velocity variations

D D

VV VV

Because of gravitationgalaxies attract each otherand their relative velocity

goes down

Page 7: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)7

So,

velocity

Distance

● V = H d is a signature of the expansion of the universe● The variation of the expansion velocity with time (or distance) encodes the forces at play.

Different hypothesesfor matter density

Page 8: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)8

● General Relativity  relates the trajectories in space­time and the energy densities of the fluids in the universe.

● Einstein Equations + cosmological principle

                    → Friedman's equation(s)  

Expansion rate Energy densities “Cosmological Constant”

Spatialcurvature

Friedman's equation

Page 9: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)9

History of expansionand content of the universe

● We have to measure (velocity, distance) pairs● For velocities, it is (almost) easy :

– spectral shift (« Doppler »)

● For distances, it is more difficult:– Luminosity distances : « standard candles »

– Angular distances : « standard rulers »

Page 10: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)10

Standard candles:« supernovae »

Image credit: NASA/JPL-Caltech

Standard rulers:« Baryon AcousticOscillations » (BAO)

Page 11: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)11

The programme

distance

z ~ spectral shift (to the red): redshift

Measure - distances- ... and the corresponding “z”

In order to evaluatethe gravitationalforces at play andhence the content

Page 12: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)12

Type “Ia” Supernovae

● Extremely bright● Transient (rise in~ 20 days)● Rare (~1/galaxy/millenium)● Luminosity fluctuations

at peak : ~ 40 % ● Using luminosity indicators           ~14 %

Thermonuclear explosion of stars That appear to be reproducible

Page 13: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)13

M. Hamuy + ….       (1996)

The first precision Hubble diagramme

z0.10.030.01

«  distance »

Every distance is measured to 

better than 10 %

Page 14: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)14

Finding supernovae

Nearby supernova

Distant SN : Image subtraction

cfht/cfh12k (2000)

Page 15: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)15

Spectroscopic Identification

Dispersion direction

An one measures the redshift z

Page 16: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)16

Measuring « light curves »

Measurement of theobject flux as a functionof time for about 2 months

One has to measure the« colour », i.e. measurelight in at least two spectral bands

Fit of an empirical modelwhich allows to summarisethe data into a few parameters

Page 17: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)17

Hubble diagram : flux vs redshift

Peak flux

Multi-band photometry => distance

spectroscopy:- identification- redshift

z

Distant SNe  (0.1<z<0.8)

(Perlmutter et al, 1999) 

Nearby SNe  (0.02<z<0.1)(Hamuy et al, 1996)

Page 18: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)18

Fall 1998 : the twin papers

Riess et al, 1998[High-z team]

Perlmutter et al,1998[SCP]

Matter density

Dar

k E

nerg

y

Page 19: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)19

What is new in 1998 ?

● One can detect in a systematical way distant supernovae (z~0.5) (both teams used primarily the BTC camera on the CTIO 4-m)

● One can then compare “high-z” supernovae to the “low-z” ones. (Both teams compare to the same nearby sample : Hamuy & co (1996) )

● What for ? the idea was to measure the deceleration parameter q0 :

- Un a universe dominated by matter q0 =

M /2

-> Expansion should decelerate (matter attracts).

Page 20: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)20

Accelerated expansion

Decelerated expansion The Nobel Prize in Physics 2011

was divided, one half awarded to Saul Perlmutter, the other half jointly to Brian P. Schmidt and Adam G. Riess "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae".

Page 21: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)21

A universe dominated todayby two components

Expansion (time)

dens

ity

matter

Dark Energy

??

now

How does the dark energy density varies with expansion ?

Page 22: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)22

Expansion (i.e. scale factor)

Den

sity matter

Dark Energy

now

??

0

-1/3

-2/3

-1

w : “equation of state”

Matter

w describes the evolution of density with expansion ● Matter : w = 0 (just follows expansion)● Cosmological constant : w = -1 (ignores expansion)

Cosmological constant, or what ?

Constraints from supernovae(Perlmutter et al 1999)

Page 23: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)23

Around 2000, a new instrument

 Canada France Hawaii Telecope :­ diameter 3.6m­ Mauna Kea, Hawaii­ 4200 m­ Exceptional image   quality

MegaCam: ­ 18 000 x 18 000 pixels­ field of view : 1 deg2

­ first light : end of 2002.­ assembled at CEA.

Page 24: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)24

http://www.cfht.hawaii.edu/images/CFHTLS-D1-Zoom/

1 degree (18000 pixels)

Megacam's field of view

Page 25: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)25

Page 26: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)26

The SNLS collaboration(SuperNova Legacy Survey)

(circa 2006)

Page 27: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)27

SNLS observations : rolling search­ Repeated observations every 4th night­ Try next night if the weather was bad­ 4 bands : g,r,i,z [420­950] nm­ 5 years of observations : 2003­2008­ Part of “CFHTLS”

Several active supernovaein every image

Page 28: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)28

Light curves

SNLS-04D3fkz=0.358

SNLS-04D3gzz=0.91

Page 29: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)29

And spectra...

Three large telescopes : The Very Large Telescope (ESO) (8m) Gemini (8m) Keck (10m)

In total : more than 1000 h of observing (!) over 5 years

Page 30: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)30

Data processing

~ 50 To~ 30 000 hours

Centre de calcul de l'IN2P3, Villeurbanne

Data model residuals weights Kernel

Page 31: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)31

Supernova surveys The SDSS SN survey SNLS @ CFHT

300 deg2 x 3 years0.1<z<0.45~2000 SNe~500 spectra

4 deg2 x 5 years0.3<z<1~1000 SNe~500 spectra

Page 32: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)32

Estimating distances● The luminosity of supernovae exhibits event to

event variations which are independent of distance

Slower supernovae are brighter

Bluer supernovae are brighter

Page 33: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)33

Distance estimation Résidual to Hubble

diagram

Width of the Light curve

Colour : « B-V » Green flux/Blue flux

Page 34: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)34

Distance estimation

B = m

B ­ M + (s­1) – c  

Measurements for a supernova

Global ParametersFitted (e.g.) at the same timeas cosmological parameters

DistanceModulus (~ log(d) )

Tripp (1998)

Page 35: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)35

Cosmological results (2014)

● 118 nearby● 366 SDSS● 242 SNLS● 14 HST

740 events

Betoule et al (2014)

“JLA”

~Log(dL(z))

Page 36: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)36

Equation of state in a flat universe

Planck + BAO: w = −1.01 ± 0.08

Planck + SN: w = −1.018 ± 0.057

Improvements w.r.t previous results : - improved calibration - SDSS data - direct cross-calibration

Betoule et al (2014)Betoule et al (2013)

Page 37: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)37

Incertainties

JLA sample, flat LCDMPhotometric calibrationdominates systematicuncertainties

...and systematic uncertainties represent half of the totaluncertainty.

Page 38: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)38

From the discoveryof accelerated

expansion to a recent

compilation

Betoule et al (2014)

Page 39: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)39

Betoule et al (2014)

From the discoveryof accelerated

expansion to a recent

compilation

Page 40: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)40

Betoule et al (2014)

From the discoveryof accelerated

expansion to a recent

compilation

Page 41: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)41

What did we learn in 15 years?

● That accelerated expansion is real. Other probes observe it.

● If one interprets acceleration on the framework of General Relativity, it looks very much like a cosmological constant.

● That improving distance measurements to supernovae is going to be difficult: one should absolutely improve the photometric standards.

Page 42: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)42

And now:

● The two last years of SNLS (~150 SN) ● Pan STARSS (+ 100?)● Dark Energy Survey (2012-2017) (+1000?)● LSST (2022- ) : + 10000● Euclid (2021-) : + 0 -> 1500 at z>1 (being

discussed)● WFIRST (202x-) : + 2000 ?

Page 43: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)43

Gravitational shear

In a non-homogeneousUniverse, light is (slightly)bent.

Page 44: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)44

Gravitational distortions● Image plane transfomations

– Weak lensing : one to one mapping.

– Strong lensing : multiple images of the same object

● Order 0: a shift (~ un-observable).● Order 1 (2x2 matrix = 4 parameters):

– Magnification (1 parameter)

– Shear (symmetric, det=1 → 2 parameters)

– Rotation (1 parameter)

– Magnification and shear are observable statistically. The rotation is not observable and absent for single-plane lenses.

Page 45: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)45

Distortions schematics

"Shear-components" by TallJimbo

Convergence/magnification

One shear component

The other shear component

Page 46: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)46

Relation to gravitation sources

Lensing potential

Cosmological physics (Peacock).

“Poisson Equation” :

The observables derive from a potential sourced by the « projected mass ».

Page 47: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)47

Example : a galaxy cluster

Cluster

Image plane : galaxies are(on average)tangentiallyelongated

Michael Sachs(wikipedia)

Page 48: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)48

Galaxy cluster MACS 1621+38

XEmission

Convergence (i.e. lensing)

Shear vs distanceto center

Weighing the Giants (1208.0597)

Null component

A. von der Linden& co

Page 49: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)49

present

z=zs

z=zl

z=0

past

Large-scale Structures

Observables :

- ellipticity

- orientation

• Sensitive to matter (dark or not)• Sensitive :

– To structures– To distances

• A ~ 1% effect: one needs millions of galaxies to measure it.

Cosmic shear

Graphic from M. Takada.

Page 50: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)50

Cosmological constraintsderived from cosmic shear

● The cosmological model predicts structure formation : in practice density contrasts increase as time goes, in a way related to expansion.

● This is a precise prediction, which is encoded into density fluctuations.

● Cosmic shear is sensitive to density fluctuations, so shear correlations trace density correlations.

Page 51: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)51

The CFHTLS wide survey

● About 200 degrees², 5 bands, ~ 200 nights on CFHT, (2003-2008)

● ~10 millions of usable galaxies.

1 degré² field of viewExcellent image quality

Page 52: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)52

Shear measurements

Shear signal : correlations of distant galaxy ellipticities (as a function of their angular separation )

Sources of ellipticity: Natural ellipticity : ~ 30% -> just average over many galaxies Imaging system : 0 – 10 % -> One should measure stellar ellipticities Cossmological signal : ~ 1%

Measured stellar ellipticities (CFHT/Megacam) Hoekstra et al 2005

Page 53: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)53

L. Van Waerbeke et al. (2013)Converting into mass maps

Coulours, contours :- mass

White dots: :- galaxy densitypeaks

Page 54: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)54

Angular correlations of shear

M. Kilbinger et al. (2013)

Page 55: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)55

Cosmological constraints (2D)

M. Kilbinger et al. (2013)

CMB+BAOLensing (shear)

Page 56: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)56

Cosmological constraints (3D)

● One uses galaxy colours to assign a redshift to them. One can then « cut slices » along redshift.

● One has to measure in 5 bands in order to get the required colours. (visible bands “ugriz”).

Kitching et al. (2014)

Page 57: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)57

Perspectives : constrain gravity

Distances H(z)

Linear perturbations P(k,z)

Prediction of perturbation observables

Numerical simulations

Page 58: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)58

Perspectives : scientific questions

● Constrain the source of accelerated expansion

– Cosmological constante

– Quasi-static scalar field

– Modified Gravity

● (Dark) matter on large scales– To be measured directly from

correlations ....

– ... with their time evolution.

Shear correlations

SupernovaeBAO

Page 59: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)59

Large imaging surveys : the programme

Area (deg2) bands depth (lim. Mag) star/end #SNe

VST @ ESO 1000 4 (vis) ~23 12/17

Dark Energy Survey 5000 5 (vis) ~24 12/17 2000

HyperSuprimeCam 2000 5 (vis) ~26 15/19 300

Pan StarsS 30000 4 (vis) ~23 11/16 300

LSST 20000 6 (vis) 26,5 21/31 10000

Euclid 15000 1 vis + 3 NIR 24,5 21/26 ?

Wfirst 3000 4 NIR H=26 26 ? 2000 ?

Spa

ce

Gro

und

Page 60: Dark Energy: Supernovae and gravitational shear · P. Astier, CdF(12/16) 44 Gravitational distortions Image plane transfomations – Weak lensing : one to one mapping. – Strong

P. Astier, CdF(12/16)60

Conclusions● Dark energy is there. It looks like a cosmological

constant (w = -1.02 +/- 0.05)● Supernovae are moving on.● Gravitational shear is difficult, but two major

have been designed to measure : LSST and Euclid