crispr‐cas9 genome editing: principles &...

23
11/15/2016 1 Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles & Applications Cédric Cleyrat, PhD|MS October 27 TH , 2016 PART I Background & Definition: What is gene editing/genome engineering?

Upload: buiphuc

Post on 15-Mar-2018

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

1

Biophysics Seminar Series 2016

CRISPR‐Cas9 Genome Editing: Principles & Applications

Cédric Cleyrat, PhD|MSOctober 27TH, 2016

PART I

Background & Definition:What is gene editing/genome 

engineering?

Page 2: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

2

Genome EditingDefinition

Wikipedia:

Genome editing, or genome editing with engineered nucleases (GEEN) is a type ofgenetic engineering in which DNA is inserted, deleted or replaced in the genome of aliving organism using engineered nucleases, or "molecular scissors." These nucleasescreate site‐specific double‐strand breaks (DSBs) at desired locations in the genome. Theinduced double‐strand breaks are repaired through non‐homologous end‐joining (NHEJ)or homologous recombination (HR), resulting in targeted mutations ('edits').

http://www.greenes.org.uk and http://www.nclack.k12.or.us

Genome EditingAvailable Tools

Ilardi et al. Frontiers in Plant Science 2015

Zinc Finger Technology (ZFN)‐ FokI nuclease as the DNA‐cleavage domain andbinds DNA by engineered Cys2His2 zinc fingers.Specific zinc fingers recognize different nucleotidetriplets and dimerize the FokI nuclease (induce DSB).

TALEN Technology‐ Transcription Activator‐Like Effector Nuclease(TALEN) systems are a fusion of TALEs derived fromthe Xanthomonas spp. to a restriction endonucleaseFokI. By modifying the amino acid repeats in theTALEs, users can customize TALEN systems tospecifically bind target DNA and induce DNA breaks.

CRISPR‐Cas Technology‐ RNA‐guided endonucleases (RGEN) utilize a shortguide RNA (gRNA) to recognize DNA, bind anendonuclease, and induce site specific cleavage.Derived from the Clustered Regularly InterspacedShort Palindromic Repeats (CRISPR) found inbacteria that serve to identify/destroy foreign DNA.

Page 3: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

3

Genome EditingCRISPR: Bacteria Defense Mechanism

Adaptive bacteria immunity to protect against viral infection:

Different bacterial systems = different specificities:

Species/Variant of Cas9  PAM Sequence Streptococcus pyogenes (SP); SpCas9  NGG Staphylococcus aureus (SA); SaCas9  NNGRRT or NNGRR(N) 

Neisseria meningitidis (NM)  NNNNGATT 

http://rna.berkeley.edu

Key dates:

Genome EditingBackground

Page 4: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

4

Genome EditingCRISPR Publications

Source: CRISPR Screening Workshop SDCSB 2016

Exponentially Growing Interest

200220

0320

0420

0520

0620

0720

0820

0920

1020

1120

1220

1320

1420

1520

160

500

1000

1500

2000

2500

num

ber o

f pap

ers 'CRISPR'

'RNAi''

Year# publications on 

'CRISPR'2005 52006 62007 122008 212009 322010 452011 792012 1262013 2822014 6052015 12622016 1713

PART II

CRISPR‐Cas9:How does it work?

Page 5: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

5

CRISPR-Cas9Glossary

CRISPR: Clustered Regularly Interspaced Short Palendromic Repeat, a region in bacterial genomes used inpathogen defense.Cas: CRISPR Associated Protein, the Cas9 nuclease is the active enzyme for the Type II CRISPR system.

Target sequence: the 20 nucleotides that are incorporated into the gRNA plus the PAM sequence, targetsequence is in the genomic DNA.PAM: Protospacer Adjacent Motif, required sequence that must immediately follow the gRNA recognitionsequence but is NOT in the gRNA.gRNA: guide RNA, a fusion of the crRNA and tracrRNA, provides both targeting specificity andscaffolding/binding ability for Cas9 nuclease, does not exist in nature.crRNA: the endogenous bacterial RNA that confers target specificity, requires tracrRNA to bind to Cas9.tracrRNA: the endogenous bacterial RNA that links the crRNA to the Cas9 nuclease, can bind any crRNA.

http://www.artofthecell.com

CRISPR-Cas9Applications Overview

www.addgene.org/crispr/guide/

+ Gene Knock‐in

+ Mutagenesis

Page 6: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

6

CRISPR-Cas9Principle

www.addgene.org/crispr/guide/

DSB: Double Strand Break, a break in both strands of DNA, Cut, 2 proximal, opposite strand nicks can betreated like a DSB.NHEJ: Non‐Homologous End‐Joining, a DNA repair mechanism that often introduces InDels.HDR: Homology Directed Repair, a DNA repair mechanism that uses a template to repair nicks or DSBs.

CRISPR-Cas9Principle

www.addgene.org/crispr/guide/

Page 7: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

7

PART III

CRISPR‐Cas9:Gene KO

CRISPR-Cas9Generating Gene KO

www.addgene.org/crispr/guide/

‐ When both Cas9 catalytic domains (RuvCand HNH) are functional, binding of Cas9through a gRNA will induce a DSB.‐ If no repair template is present, then theNHEJ repair pathway will be used to fixe theDNA break.‐ Errors induced by the NHEJ will disrupt theORF and disrupt gene expression.

Page 8: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

8

CRISPR-Cas9Fluo readout of delivery/KO efficiency?

1‐ For controlled expression level of SpCas9 and enrichment of edited cells

All‐in‐one Cas9‐GFP‐vector (Addgene)

FACS sorting of GFP cells

WB analysis of optimal GFP (i.e. Cas9) expression level for max KD

2‐ Removes the need for antibiotic selection (often unavailable) and allows for transient/controlled expression time (GFP negative cells can be sorted out)

3‐ Useful for low‐throughput multiplexing (2 to 6 targets)

4‐ 6 colors available: TagBFP2, CFP, GFP, TagRFP‐T, iRFP, iRFP670 for SpCas9 WT/D10A and eSpCas9 (1.1) to accommodate with already fluorescently modified cells

Example of optimized CRISPR KO: Arf6

gRNA cloning in Cas9-GFP-vector

Transfection + FACS sorting of GFP cells

WB analysis to evaluate overall

protein KD

Sub-cloning

Screening for KO clones by WB

Further characterization of KO clones:- Response to stimulation (degranulation assay)- Imaging: confocal + electron microscopy- Additional KO (clathrin, caveolin, …)

Internalization assay by flow cytometry on several clones - 60% endocytosis

inhibition

Page 9: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

9

Transcriptomics

•Expression levels of key genes in model cell line

•Guide for siRNA screen

Targeted siRNA HTS screening

• Individual siRNA•Pooled siRNA (biologically‐related)

•“Hit” target ID

Validation using CRISPR/Cas9 KO

•Receptors surface expression

•Response to stimulation• Internalization rate

gene symbol RestingCell stimulation for 

30 minCell stimulation 

for 4 hoursArf1 3907 3775 3909Arf2 163 157 160Arf3 671 715 811Arf4 4442 4647 4791Arf5 280 309 300Arf6 2298 2153 2073

Clta 1253 1242 1295Cltb 339 364 397Cltc 3619 2845 3074

Dnm1 126 154 106Dnm1l 1201 1145 1031Dnm2 1328 1213 1067Dnm3 46 58 56

Eps15 2409 2301 2572Eps15l1 519 595 525

Epn1 422 384 308Epn2 64 57 62Epn3 98 108 125

Sh3glb1 907 950 1095Sh3glb2 186 199 178

Cav1 1138 1140 3297Cav2 2323 2356 2020Cav3 47 51 49

mRNA level (absolute)Table 3‐1. Results of high throughput flow assay in cells treated with siRNA pools

block (% of positive control)

CME related (Snap, Snx, Synj, Syt, Fnbp) 45

Actin‐related protein 2/3 complex 40.5

Adaptor‐related protein complex 1‐4 40.2

Epsin‐Eps15‐Eps15R 37

Rab 4, 8 and 11 32.8

Rac/Rho/Pak 31

Ubiquitin ligases Cbl and Nedd4 29.9

Clathrin a, b and c + Picalm 27.4

 MAPK ( Mapk4k2, Mapk8ip) 25

VAMP (Vamp, Vap) 22.7

Was (Was, Wasf, WasI) 21.2

Early endosomes (EEA1, Rab5a/b/c) 19.4

Caveolin 1, 2 and 3 16.2

Dynamin 1, 2 and 3 12.6

Integration into your lab workflow

Double CRISPR KO in RBL cellsc‐Cbl‐Nedd4a KO

Sequential CRISPR KO to generate single and double KO cell lines

Eps15‐Eps15R KO

Page 10: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

10

Double CRISPR KO in RBL cellsEps15‐Eps15R KO c‐Cbl‐Nedd4a KO

PART III

CRISPR‐Cas9:Gene KO & Replacement

Page 11: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

11

CRISPR-Cas9Fluo readout of delivery/KO efficiency?

1‐ For controlled expression level of SpCas9 and enrichment of edited cells

All‐in‐one Cas9‐GFP‐vector (Addgene)

FACS sorting of GFP cells

WB analysis of optimal GFP (i.e. Cas9) expression level for max KD

Sub-cloning

SykAggregates the Result of Dynamic Binding Events

Visualizing Syk Recruitment After FcHRI Activation

FcHRI

Syk‐mNGTIR Illumination~ 100 nm

http://www.biomedicale.univ‐paris5.fr

Slide courtesy from Dr. Sam Schwartz

Page 12: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

12

Resting

+ AntigenResting100 ng/mL Antigen

Syk binding lifetime increases with FcHRI Activation

Resting+ Antigen

Slide courtesy from Dr. Sam Schwartz

PART IV‐A

CRISPR‐Cas9:Gene KI: Insertion of tags

Page 13: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

13

CRISPR-Cas9Generating Gene KI: Addition of a tag

www.addgene.org/crispr/guide/

‐ Instead of using the NHEJ repairsystem, a template containing thedesired sequence to be inserted isprovided for repair of the DSB.

‐ Need homology arms (size ofhomologous sequence depends on sizeof sequence to be inserted/modified).

CRISPR KI: clathrin light chain a-meGFP

With Dr. Keith Lidke & Farzin Farzam

‐ In control cells, clta‐GFP is found as expected. Endogenous & physiologicexpression of clta‐GFP allows for accurate measurement of clathrin dynamics at the plasma membrane.

‐ As seen by electron microscopy, large clathrin structures are also observed using laser scanning confocal imaging of live cells.

ClathrinIgERT0

ClathrinIgERT2’

Page 14: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

14

Double CRISPR KI: clta-meGFP & Arf6-mRuby3

‐ Goal: simultaneous live cell imaging of cross‐linked FcɛRI, clathrin and Arf6 in order to study dynamics of internalization via both endocytic pathways.

‐ Preliminary results seem to indicate that Arf6 maybe a shared component.

ClathrinArf6RBL

ClathrinArf6

Double CRISPR KI: clta-meGFP & Arf6-RFP

‐ Goal: simultaneous live cell imaging of cross‐linked FcɛRI, clathrin and Arf6 in order to study dynamics of internalization via both endocytic pathways.

‐ Preliminary results seem to indicate that Arf6 maybe a shared component.

ClathrinArf6

RBL ClathrinArf6IgE

RBL

With Dr. Sam Schwartz

Page 15: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

15

PART IV‐B

CRISPR‐Cas9:Gene KI: Mutagenesis

CRISPR-Cas9Generating Gene KI: Mutagenesis

www.addgene.org/crispr/guide/

‐ Instead of using the NHEJ repairsystem, a template containing thedesired sequence to be inserted isprovided for repair of the DSB.

‐ Need homology arms (size ofhomologous sequence depends on sizeof sequence to be inserted/modified).

Page 16: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

16

Gene Editing in CAMTWhat is CAMT?

‐ CAMT: Congenital AMegakaryocytic Thrombocytopenia is a rare disorder characterized by isolated thrombocytopenia and megakaryocytopenia in infancy with no associated physical abnormalities. Can evolve into aplastic anemia and leukemia later in life.

‐ Typically caused by autosomal recessive, or compound heterozygous, germline mutations of the thrombopoietin receptor (Mpl).

Tpo

TpoTpo Tpo

Gene Editing in CAMTNew Mpl mutation in CAMT

‐ Familial case of CAMT:

‐ Clinical presentation: highly elevated Tpo levels but severe thrombocytopenia

‐ Goal: Understand what causes the disease and maybe suggest a therapeutic solution 

Page 17: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

17

Gene Editing in CAMTDouble mutant Mpl do not respond to Tpo

‐ Characterization of mutants Mpl expressed in Ba/F3 cells:

‐ Explain why patients have no platelets/MK despite highly elevated Tpo levels

Gene Editing in CAMTIntracellular trafficking defect

‐ Expression of mutant Mpl in human UT‐7 megakaryoblastic cells

5

0 24 48 72 96 1200

1

2

UT-7 parental

UT-7 at [Tpo]=10 ng/mL

Time (hours)

Abso

rban

ce (A

450

nm -

A65

0 nm

)

0 24 48 72 96 1200

1

2 Mpl WT

UT-7 parental

UT-7 at [Tpo]=10 ng/mL

Time (hours)

Abso

rban

ce (A

450

nm -

A65

0 nm

)

0 24 48 72 96 1200

1

2 Mpl WT

Mpl W272R

UT-7 parental

UT-7 at [Tpo]=10 ng/mL

Time (hours)

Abso

rban

ce (A

450

nm -

A65

0 nm

)

0 24 48 72 96 1200

1

2 Mpl WT

Mpl W272RMpl K39N/W272RUT-7 parental

UT-7 at [Tpo]=10 ng/mL

Time (hours)

Abso

rban

ce (A

450

nm -

A65

0 nm

)

0 24 48 72 96 1200

1

2 Mpl WTMpl K39NMpl W272RMpl K39N/W272RUT-7 parental

UT-7 at [Tpo]=10 ng/mL

Time (hours)

Abso

rban

ce (A

450

nm -

A65

0 nm

)

Page 18: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

18

Gene Editing in CAMTMpl Functional Rescue: Approach #2

‐ 1 gRNA + WT SpCas9 in Ba/F3 cells:

0 24 48 72 960

1

2

3 Mpl WT TpoMpl K39N TpoMpl W272R TpoMpl K39N/W272R Tpo

Mpl W272R>WT Tpo

Ba/F3 at [Tpo]=10 ng/mL or [Elt]=3 PM

Time (hours)

Abso

rban

ce (A

450

nm -

A 650

nm

)

0 24 48 72 960

1

2

3 Mpl WT Tpo EltMpl K39N Tpo EltMpl W272R Tpo EltMpl K39N/W272R Tpo Elt

Mpl W272R>WT Tpo

Ba/F3 at [Tpo]=10 ng/mL or [Elt]=3 PM

Time (hours)

Abso

rban

ce (A

450

nm -

A 650

nm

)

0 24 48 72 960

1

2

3 Mpl WT Tpo EltMpl K39N Tpo EltMpl W272R Tpo EltMpl K39N/W272R Tpo Elt

Mpl W272R>WT Tpo

Ba/F3 at [Tpo]=10 ng/mL or [Elt]=3 PM

Time (hours)

Abso

rban

ce (A

450

nm -

A 650

nm

)

‐ 2 gRNA + SpCas9‐D10A in UT‐7 cells:

0 24 48 72 96 1200

1

2 Mpl WTMpl K39NMpl W272RMpl K39N/W272RUT-7 parental

UT-7 at [Tpo]=10 ng/mL

Time (hours)

Abso

rban

ce (A

450

nm -

A 650

nm

)

0 24 48 72 96 1200

1

2 Mpl WTMpl K39NMpl W272RMpl K39N/W272R

Mpl W272R>WT

UT-7 parental

UT-7 at [Tpo]=10 ng/mL

Time (hours)

Abso

rban

ce (A

450

nm -

A 650

nm

)

‐ FACS enrichment of RFP cells‐ Switch from Il‐3 to Tpo for selection

‐ FACS enrichment of CFP/RFP cells‐ Switch from GM‐CSF to Tpo for selection

Gene Editing in CAMTSummary & Perspectives

‐ New Mpl mutation (W272R) in cis with hereditary thrombocytosis‐causing K39N mutation in the context of CAMT Type I.‐ Aberrant Mpl trafficking prevents Tpo signaling‐Mpl functional rescue:

‐ Next steps:1‐ Evaluate precisely off‐target in UT‐7 cells2‐ Test gRNAs in primary CD34+ cells using RNPs3‐ Identify a suitable patient to establish a xenograft4‐ Perform gene editing on patient’s CD34+

‐ Goal: to edit enough HSC to ensure a polyclonal hematopoiesis!

Page 19: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

19

PART V

CRISPR‐Cas9:Major issues & How to address 

them

CRISPR-Cas9Off‐Target Effect

This is the major issue regarding the use of CRISPR‐Cas9 (and other gene editing tools):‐ Lack of gRNA specificity, or genomic sequence redundancy, can lead to modificationsat additional genomic loci (in coding or non‐coding sequences).

‐ It is critical to address this issue before any biomedical application can be setup.

Page 20: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

20

CRISPR-Cas9How to limit off‐target effect?

www.addgene.org/crispr/guide/

Double nickase approach:‐ Mutations within each nuclease domainthat are critical for endonuclease activity(D10A for HNH and H840A for RuvC inspCas9) lead to modified versions of theCas9 enzyme containing only one activecatalytic domain (called “Cas9 nickase”).

‐ Cas9 nickases still bind DNA but are onlycapable of cutting one of the DNA strands,resulting in a “nick”, or single strand break.

‐ DNA nicks are rapidly repaired by HDRusing the intact complementary DNA strand.

‐ 2 nickases targeting opposite strands arerequired to generate a DSB. It increasestarget specificity, since it is unlikely that twooff‐target nicks will be generated withinclose enough proximity to cause a DSB.

Gene Editing in CAMTWhat system for less off‐target?

1‐ Single nick‐induced HDR using SpCas9‐D10A:

30% 2% 92% 95% 97%

2‐ 1 gRNA + SpCas9‐D10A for Mpl editing:

~2% editing

gRNA #2gRNA #1gRNA #1 + gRNA #2

Page 21: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

21

CRISPR-Cas9Other engineered Cas9

http://documents.tips/documents/ecas9.html#

eCas9 (1.1) and Cas9‐HF1:‐ Developed by the Feng Zeng lab and theKleinstiver labs, respectively.

‐ Additional mutations in Cas9 proteindestabilize its complex formation ability withgRNA and genomic DNA. Hence, if the gRNAhybridization is not perfect, the complexCas9/gRNA/DNA will not be stable enoughto generate a DSB.‐ Dramatic positive effect on off‐target butalso strongly reduces Cas9 on‐target activity.

CRISPR-Cas9Other delivery methods

Plasmid expression:‐ >12 hours to see a peak in Cas9 production.‐ Plasmid expression is infinite (for viruses) or last until plasmid is lost (cell division) (days).

www.addgene.org/crispr/guide/

Plasmid expression:‐ >12 hours to see a peak in Cas9 production.‐ Plasmid expression is infinite (for viruses) or last until plasmid is lost (cell division) (days).

RNP delivery:‐ Cas9/gRNA complex is ready and functional right away.‐ Proteins are being cleared within hours using the cell protein degradation machinery.‐ Limit off‐target effect due to short lifetime and enhanced activity of preformed complex.‐ Can be used for primary cells or zygotes injection (not possible with plasmids/virus).

Page 22: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

22

PART VI

CRISPR‐Cas9:Conclusion

CRISPR-Cas9Applications & Advantages

Applications:

‐ Gene KO‐ Gene replacement (chimeric DNA sequence)‐ Knock‐in of large DNA fragments (useful for tagging POI with fluorescent tags for example)‐ Directed mutagenesis to reproduce point mutations (or to fix them!)‐ Activation or repression of gene transcription‐ Can replace siRNA screening (GeCKO lentiviral library of human gRNA). Etc …

Advantages:

‐ Endogenously regulated expression of POI (no over‐expression)‐ Gene KO fairly easy (about 80% efficiency) + no residual expression! (need gRNA + Cas9)‐ Knock‐in of large DNA fragments more difficult (requires a good readout) (need gRNA + Cas9 + Donor vector)‐ No need to stabilize the new cell line: the genome itself is modified

Page 23: CRISPR‐Cas9 Genome Editing: Principles & Applicationsquantum.phys.unm.edu/biophysics-16/SeminarCleyrat.pdf · Biophysics Seminar Series 2016 CRISPR‐Cas9 Genome Editing: Principles

11/15/2016

23

CRISPR-Cas9Resources

Addgene website:

http://crispr.mit.edu/

gRNA design

http://arep.med.harvard.edu/George Church lab

http://www.genome‐engineering.org/crispr/?page_id=23

Feng Zhang lab

University of New Mexico

Dr Bridget S. WilsonDr Diane S. LidkeDr Angela Wandinger‐NessDr Samantha SchwartzDr Keith A. LidkeDr Michael L. PaffettFarzin FarzamShayna R. LuceroRachel GrattanEun Ho Choi

IgE cltaINSERM, Nantes, France

Sylvie Hermouet, MD, PhD

CHU Nîmes, France

Serge Carillo, PhDThierry Lavabre‐Bertrand, MDÉric Jeziorski, MD

Questions ?