correlations and order parameters in infinite matrix

38
Correlations and order parameters in infinite matrix product states Ian McCulloch University of Queensland School of Mathematics and Physics April 22, 2021 Ian McCulloch (UQ) iMPS April 22, 2021 1 / 31

Upload: others

Post on 26-Apr-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Correlations and order parameters in infinite matrix

Correlations and order parameters in infinite matrixproduct states

Ian McCulloch

University of QueenslandSchool of Mathematics and Physics

April 22, 2021

Ian McCulloch (UQ) iMPS April 22, 2021 1 / 31

Page 2: Correlations and order parameters in infinite matrix

Outline

1 Approaches to detecting quantum criticality

2 Cumulants

3 ExamplesIsing modelPotts model

4 Generalising beyond local order parametersstring order parametersSPT and time reversal

Ian McCulloch (UQ) iMPS April 22, 2021 2 / 31

Page 3: Correlations and order parameters in infinite matrix

Approaches to detecting criticality

Bipartite fluctuationsBipartite entropyEntanglement spectrumBipartite fluctuations in quantum numbers (eg J. Stat. Mech. (2014) P10005from Karyn le Her’s group; Kjall, Phys. Rev. B 87, 235106 (2013))

Transfer matrix spectrumEigenvalues λi

λ0 = 1 by construction (normalization condition)Spectrum of correlation lengths ξi = − 1

lnλi

Or consider εi = − lnλi = 1/ξi

– Behaves like an energy scaleChoice of which quantity to use as the scaling variable

Scaling with respect to the bond dimensionScaling with respect to the correlation length – diverges at critical pointScaling with respect to δ = ε2 − ε1 (or some other combination of εi)

Order parameter and order parameter fluctuations (higher moments)Lots of history behind finite-size scaling, can be modified forfinite-entanglement scalingJ. Pillay and IPM, Phys. Rev. B 100, 235140 (2019)

Ian McCulloch (UQ) iMPS April 22, 2021 3 / 31

Page 4: Correlations and order parameters in infinite matrix

0.98 0.99 1 1.01 1.02lambda

0

0.1

0.2

0.3

0.4

0.5

1/l

ength

Inverse correlation length spectrum m=5

Ian McCulloch (UQ) iMPS April 22, 2021 4 / 31

Page 5: Correlations and order parameters in infinite matrix

0.98 0.99 1 1.01 1.02lambda

0

0.1

0.2

0.3

0.4

0.5

1/l

ength

Inverse correlation length spectrum m=6

Ian McCulloch (UQ) iMPS April 22, 2021 4 / 31

Page 6: Correlations and order parameters in infinite matrix

0.98 0.99 1 1.01 1.02lambda

0

0.1

0.2

0.3

0.4

0.5

1/l

ength

Inverse correlation length spectrum m=13

Ian McCulloch (UQ) iMPS April 22, 2021 4 / 31

Page 7: Correlations and order parameters in infinite matrix

0.98 0.99 1 1.01 1.02lambda

0

0.1

0.2

0.3

0.4

0.5

1/l

ength

Inverse correlation length spectrum m=16

Ian McCulloch (UQ) iMPS April 22, 2021 4 / 31

Page 8: Correlations and order parameters in infinite matrix

0.98 0.99 1 1.01 1.02lambda

0

0.1

0.2

0.3

0.4

0.5

1/l

ength

Inverse correlation length spectrum m=20

Ian McCulloch (UQ) iMPS April 22, 2021 4 / 31

Page 9: Correlations and order parameters in infinite matrix

0.98 0.99 1 1.01 1.02lambda

0

0.1

0.2

0.3

0.4

0.5

1/l

ength

Inverse correlation length spectrum m=25

Ian McCulloch (UQ) iMPS April 22, 2021 4 / 31

Page 10: Correlations and order parameters in infinite matrix

0.98 0.99 1 1.01 1.02lambda

0

0.1

0.2

0.3

0.4

0.5

1/l

ength

Inverse correlation length spectrum m=30

Ian McCulloch (UQ) iMPS April 22, 2021 4 / 31

Page 11: Correlations and order parameters in infinite matrix

0.98 0.99 1 1.01 1.02lambda

0

0.1

0.2

0.3

0.4

0.5

1/l

ength

Inverse correlation length spectrum m=40

Ian McCulloch (UQ) iMPS April 22, 2021 4 / 31

Page 12: Correlations and order parameters in infinite matrix

Critical scaling exampleTwo-species bose gas with linear tunneling Ω, from F. Zhan et al, Phys. Rev. A 90, 023630 2014

1

10

100

50 100 200

Ω = 0.2148Ω = 0.215Ω = 0.2152Ω = 0.2154Ω = 0.2156Ω = 0.2158

ξ

mIan McCulloch (UQ) iMPS April 22, 2021 5 / 31

Page 13: Correlations and order parameters in infinite matrix

Higher moments

It is straightforward to evaluate a local order parameter, eg

M =∑

i

Mi

The first moment of this operator gives the order parameter,

〈M〉 = m1(L)

It is also useful to calculate higher moments, eg

〈M2〉 = m2(L)

or generally

〈Mk〉 = mk(L)

These are polynomial functions in the system size L.

Ian McCulloch (UQ) iMPS April 22, 2021 6 / 31

Page 14: Correlations and order parameters in infinite matrix

Cumulant expansions

Express the moments mi in terms of the cumulants per site κj,

m1(L) = κ1Lm2(L) = κ2

1L2 + κ2Lm3(L) = κ3

1L3 + 3κ1κ2L2 + κ3Lm4(L) = κ4

1L4 + 6κ21κ2L3 + (3κ2

2 + 4κ1κ3)L2 + κ4L

κ1 is the order parameter itselfκ2 is the variance (related to the susceptibility)κ3 is the skewnessκ4 is the kurtosis

The cumulants per site κk are well-defined for a translationally invariantiMPSThe moments (and hence cumulants) can be obtained directly as apolynomial-valued expectation value (arXiv:1008.4667)

(I don’t know of a good way to calculate the cumulants per site for a finitesystem!)

Ian McCulloch (UQ) iMPS April 22, 2021 7 / 31

Page 15: Correlations and order parameters in infinite matrix

The cumulants have power-law scaling at a critical point, κi ∝ mαi

Ising model example

Ian McCulloch (UQ) iMPS April 22, 2021 8 / 31

Page 16: Correlations and order parameters in infinite matrix

Scaling functionsFor finite systems, scale with respect to system size LControl parameter t ≡ λ−λc

λch (external field)

Critical exponentsExponent relationν ξ ∝ |t|−νβ 〈M〉 ∝ (−t)β

γ∗ σ2 = 〈M2〉 − 〈M〉2 ∝ |t|−γ∗

Scaling relation 2β + γ∗ = ν

Note: no fluctuation-dissipation theorem: γ∗ 6= γ is different to dM/dH.In d = 2 classical systems, 2β + γ = νd

Finite-size scaling functions

ξ = L X (t L1/ν)〈M〉 = L−β/νM(t L1/ν)

σ2 = Lγ∗/ν G(t L1/ν)

Ian McCulloch (UQ) iMPS April 22, 2021 9 / 31

Page 17: Correlations and order parameters in infinite matrix

Finite entanglement

Effective ’system size’ L→ mκ

New scaling functions that scale with t mκ/ν .

Finite-entanglement scaling functions

ξ = mκ X (t mκ/ν)〈M〉 = m−βκ/νM(t mκ/ν)σ2 = mγκ/ν G(t mκ/ν)

Ian McCulloch (UQ) iMPS April 22, 2021 10 / 31

Page 18: Correlations and order parameters in infinite matrix

Cumulant exponent relationFollowing V. Privman and M.E. Fisher, Phys. Rev. B 30, 322 (1984)

Singular part of the free energy:

f ' L−d Y(

C1tL1/ν ,C2hL(β+γ)/ν)

Finite-entanglement version:

f ' m−κd Y(

C1tmκ/ν ,C2hm(β+γ)κ/ν)

Order parameter:

κ1 = −∂f∂h

= C2m−βκ/νY ′(

C1tmκ/ν ,C2hm(β+γ)κ/ν)

Higher cumulants:

κn = −∂nf∂hn = Cn

2m((n−2)β+(n−1)γ)κ/νY(n)(

C1tmκ/ν ,C2hm(β+γ)κ/ν)

Ian McCulloch (UQ) iMPS April 22, 2021 11 / 31

Page 19: Correlations and order parameters in infinite matrix

Cumulant exponent relation

This gives relation for all of the exponents (recall κn ∼ mαn )

αn = [(n− 2)β + (n− 1)γ∗]κ

ν

α1 = −βκν

α2 =γ∗κ

ν

This also works for α0 = −(2β + γ)κ/ν = −κwhich is the correlation length exponent!Hence include κ0 ≡ ξ as the 0th order cumulant ξ ∼ mκ → κ0 ∼ m−α0

Cumulant relationαn = (n− 1)α2 + (2− n)α1

= nα1 + (1− n)α0

Ian McCulloch (UQ) iMPS April 22, 2021 12 / 31

Page 20: Correlations and order parameters in infinite matrix

Ising model example(from J. Pillay, IPM, Phys. Rev. B 100, 235140 (2019))

Ian McCulloch (UQ) iMPS April 22, 2021 13 / 31

Page 21: Correlations and order parameters in infinite matrix

Ising model cumulant scaling functions

Ian McCulloch (UQ) iMPS April 22, 2021 14 / 31

Page 22: Correlations and order parameters in infinite matrix

Ising model correlation length scaling function

Ian McCulloch (UQ) iMPS April 22, 2021 15 / 31

Page 23: Correlations and order parameters in infinite matrix

Binder cumulant scaling

For finite systems, the Binder cumulant of the order parameter cancels theleading-order finite size effects

UL = 1− 〈m4〉3〈m2〉2

0

0.25

0.5

0.75

1

0.18 0.2 0.22 0.24

L = 50L = 100L = 150L = 200iDMRGfinite size scaling

|〈∆NL/2〉|

Ω

0

0.2

0.4

0.6

0.8

0.18 0.2 0.22 0.24

L = 50L = 100L = 150L = 200

UL

Ω

0.4

0.425

0.215 0.216

The 2-component Bose-Hubbard model, with a linear coupling betweencomponents, has an Ising-like transition from immersible (small Ω) to miscible(large Ω).

Ian McCulloch (UQ) iMPS April 22, 2021 16 / 31

Page 24: Correlations and order parameters in infinite matrix

Binder Cumulant for iMPS

Naively taking the limit L→∞ for the Binder cumulant doesn’t produceanything useful:

if the order parameter κ1 6= 0,

UL = 1− 〈m4〉L

3〈m2〉2L→ 2

3

if κ1 = 0, then m4(L) = 3k22L2 + k4L

Hence

UL = 1− 3k22L2 + k4L3k2

2L2 → 0

Finally, a step function that detects whether the order parameter isnon-zero

2019 approach: Evaluate the moment polynomial using L ∝ correlation lengthBetter approach: Find a combination of cumulants such that the bonddimension cancels

Ian McCulloch (UQ) iMPS April 22, 2021 17 / 31

Page 25: Correlations and order parameters in infinite matrix

Products of cumulants κa00 κ

a11 κ

a22 . . . scales as ma0α0+a1α1+a2α2+...

Find a combination such that a0α0 + a1α1 + a2α2 + . . . = 0This quantity is independent of basis size at the critical pointSimplest case:

C2 =κ2

κ21κ0

=σ2

〈m〉2ξ

Closely related to the 2nd order cumulant 〈m2〉

〈m〉2

Higher order cumulants are possible,

C4 =κ4

κ22κ0

(Closely related to the Binder cumulant)

C(3)4 =

κ4κ21

κ32

(Avoids using the correlation length κ0)In cases I’ve tried so far, C2 works best.

Ian McCulloch (UQ) iMPS April 22, 2021 18 / 31

Page 26: Correlations and order parameters in infinite matrix

Ising model example

0.985 0.99 0.995 1 1.005λ

0.25

0.5

1

2

4

κ2/κ

1

0

m=3m=4m=5m=6m=7m=8m=9m=10m=11m=12

Transverse Field Ising Model 2nd order cumulant

Ian McCulloch (UQ) iMPS April 22, 2021 19 / 31

Page 27: Correlations and order parameters in infinite matrix

Ising model example

10 20 30m

0.5

1

1.5

2

C2

λ=0.999λ=1λ=1.001

Ising model C2 sensitivity to λ

Ian McCulloch (UQ) iMPS April 22, 2021 20 / 31

Page 28: Correlations and order parameters in infinite matrix

Quantum 3-state Potts model example

0.996 0.998 1 1.002 1.004g

0.4

0.6

0.8

1

1.2

1.4

C2

m=10m=15m=20m=25m=30

Quantum Potts model

2nd order cumulant

Ian McCulloch (UQ) iMPS April 22, 2021 21 / 31

Page 29: Correlations and order parameters in infinite matrix

Quantum 3-state Potts model example

10 15 20 25 30 35 40Bond dimension

0.1

1

10

g=1

g=0.999

g=1.001

Linear fit, slope=0.00075

Quantum 3-state Potts model2nd order cumulant

Ian McCulloch (UQ) iMPS April 22, 2021 22 / 31

Page 30: Correlations and order parameters in infinite matrix

Critical exponents

Once we know the critical point, there are several approaches to determiningthe exponents

Direct fit as a function of gScaling function collapse – choice of scaling parameter

bond dimension scaling – J. Pillay, IPM, Phys. Rev. B 100, 235140 (2019)δ = εi − εj scaling – Vanhecke, Haegeman, et al, Phys. Rev. Lett. 123,250604 (2019)

Correlation length scaling at the critical pointThe exponents of the order parameter and 2nd cumulant are

κ1 ∼ m−βκ/ν

κ2 ∼ mγκ/ν

And recall κ0 ∼ mκ. So at the critical point, κ1 = κ−β/ν0 and κ2 = κ

γ/ν0 .

Ian McCulloch (UQ) iMPS April 22, 2021 23 / 31

Page 31: Correlations and order parameters in infinite matrix

Quantum 3-state Potts model example

10 100

κ0 (= ξ)

0.4241

0.46651

0.51316

0.56447

0.62092

κ1

Fitted exponent = -0.1342 (exact value -0.1333...)

Quantum Potts model fit for β/ν

Ian McCulloch (UQ) iMPS April 22, 2021 24 / 31

Page 32: Correlations and order parameters in infinite matrix

Alternative scaling variable – κ2/κ21

10 100

κ2

/ κ1

2

0.4241

0.46651

0.51316

0.56447

0.62092

κ1

Fitted exponent = -0.12981 (exact value -0.1333...)

Quantum Potts model fit for β/ν

Ian McCulloch (UQ) iMPS April 22, 2021 25 / 31

Page 33: Correlations and order parameters in infinite matrix

Quantum 3-state Potts model example – exponent γ

10 100

κ0 (= ξ)

1

10

100

κ2

Fitted exponent = 0.75561 (exact value 0.73333...)

Quantum Potts model fit for γ/ν

Ian McCulloch (UQ) iMPS April 22, 2021 26 / 31

Page 34: Correlations and order parameters in infinite matrix

Generalising beyond local order parametersThe approach of calculating moments of the order parameter doesn’trequire that the order parameter is strictly local.Example: Mott insulator at integer filling n = 1 particles everywhere, withonly short-range fluctuations. String order parameter:

O2P = lim

|j−i|→∞〈Πj

k=i(−1)nk−1〉

We can write this as a correlation function of ‘kink operators’,

pi = Πk<i (−1)nk−1

This turns the string order into a 2-point correlation function:

O2P = lim

|j−i|→∞〈 pi pj 〉

Or as an order parameter:

P =∑

i

pi MPO: P =

((−1)n−1 I

0 I

)Then O2

p = 1L2 〈P2〉

(see J. Pillay and IPM, Phys. Rev. B 100, 235140 (2019) for examples)Ian McCulloch (UQ) iMPS April 22, 2021 27 / 31

Page 35: Correlations and order parameters in infinite matrix

SPT transitions

Can use conventional string order parameter 〈Sz(0) Πx−1j=1 (−1)Sz(x) Sz(x)〉

Not universal – can deform state, string order parameter arbitrarily smallProper way to understand SPT: symmetry fractionalization

figure shamelessly stolen from Pollman and Turner, PRB 86, 125441 (2012)

Dihedral: UxUy = ±UyUx

Time reversal: UτUτ∗ = ±1Space refection: URUR∗ = ±1

Requires entanglement spectrum spectroscopy – not observable from thephysical degrees of freedom

Ian McCulloch (UQ) iMPS April 22, 2021 28 / 31

Page 36: Correlations and order parameters in infinite matrix

Kink operator for time reversalTime reversal operator τ = UK, τsατ−1 = −sα

K = complex conjugationU = some basis-dependent unitaryNormal basis: U = exp iπSy

For an MPS, we can treat this as a local actionτ(As) =

∑t〈 s |U | t 〉A∗t

Kink operator for time evolution:

pτ (x) =∏j<x

τ(j)

Ian McCulloch (UQ) iMPS April 22, 2021 29 / 31

Page 37: Correlations and order parameters in infinite matrix

Kink operator for time reversal

String correlator 〈pτ (0)pτ (x)〉

Order parameter: Pτ =∑

x pτ (x) has MPO form Pτ =

[eiπSy

K I0 I

]Trivial phase: symmetric under time reversal, 〈pτ (0)pτ(x)〉 6= 0SPT phase: antisymmetric under time reversal, 〈pτ (0)pτ(x)〉 = 0

Can calculate 〈P2τ 〉 straightforwardly, and higher moments, 〈P4

τ 〉, etc

In principle the same scheme applies to spatial reflection too – the MPOcontains the R operator that transposes an A-matrix. But no examples yet!

Ian McCulloch (UQ) iMPS April 22, 2021 30 / 31

Page 38: Correlations and order parameters in infinite matrix

Conclusions

MPO techniques for higher momentsBond-dimension scaling is inaccurate – explore methods that areinsensitive to convergence of the MPSHigher cumulants are effective for calculating critical phenomenaSecond order cumulant κ2/κ

21κ0 is very effective for locating critical points

with minimal effort.Generalising order parameters to strings, time reversal, . . .Spatial reflection can be considered in a similar way

Future directions:2D – some (confusing) results already for 2D cylinders (S.N. Saadatmandand IPM, Phys. Rev. B 96, 075117 (2017))

Field-induced fluctuations

Ian McCulloch (UQ) iMPS April 22, 2021 31 / 31