control of electric drives - haumer · control of electric drives a.haumer / 2017-05 modelica...

18
A.Haumer / 2017-05 Modelica Conference 2017 p 1 C Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 I Introduction Eastbavarian Technical University of Applied Sciences www.oth-regensburg.de 11,000 students 8 faculties Faculty of Electrical Engineering and Information Technology 1,500 students 3 Bachelor and 3 Master Courses Prof. Anton Haumer Courses in Electrical Drives Courses in Basics of Electrical Engineering Courses in Modeling and Simulation with Modelica

Upload: hoangxuyen

Post on 07-Sep-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 1

CControl of Electric Drives

A.Haumer / 2017-05 Modelica Conference 2017 p 2

IIntroduction

Eastbavarian Technical University of Applied Sciences www.oth-regensburg.de

• 11,000 students

• 8 faculties

Faculty of Electrical Engineering and Information Technology

• 1,500 students

• 3 Bachelor and 3 Master Courses

Prof. Anton Haumer

• Courses in Electrical Drives

• Courses in Basics of Electrical Engineering

• Courses in Modeling and Simulation with Modelica

Page 2: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 3

AAgenda

• Introduction

• Machine models

• Cascaded control

• Current controller

• Speed controller

• Position controller

• Outlook:

• Field weakening

• Field Oriented Control

• References

A.Haumer / 2017-05 Modelica Conference 2017 p 4

MMSL Machine models

• Modelica.Electrical.Machines

• DC Machines QS and Transient

• 3 phase transformers QS and Transient

• Transient 3 phase machines,

based on space phasor theory

• Induction machines

• Synchronous machines

QS=QuasiStatic = without electric but with mechanical transients

Page 3: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 5

MMSL Machine models

• Modelica.Magnetic.FundamentalWave and

QuasiStatic.FundamentalWave

• multiphase phase machines

• Induction machines

• Synchronous machines

• Based on rotating magnetic field

• Same parameters, connectors, loss models

compared with Modelica.Electrical.Machines

• Number of phases 3, 2

• Ready to be combined with power electronics (inverter) and control

A.Haumer / 2017-05 Modelica Conference 2017 p 6

CControl of Electric Drives

• Easy to understand: permanent magnet DC machine

FOC for rotatory field machines uses the same principles!

• Common approach: ccascaded control

• The loops can be set into operation one after another

• We have to take into account limitations:

• DC voltage is limited (e.g. by the battery)

• Current is limited (by the power electronic devices)

• Speed is limited (mechanically, by the machine)

Page 4: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 7

PPermanent Magnet DC Machine

= = +

A.Haumer / 2017-05 Modelica Conference 2017 p 8

DDrive

Drive = Machine + Inverter

(voltage source with dead-time)

• Dead time approximated

by first order

• Measurements

• Communication: drive bus

• Parameterization:

data record

Page 5: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 9

LLoad

• Inertia

• Linear speed dependent torque

• Switched on at startTime

A.Haumer / 2017-05 Modelica Conference 2017 p 10

Test the Drive (without Control)

Hands-On: Example VoltageSupplied

stopTime=1.0, IntervalLength=0.001

referenceVoltage.height=data.VNom

Page 6: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 11

CCurrent Controller

• Take care of

current filter

(current ripple)

A.Haumer / 2017-05 Modelica Conference 2017 p 12

CCurrent Controller

, = = 11 + 1 11 + 11 + = 1 11 + 1 +

Controlled system: second order (small time constant = + )

PI-controller

= = 1 +

• Feed-forward of =

• Limit the output voltage anti wind-up

Page 7: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 13

LLimited PI-Controller

• Limiting the output doesn‘t prevent the integrator from working

• called „wind-up“ We need an anti wind-up action.

• Feed-forward

A.Haumer / 2017-05 Modelica Conference 2017 p 14

PParameterization of the Current Controller

= = 1 +1 + 1 +

Compensate the larger time constant

= =

• Goal: smooth command action absolute optimum

, = 1 + = 1

Page 8: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 15

PProportional Gain of the Current Controller

= 1 + = 11 + 1 + 11 +

1 + = 11 + 2 +

2 = 0 = 2 = 2

A.Haumer / 2017-05 Modelica Conference 2017 p 16

RResulting Command Action of the Current Controlled Drive

= , 1 = 1 +1 + + 2

Compensate the numerator‘s zero with a first-order pre-filter.

= = 11 + + 2 11 + = 2

Page 9: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 17

CCurrent Controller

• Parameters calculated

in the data record

A.Haumer / 2017-05 Modelica Conference 2017 p 18

Test the Current Controlled Drive

Hands-On: Example CurrentControlled

stopTime=1.0, IntervalLength=0.001

referenceTorque.height=data.tauNom

currentController.data=data

Page 10: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 19

SSpeed Control

System under control=current controlled drive + speed integrator

= = 1 = 11 + 1 = 11 +

Mechanical time constant = +

A.Haumer / 2017-05 Modelica Conference 2017 p 20

SSpeed Controller

• PI-controller

• Limiting the output (torque limit) anti wind-up

• Feed-forward not possible (load torque a-priori unknown)

= 1 +

= = 1 + 11 +

Page 11: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 21

PParameterization of the Speed Controller

Goal: compensation of disturbance symmetrical optimum

• Stability according to Nyquist: = + >

• Phase response symmetrical w.r.t. gain crossover frequency = 1

• Standard choice of parameter = 2 from: ref. transfer function = 1

• Phase margin

: = = 0 =

A.Haumer / 2017-05 Modelica Conference 2017 p 22

PParameterization of the Speed Controller

= = 1 = =

= = 1 = =

= = 1 + 1 +

= 1 + = 1 +1 + + +

Compensate the numerator‘s zero with a first-order pre-filter.

Page 12: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 23

SSpeed Controller

= 1 + = 11 + + 8 + 8 11 +

Filter reference speed with by „ramping“ (SlewRateLimiter),

i.e. limit necessary torque for acceleration / deceleration

A.Haumer / 2017-05 Modelica Conference 2017 p 24

Test the Speed Controlled Drive

Hands-On: Example SpeedControlled

stopTime=1.0, IntervalLength=0.001

referenceSpeed.height=data.wNom

slewRateLimiter.{Rising=data.aMax, initType=initialOutput, y_start=referenceSpeed.offset}

currentController.data=data

speedController.data=data

load.startTime=0.5

Page 13: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 25

PPosition Control

System under control=speed controlled drive + position integrator

= = 11 + 1

A.Haumer / 2017-05 Modelica Conference 2017 p 26

PPosition Controller

System under control has integral characteristic

P-controller is sufficient

= 1 + = 11 + 1 + = 11 + +

Avoid overshot over reference end position

= 116 1 116

Page 14: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 27

PPosition Controller

Reference position limits:

Modelica.Blocks.Sources.

KinematicPTP2

• Speed limit

• Torque limit

A.Haumer / 2017-05 Modelica Conference 2017 p 28

Test the Position Controlled Drive

Hands-On: Example PositionControlled

lag error stopTime=2.5, IntervalLength=0.001

referencePosition.height=50

der2Limiter.{vMax=data.wMax, aMax=data.aMax, initType=initialOutput, y_start=referencePosition.offset, dery_start=0}

currentController.data=data

speedController.data=data

positionController.data=data

load.{speedDependent=false, startTime=2}

Page 15: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 29

FField Weakening

When = + reaches voltage limit:

flux has to be reduced field weakening

• Electrically excited DC machine: Excitation current controller

similar to armature current controller:

= +

• Some adaptions in controllers due to ~ .

A.Haumer / 2017-05 Modelica Conference 2017 p 30

FField Weakening

Power electronics defines current limit =

Maximum torque of the machine ~

Base speed region Field weakening = . ~ 1

V~ V = . = . = . = . ~ 1

~ = .

Page 16: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 31

A.Haumer / 2017-05 Modelica Conference 2017 p 32

FField Oriented Control (FOC)

• Based on space phasors: = + +

Animation of rotating field

• Orientation with respect to magnetic field

• Field current like excitation current

• Torque current like armature current

• Same control principle as DC machine!

Page 17: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 33

EEDrives Library

FOC of rotatory field machines with arbitrary number of phases 3

• Ready to use

• induction machine with squirrel cage

• permanent magnet synchronous machine

• synchronous reluctance machine

• Controller parameter calculation in data records

• Quasistatic machines and inverters

• Transient machines and averaging inverters

• Transient machines and switching inverters

www.edrives.eu

A.Haumer / 2017-05 Modelica Conference 2017 p 34

EEDrives Library

Contact: http://www.ltx.de/english.html

Page 18: Control of Electric Drives - Haumer · Control of Electric Drives A.Haumer / 2017-05 Modelica Conference 2017 p 2 ... Prof. Anton Haumer • Courses in Electrical Drives • Courses

A.Haumer / 2017-05 Modelica Conference 2017 p 35

RReferences

• Christian Kral and Anton Haumer, Modelica libraries for DC machines, three phase and polyphase machines, Modelica 2005

• Christian Kral and Anton Haumer, The New Fundamental Wave Library for Modeling Rotating Electrcial Three Phase Machines, Modelica 2011

• Christian Kral and Anton Haumer, Object-Oriented Modeling of Rotating Electrical Machines, Book Chapter at IntechOpen.com, 2011

• Christian Kral and Anton Haumer, New Multi Phase Quasi Static FundamentalWave Electric Machine Models for High Performance Simulations, Modelica 2014

• Christian Kral and Anton Haumer, Extension of the FundamentalWave Library towards Multi Phase Electric Machine Models, Modelica 2014

• Christian Kral and Anton Haumer, The New EDrives Library: A Modular Tool for Engineering of Electric Drives, Modelica 2014

• Christian Kral and Anton Haumer, Enhancements of Electric Machine Models: The EMachines Library, Modelica 2015

• Dierk Schröder, Elektrische Antriebe: Regelung von Antriebssystemen, Springer Vieweg • Holger Lutz and Wolfgang Wendt, Taschenbuch der Regelungstechnik,

Verlag Europa-Lehrmittel

A.Haumer / 2017-05 Modelica Conference 2017 p 36

TThank you for your attention!

Any questions?

[email protected] [email protected]

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/