consider a section of air

170
3.3 Consider a section of air-filled tf-band waveguide. From the dimensions given in Appendix I, determine the cutoff frequencies of the first two propagating modes. From the recommended operating range given in Appendix I for this guide, determine the percentage reduction in bandwidth that this operating range represents, relative to the theoretical bandwidth for a single propagating mode. 3.4 Compute the TE10 mode attenuation, in dB/m, for K-band waveguide operating at f = 20 GHz. The waveguide is made from brass, and is filled with a dielectric material having r = 2.2 and tan £ = 0.002. 3.5 An attenuator can be made using a section of waveguide operating below cutoff, as shown below. If a = 2.286 cm and the operating frequency is 12 GHz, determine the required length of the bclow- cutoff section of waveguide to achieve an attenuation of 100 dB between the input and output guides. Ignore the effect of reflections at the step discontinuities. Transmission Lines and Waveguides One of the early milestones in microwave engineering was the development of waveguide and other transmission lines for the low-loss tranmission of microwave power. Although Heaviside considered the possibility of propagation of electromagnetic waves inside a closed hollow tube in 1893, he rejected the idea because he believed that two conductors were necessary for the transfer of electromagnetic energy [11. In 1897, Lord Rayleigh (John William Strutt) [21 mathematically proved that wave propagation in waveguides was possible, for both circular and rectangular cross sections. Rayleigh also noted the infinite set of modes of the TE and TM type that were possible and the existence of a cutoff frequency, but no experimental verification was made at the time. The waveguide was essentially forgotten until it was rediscovered independendy in 1936 by two men [31. After preliminary experiments in 1932, George C. Southworth of the AT&T Company in New York presented a paper on the waveguide in 1936. At the same meeting, W. L. Barrow of MIT presented a paper on the circular waveguide, with experimental confirmation of propagation. Early microwave systems relied on waveguide and coaxial lines for transmission line media. Waveguide has the advantage of high power-handling capability and low loss but is bulky

Upload: cristian-tejada

Post on 24-Oct-2014

330 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Consider a Section of Air

3.3 Consider a section of air-filled tf-band waveguide. From the dimensions given in Appendix I, determine the cutoff frequencies of the first two propagating modes. From the recommended operating range given in Appendix I for this guide, determine the percentage reduction in bandwidth that this operating range represents, relative to the theoretical bandwidth for a single propagating mode.3.4 Compute the TE10 mode attenuation, in dB/m, for K-band waveguide operating at f = 20 GHz. The waveguide is made from brass, and is filled with a dielectric material having €r = 2.2 and tan £ = 0.002.3.5 An attenuator can be made using a section of waveguide operating below cutoff, as shown below. If a = 2.286 cm and the operating frequency is 12 GHz, determine the required length of the bclow- cutoff section of waveguide to achieve an attenuation of 100 dB between the input and output guides. Ignore the effect of reflections at the step discontinuities.

Transmission Lines and Waveguides

O n e o f t h e e a r l y m i l e s t o n e s i n m i c r o w a v e e n g i n e e r i n g w a s t h e d e v e l o p m e n t o f

w a v e g u i d e a n d o t h e r t r a n s m i s s i o n l i n e s f o r t h e l o w - l o s s t r a n m i s s i o n o f m i c r o w a v e

p o w e r . A l t h o u g h H e a v i s i d e c o n s i d e r e d t h e p o s s i b i l i t y o f p r o p a g a t i o n o f

e l e c t r o m a g n e t i c w a v e s i n s i d e a c l o s e d h o l l o w t u b e i n 1 8 9 3 , h e r e j e c t e d t h e i d e a

b e c a u s e h e b e l i e v e d t h a t t w o c o n d u c t o r s w e r e n e c e s s a r y f o r t h e t r a n s f e r o f

e l e c t r o m a g n e t i c e n e r g y [ 1 1 . I n 1 8 9 7 , L o r d R a y l e i g h ( J o h n W i l l i a m S t r u t t ) [ 2 1 m a t h e -

m a t i c a l l y p r o v e d t h a t w a v e p r o p a g a t i o n i n w a v e g u i d e s w a s p o s s i b l e , f o r b o t h

c i r c u l a r a n d r e c t a n g u l a r c r o s s s e c t i o n s . R a y l e i g h a l s o n o t e d t h e i n f i n i t e s e t o f m o d e s

o f t h e T E a n d T M t y p e t h a t w e r e p o s s i b l e a n d t h e e x i s t e n c e o f a c u t o f f f r e q u e n c y ,

b u t n o e x p e r i m e n t a l v e r i f i c a t i o n w a s m a d e a t t h e t i m e . T h e w a v e g u i d e w a s

e s s e n t i a l l y f o r g o t t e n u n t i l i t w a s r e d i s c o v e r e d i n d e p e n d e n d y i n 1 9 3 6 b y t w o m e n

[ 3 1 . A f t e r p r e l i m i n a r y e x p e r i m e n t s i n 1 9 3 2 , G e o r g e C . S o u t h w o r t h o f t h e A T & T

C o m p a n y i n N e w Y o r k p r e s e n t e d a p a p e r o n t h e w a v e g u i d e i n 1 9 3 6 . A t t h e s a m e

m e e t i n g , W . L . B a r r o w o f M I T p r e s e n t e d a p a p e r o n t h e c i r c u l a r w a v e g u i d e , w i t h

e x p e r i m e n t a l c o n f i r m a t i o n o f p r o p a g a t i o n .

E a r l y m i c r o w a v e s y s t e m s r e l i e d o n w a v e g u i d e a n d c o a x i a l l i n e s f o r t r a n s m i s s i o n

l i n e m e d i a . W a v e g u i d e h a s t h e a d v a n t a g e o f h i g h p o w e r - h a n d l i n g c a p a b i l i t y a n d l o w

l o s s b u t i s b u l k y a n d e x p e n s i v e . C o a x i a l l i n e h a s v e r y h i g h b a n d w i d t h a n d i s

c o n v e n i e n t f o r t e s t a p p l i c a t i o n s , b u t i s a d i f f i c u l t m e d i u m i n w h i c h t o f a b r i c a t e

Page 2: Consider a Section of Air

2

c o m p l e x m i c r o w a v e c o m p o n e n t s . P l a n a r t r a n s m i s s i o n l i n e s p r o v i d e a n a l t e r n a t i v e , i n

t h e f o r m o f s t r i p l i n e , m i c r o s t r i p , s l o t l i n e , c o p l a n a r w a v e g u i d e , a n d m a n y o t h e r t y p e s

o f r e l a t e d g e o m e t r i e s . S u c h t r a n s m i s s i o n l i n e s a r e c o m p a c t , l o w i n c o s t , a n d a r e

c a p a b l e o f b e i n g e a s i l y i n t e g r a t e d w i t h a c t i v e d e v i c e s s u c h a s d i o d e s a n d t r a n s i s t o r s

t o f o r m m i c r o w a v e i n t e g r a t e d c i r c u i t s . T h e f i r s t p l a n a r t r a n s m i s s i o n l i n e m a y h a v e

b e e n a f l a t - s t r i p c o a x i a l l i n e , s i m i l a r t o s t r i p l i n e , u s e d i n a p r o d u c t i o n p o w e r d i v i d e r

n e t w o r k i n W o r l d W a r I I [ 4 ] . B u t p l a n a r l i n e s d i d n o t r e c e i v e i n t e n s i v e d e v e l o p m e n t

u n t i l t h e 1 9 5 0 s . M i c r o s t r i p l i n e w a s d e v e l o p e d a t I T T l a b o r a t o r i e s [ 5 ] a n d w a s a

c o m p e t i t o r o f s t r i p l i n e . T h e f i r s t m i c r o s t r i p l i n e s u s e d a r e l a t i v e l y t h i c k d i e l e c t r i c

s u b s t r a t e , w h i c h a c c e n t u a t e d t h e n o n - T E M m o d e b e h a v i o r a n d f r e q u e n c y d i s p e r s i o n

o f t h e l i n e . T h i s c h a r a c t e r i s t i c m a d e i t l e s s d e s i r a b l e t h a n s t r i p l i n e u n t i l t h e 1 9 6 0 s ,

w h e n m u c h t h i n n e r s u b s t r a t e s b e g a n t o b e u s e d . T h i s r e d u c e d t h e f r e q u e n c y d e p e n -

d e n c e o f t h e l i n e , a n d n o w m i c r o s t r i p i s o f t e n t h e p r e f e r r e d m e d i u m f o r m i c r o w a v e

i n t e g r a t e d c i r c u i t s .

Page 3: Consider a Section of Air

3.1

92 Chapter 3: Transmission Lines and Waveguides

I n t h i s c h a p t e r w e w i l l s t u d y t h e p r o p e r t i e s o f s e v e r a l t y p e s o f t r a n s m i s s i o n l i n e s

a n d w a v e g u i d e s t h a t a r e i n c o m m o n u s e t o d a y . A s w e k n o w f r o m C h a p t e r 2 , a

t r a n s m i s s i o n l i n e i s c h a r a c t e r i z e d b y a p r o p a g a t i o n c o n s t a n t a n d a c h a r a c t e r i s t i c

i m p e d a n c e ; i f t h e l i n e i s l o s s y , a t t e n u a t i o n i s a l s o o f i n t e r e s t . T h e s e q u a n t i t i e s w i l l

b e d e r i v e d b y a f i e l d t h e o r y a n a l y s i s f o r t h e v a r i o u s l i n e s a n d w a v e g u i d e s t r e a t e d

h e r e .

W e w i l l b e g i n w i t h a g e n e r a l d i s c u s s i o n o f t h e d i f f e r e n t t y p e s o f w a v e

p r o p a g a t i o n a n d m o d e s t h a t c a n e x i s t o n t r a n s m i s s i o n l i n e s a n d w a v e g u i d e s .

T r a n s m i s s i o n l i n e s t h a t c o n s i s t o f t w o o r m o r e c o n d u c t o r s m a y s u p p o r t t r a n s v e r s e

e l e c t r o m a g n e t i c ( T E M ) w a v e s , c h a r a c t e r i z e d b y t h e l a c k o f l o n g i t u d i n a l f i e l d

c o m p o n e n t s . T E M w a v e s h a v e a u n i q u e l y d e f i n e d v o l t a g e , c u r r e n t , a n d c h a r a c t e r i s t i c

i m p e d a n c e . W a v e g u i d e s , o f t e n c o n s i s t i n g o f a s i n g l e c o n d u c t o r , s u p p o r t t r a n s v e r s e

e l e c t r i c ( T E ) a n d / o r t r a n s v e r s e m a g n e t i c ( T M ) w a v e s , c h a r a c t e r i z e d b y t h e p r e s e n c e

o f l o n g i t u d i n a l m a g n e t i c o r e l e c t r i c , r e s p e c t i v e l y , f i e l d c o m p o n e n t s . A s w e w i l l s e e

i n C h a p t e r 4 , a u n i q u e d e f i n i t i o n o f c h a r a c t e r i s t i c i m p e d a n c e i s n o t p o s s i b l e f o r

s u c h w a v e s , a l t h o u g h d e f i n i t i o n s c a n b e c h o s e n s o t h a t t h e c h a r a c t e r i s t i c i m p e d a n c e

c o n c e p t c a n b e u s e d f o r w a v e g u i d e s w i t h m e a n i n g f u l r e s u l t s .

GENERAL SOLUTIONS FOR TEM, TE, AND TM WAVES

I n t h i s s e c t i o n w e w i l l f i n d g e n e r a l s o l u t i o n s t o M a x w e l l ’ s e q u a t i o n s f o r t h e s p e c i f i c c a s e s o f T E M , T E , a n d T M w a v e p r o p a g a t i o n i n c y l i n d r i c a l t r a n s m i s s i o n l i n e s o r w a v e g u i d e s . T h e g e o m e t r y o f a n a r b i t r a r y t r a n s m i s s i o n l i n e o r w a v e g u i d e i s s h o w n i n F i g u r e 3 . 1 , a n d i s c h a r a c t e r i z e d b y c o n d u c t o r b o u n d a r i e s t h a t a r e p a r a l l e l t o t h e z - a x i s . T h e s e s t r u c t u r e s a r e a s s u m e d t o b e u n i f o r m i n t h e z d i r e c t i o n a n d i n f i n i t e l y l o n g . T h e c o n d u c t o r s w i l l i n i t i a l l y b e a s s u m e d t o b e p e r f e c t l y c o n d u c t i n g , b u t a t t e n u a t i o n c a n b e f o u n d b y t h e p e r t u r b a t i o n m e t h o d d i s c u s s e d i n C h a p t e r 2 .

y i y

X

(b)

FIGURE 3.1 (a) General two-conductor transmission line and (b) closed waveguide.

Page 4: Consider a Section of Air
Page 5: Consider a Section of Air

dx dE x dx

dy

'H

z

dy

3.1 General Solutions for TEM, TE, and TM Waves 93

W e a s s u m e t i m e - h a r m o n i c f i e l d s w i t h a n eJ0>t d e p e n d e n c e a n d w a v e p r o p a g a t i o n a l o n g t h e z - a x i s . T h e e l e c t r i c a n d m a g n e t i c f i e l d s c a n t h e n b e w r i t t e n a sE(x, y, z) = [e(x, y) + zez(x, y)]e~ j f iz, (3.1a)H(x, y, z) = [h(x, y) + zhz(x, y))e~m, (3.1b)

w h e r e e{x, y) a n d h(x, y) r e p r e s e n t t h e t r a n s v e r s e ( i , y) e l e c t r i c a n d m a g n e t i c f i e l d c o m -p o n e n t s , w h i l e ez a n d hz a r e t h e l o n g i t u d i n a l e l e c t r i c a n d m a g n e t i c f i e l d c o m p o n e n t s . I n t h e a b o v e , t h e w a v e i s p r o p a g a t i n g i n t h e +z d i r e c t i o n ; — z p r o p a g a t i o n c a n b e o b t a i n e d b y r e p l a c i n g p w i t h —fi. A l s o , i f c o n d u c t o r o r d i e l e c t r i c l o s s i s p r e s e n t , t h e p r o p a g a t i o n c o n s t a n t w i l l b e c o m p l e x ; jfi s h o u l d t h e n b e r e p l a c e d w i t h y = a + jp.

A s s u m i n g t h a t t h e t r a n s m i s s i o n l i n e o r w a v e g u i d e r e g i o n i s s o u r c e f r e e . M a x w e l l ’ s e q u a t i o n s c a n b e w r i t t e n a s

V x E = —jcofiH, ( 3 . 2 a )

V x W = juxE. ( 3 . 2 b )

W i t h a n e~^1 z d e p e n d e n c e , t h e t h r e e c o m p o n e n t s o f e a c h o f t h e a b o v e v e c t o r e q u a t i o n s c a n b e r e d u c e d t o t h e f o l l o w i n g :

dEz 9y+ jfiEy = —jo>flHx, (3.3a)

3 £,-jPEx - ( 3 . 3 b )

dEv d Ex ,—r— = -janHz, (3.3c)

dHz

—— -1- jp Hy = ju)€ Ex, (3.4a)

3 H-jpHx - — — = jaxEy, ( 3 . 4 b )

dxdHy dHx . „ „ ,

17 -W= 1 " ( ’T h e a b o v e s i x e q u a t i o n s c a n b e s o l v e d f o r t h e f o u r t r a n s v e r s e f i e l d c o m p o n e n t s

i n t e r m s o f Ez a n d Hz ( f o r e x a m p l e , Hx c a n b e d e r i v e d b y e l i m i n a t i n g Ey f r o m ( 3 . 3 a ) a n d ( 3 . 4 b ) ) a s f o l l o w s :

( 3 - 5 a )

= < 3 ' 5 b )

- / / dEz dHz\ j ( dE, dH,\(35d>

w h e r e k2 = k2 - p2 ( 3 . 6 )

h a s b e e n d e f i n e d a s t h e c u t o f f w a v e n u m b e r ; t h e r e a s o n f o r t h i s t e r m i n o l o g y w i l l

b e c o m e

Page 6: Consider a Section of Air

( 3 .7 )

94 Chapter 3: Transmission Lines and Waveguides

c l e a r l a t e r . A s i n p r e v i o u s c h a p t e r s ,

( 3 .8 )

o r

k = (Dy/jle = 2 Ti/X

i s t h e w a v e n u m b e r o f t h e m a t e r i a l f i l l i n g t h e t r a n s m i s s i o n l i n e o r

w a v e g u i d e r e g i o n . I f d i e l e c t r i c l o s s i s p r e s e n t , c c a n b e m a d e c o m p l e x b y u s i n g e = e0er(l — j t a n 5), w h e r e t a n 8 i s t h e l o s s t a n g e n t o f t h e m a t e r i a l .

E q u a t i o n s ( 3 . 5 a - d ) a r e v e r y u s e f u l g e n e r a l r e s u l t s t h a t c a n b e a p p l i e d t o a v a r i e t y o f w a v e g u i d i n g s y s t e m s . W e w i l l n o w s p e c i a l i z e t h e s e r e s u l t s t o s p e c i f i c w a v e t y p e s .

TEM Waves

T r a n s v e r s e e l e c t r o m a g n e t i c ( T E M ) w a v e s a r e c h a r a c t e r i z e d b y Ez = Hz = 0 . O b s e r v e f r o m ( 3 . 5 ) t h a t i f £ ; = Hz = 0 , t h e n t h e t r a n s v e r s e f i e l d s a r e a l s o a l l z e r o , u n l e s s k2 = 0 ( k2 = P2), i n w h i c h c a s e w e h a v e a n i n d e t e r m i n a t e r e s u l t . T h u s , w e c a n r e t u r n t o ( 3 . 3 ) -( 3 . 4 ) a n d a p p l y t h e c o n d i t i o n t h a t Ez = Hz = 0 . T h e n f r o m ( 3 . 3 a ) a n d ( 3 . 4 b ) , w e c a n e l i m i n a t e Hx t o o b t a i n

P2Ey = (o2fi€Ey, P = (o^/JTe = k,

a s n o t e d e a r l i e r . ( T h i s r e s u l t c a n a l s o b e o b t a i n e d f r o m ( 3 . 3 b ) a n d ( 3 . 4 a ) . ) T h e c u t o f f w a v e n u m b e r , kc = y/k2 — / 3 2 , i s t h u s z e r o f o r T E M w a v e s .

N o w t h e H e l m h o l t z w a v e e q u a t i o n f o r Ex i s , f r o m ( 1 . 4 2 ) ,

b u t fare W* d e p e n d e n c e , (d2/'dz2)Ex = ~P2EX = —k2Ex, s o ( 3 . 9 ) r e d u c e s t o

( 3 . 1 0 )

A s i m i l a r r e s u l t a l s o a p p l i e s t o £ y , s o u s i n g t h e f o r m o f £ a s s u m e d i n ( 3 . 1 a ) w e c a n w r i t e

S/ 2 e(x, y) = 0,

w h e r e V 2 = d2/dx2 + d2/dy2 i s t h e L a p l a c i a n o p e r a t o r i n t h e t w o t r a n s v e r s e d i m e n s i o n s .

T h e r e s u l t o f ( 3 . 1 1 ) s h o w s t h a t t h e t r a n s v e r s e e l e c t r i c f i e l d s , < ? ( * , v ) . o f a T E M w a v e s a t i s f y L a p l a c e ' s e q u a t i o n . I t i s e a s y t o s h o w i n t h e s a m e w a y t h a t t h e t r a n s v e r s e m a g n e t i c f i e l d s a l s o s a t i s f y L a p l a c e ’ s e q u a t i o n :

Vfh(x,y) = 0 .

T h e t r a n s v e r s e f i e l d s o f a T E M w a v e a r e t h u s t h e s a m e a s t h e s t a t i c f i e l d s t h a t c a n e x i s t b e t w e e n t h e c o n d u c t o r s . I n t h e e l e c t r o s t a t i c c a s e , w e k n o w t h a t t h e e l e c t r i c f i e l d c a n b e e x p r e s s e d a s t h e g r a d i e n t o f a s c a l a r p o t e n t i a l , $ ( * , y):

e(x, y) = -V , < ! > ( * , y ) ,

w h e r e V f = x(d/dx) + y(3/dy) i s t h e t r a n s v e r s e g r a d i e n t o p e r a t o r i n t w o d i m e n s i o n s . I n o r d e r f o r t h e r e l a t i o n i n ( 3 . 1 3 ) t o b e v a l i d , t h e c u r l o f e m u s t v a n i s h , a n d t h i s i s i n d e e d t h e c a s e h e r e s i n c e

V , x e = - jwjjih zz = 0 .

( 3 . 1 1)

( 3 . 1 2)

( 3 . 1 3)

Page 7: Consider a Section of Air

( 3 . 14 )

(3.18)

3.1 General Solutions for TEM, TE, and TM Waves 95

U s i n g t h e f a c t t h a t V • D = e V , • e — 0 w i t h ( 3 . 1 3 ) s h o w s t h a t 4 > ( x , > ' ) a l s o s a t i s f i e s L a p l a c e ’ s e q u a t i o n ,

y) = 0,

a s e x p e c t e d f r o m e l e c t r o s t a t i c s . T h e v o l t a g e b e t w e e n t w o c o n d u c t o r s c a n b e f o u n d a s

( 3 . 1 5 )

w h e r e $1 a n d < J >2 r e p r e s e n t t h e p o t e n t i a l a t c o n d u c t o r s 1 a n d 2 , r e s p e c t i v e l y . T h e c u r r e n t f l o w o n a c o n d u c t o r c a n b e f o u n d f r o m A m p e r e ’ s l a w a s

(3.16)

w h e r e C i s t h e c r o s s - s e c t i o n a l c o n t o u r o f t h e c o n d u c t o r .T E M w a v e s c a n e x i s t w h e n t w o o r m o r e c o n d u c t o r s a r e p r e s e n t .

P l a n e w a v e s a r e a l s o e x a m p l e s o f T E M w a v e s , s i n c e t h e r e a r e n o f i e l d c o m p o n e n t s i n t h e d i r e c t i o n o f p r o p a g a t i o n ; i n t h i s c a s e t h e t r a n s m i s s i o n l i n e c o n d u c t o r s m a y b e c o n s i d e r e d t o b e t w o i n f i n i t e l y l a r g e p l a t e s s e p a r a t e d t o i n f i n i t y . T h e a b o v e r e s u l t s s h o w t h a t a c l o s e d c o n d u c t o r ( s u c h a s a r e c t a n g u l a r w a v e g u i d e ) c a n n o t s u p p o r t T E M w a v e s , s i n c e t h e c o r r e s p o n d i n g s t a t i c p o t e n t i a l i n s u c h a r e g i o n w o u l d b e z e r o ( o r p o s s i b l y a c o n s t a n t ) , l e a d i n g t o e = 0.

T h e w a v e i m p e d a n c e o f a T E M m o d e c a n b e f o u n d a s t h e r a t i o o f t h e t r a n s v e r s e e l e c t r i c a n d m a g n e t i c f i e l d s :

( 3 . 1 7 a )

w h e r e ( 3 . 4 a ) w a s u s e d . T h e o t h e r p a i r o f t r a n s v e r s e f i e l d c o m p o n e n t s , f r o m ( 3 . 3 a ) , g i v e

( 3 . 1 7 b )

C o m b i n i n g t h e r e s u l t s o f ( 3 . 1 7 a ) a n d ( 3 . 1 7 b ) g i v e s a g e n e r a l e x p r e s s i o n f o r t h e t r a n s v e r s e f i e l d s a s

h(x,y)= —-------z x e(x,y).■¿TEM

N o t e t h a t t h e w a v e i m p e d a n c e i s t h e s a m e a s t h a t f o r a p l a n e w a v e i n a l o s s l e s s m e d i u m , a s d e r i v e d i n C h a p t e r 1 ; t h e r e a d e r s h o u l d n o t c o n f u s e t h i s i m p e d a n c e w i t h t h e c h a r a c t e r i s t i c i m p e d a n c e , Zq, of a t r a n s m i s s i o n l i n e . T h e l a t t e r r e l a t e s a n i n c i d e n t v o l t a g e a n d c u r r e n t a n d i s a f u n c t i o n o f t h e l i n e g e o m e t r y a s w e l l a s t h e m a t e r i a l f i l l i n g t h e l i n e , w h i l e t h e w a v e i m p e d a n c e r e l a t e s t r a n s v e r s e f i e l d c o m p o n e n t s a n d i s d e p e n d e n t o n l y o n t h e m a t e r i a l c o n s t a n t s . F r o m ( 2 . 3 2 ) , t h e c h a r a c t e r i s t i c i m p e d a n c e o f t h e T E M l i n e i s Z 0 = V/l, w h e r eV a n d / a r e t h e a m p l i t u d e s o f t h e i n c i d e n t v o l t a g e a n d c u r r e n t w a v e s .

Page 8: Consider a Section of Air

T h e p r o c e d u r e f o r a n a l y z i n g a T E M l i n e c a n b e s u m m a r i z e d a s f o l l o w s :

1. S o l v e L a p l a c e ’ s e q u a t i o n , ( 3 . 1 4 ) , f o r 4 > ( , r , y). T h e s o l u t i o n w i l l c o n t a i n s e v e r a l u n k n o w n c o n s t a n t s .

2. F i n d t h e s e c o n s t a n t s b y a p p l y i n g t h e b o u n d a r y c o n d i t i o n s f o r t h e k n o w n v o l t a g e s o n t h e c o n d u c t o r s .

3. C o m p u t e e a n d E f r o m ( 3 . 1 3 ) , ( 3 . 1 a ) . C o m p u t e h a n d H f r o m ( 3 . 1 8 ) , ( 3 . 1 b ) .

4. C o m p u t e V f r o m ( 3 . 1 5 ) , I f r o m ( 3 . 1 6 ) .5. T h e p r o p a g a t i o n c o n s t a n t i s g i v e n b y ( 3 . 8 ) , a n d t h e

c h a r a c t e r i s t i c i m p e d a n c e i s g i v e nb y Z 0 = V/l.

Page 9: Consider a Section of Air

~jfi 3 / / , k2 dx ' ( 3 . 1 9 a )

-JP 9Hz * ? &y ' ( 3 . 1 9 b )

—j con dHz k2 By ’ ( 3 . 1 9 c )

jeon 3 Hz k2 dx ' ( 3 . 1 9 d )

Hy =

Ex =

£v =

j(of 3£.dy ’

—j(u€ 3 Ez

* ? dx

-jfi 3 £ ;

* c 2 dx ’

-jfi d Ez

kl dy '

96 Chapter 3: Transmission Lines and Waveguides TE Waves

T r a n s v e r s e e l e c t r i c ( T E ) w a v e s , ( a l s o r e f e r r e d t o a s / / - w a v e s ) a r e c h a r a c t e r i z e d b y Ez — 0 a n d Hz ^ 0 . E q u a t i o n s ( 3 . 5 ) t h e n r e d u c e t o

/ / * =

I n t h i s c a s e , kc 0 , a n d t h e p r o p a g a t i o n c o n s t a n t ft =

yjk1 — k2 i s g e n e r a l l y a f u n c t i o n o f f r e q u e n c y a n d t h e g e o m e t r y o f t h e l i n e o r g u i d e . T o a p p l y ( 3 . 1 9 ) , o n e m u s t f i r s t f i n d Hz f r o m t h e H e l m h o l t z w a v e e q u a t i o n ,

( d2 d2 32

( a ? + a ? + 3 ? + ^ ) " ! = 0 - ( 3 ' 2 0 >

w h i c h , s i n c e H,(x, y, z) = hz(x, y)e~^z, c a n b e r e d u c e d t o a t w o - d i m e n s i o n a l w a v e e q u a t i o n f o r hz:

( d2 32

( ^ + 5 ? + ^ = 0 ’ ( 3 - 2 , )

s i n c e k2 = k2 — fi2. T h i s e q u a t i o n m u s t b e s o l v e d s u b j e c t t o t h e b o u n d a r y c o n d i t i o n s o f t h e s p e c i f i c g u i d e g e o m e t r y .

T h e T E w a v e i m p e d a n c e c a n b e f o u n d a s

7 - E* - ~E> - - kr] a -r>\

w h i c h i s s e e n t o b e f r e q u e n c y d e p e n d e n t . T E w a v e s c a n b e s u p p o r t e d i n s i d e c l o s e d c o n d u c t o r s , a s w e l l a s b e t w e e n t w o o r m o r e c o n d u c t o r s .

TM Waves

T r a n s v e r s e m a g n e t i c ( T M ) w a v e s ( a l s o r e f e r r e d t o a s £ - w a v e s ) a r e c h a r a c t e r i z e d b y Ez ^ 0 a n d H, = 0 . E q u a t i o n s ( 3 . 5 ) t h e n r e d u c e t o

(323a)

k2 dy —jw€ 3 E,", = ft23»

f. 0330

E, = ( 3 . 2 3 d )

Page 10: Consider a Section of Air

( 3 . 24 )

( 3 . 25 )

( 3 . 27 )

3.1 General Solutions for TEM, TE, and TM Waves 97

A s i n t h e T E c a s e , kc ^ 0 , a n d t h e p r o p a g a t i o n c o n s t a n t p — y/k2 — k2 i s a f u n c t i o n o f f r e q u e n c y a n d t h e g e o m e t r y o f t h e l i n e o r g u i d e . Ez i s f o u n d f r o m t h e H e l m h o l t z w a v e e q u a t i o n ,

( 9 2 9 2 9 2 2^ r , „ V 9 l 2 + â 7 + 9 ? + ) î = 0 ’

w h i c h , s i n c e Ez(x, y, z) = e,( , v , y)e !^z, c a n b e r e d u c e d t o a t w o -d i m e n s i o n a l w a v e e q u a t i o n f o r e,:

/ 9 2 9 2 7 \

s i n c e k2 = k2 — ft2. T h i s e q u a t i o n m u s t b e s o l v e d s u b j e c t t o t h e b o u n d a r y c o n d i t i o n s o f t h e s p e c i f i c g u i d e g e o m e t r y .

T h e T M w a v e i m p e d a n c e c a n b e f o u n d a s

w h i c h i s f r e q u e n c y d e p e n d e n t . A s f o r T E w a v e s , T M w a v e s c a n b e s u p p o r t e d i n s i d e c l o s e d c o n d u c t o r s , a s w e l l a s b e t w e e n t w o o r m o r e c o n d u c t o r s .

T h e p r o c e d u r e f o r a n a l y z i n g T E a n d T M w a v e g u i d e s c a n b e s u m m a r i z e d a s f o l l o w s :

1. S o l v e t h e r e d u c e d H e l m h o l t z e q u a t i o n , ( 3 . 2 1 ) o r ( 3 . 2 5 ) , f o r h, o r ez. T h e s o l u t i o n w i l l c o n t a i n s e v e r a l u n k n o w n c o n s t a n t s , a n d t h e u n k n o w n c u t o f f w a v e n u m b e r , kc.

2. U s e ( 3 . 1 9 ) o r ( 3 . 2 3 ) t o f i n d t h e t r a n s v e r s e f i e l d s f r o m h, o r ez.

3. A p p l y t h e b o u n d a r y c o n d i t i o n s t o t h e a p p r o p r i a t e f i e l d c o m p o n e n t s t o f i n d t h e u n k n o w n c o n s t a n t s a n d kc.

4. T h e p r o p a g a t i o n c o n s t a n t i s g i v e n b y ( 3 . 6 ) , a n d t h e w a v e i m p e d a n c e b y ( 3 . 2 2 ) o r

( 3 . 2 6 ) .

Attenuation Due to Dielectric Loss

A t t e n u a t i o n i n a t r a n s m i s s i o n l i n e o r w a v e g u i d e c a n b e c a u s e d b y e i t h e r d i e l e c t r i c l o s s o r c o n d u c t o r l o s s . I f aj i s t h e a t t e n u a t i o n c o n s t a n t d u e t o d i e l e c t r i c l o s s , a n d ac i s t h e a t t e n u a t i o n c o n s t a n t d u e t o c o n d u c t o r l o s s , t h e n t h e t o t a l a t t e n u a t i o n c o n s t a n t i s a = + ac.

A t t e n u a t i o n c a u s e d b y c o n d u c t o r l o s s c a n b e c a l c u l a t e d u s i n g t h e p e r t u r b a t i o n m e t h o d o f S e c t i o n 2 . 7 ; t h i s l o s s d e p e n d s o n t h e f i e l d d i s t r i b u t i o n i n t h e g u i d e a n d s o m u s t b e e v a l u a t e d s e p a r a t e l y f o r e a c h t y p e o f t r a n s m i s s i o n l i n e o r w a v e g u i d e . B u t i f t h e l i n e o r g u i d e i s c o m p l e t e l y f i l l e d w i t h a h o m o g e n e o u s d i e l e c t r i c , t h e a t t e n u a t i o n d u e t o l o s s y d i e l e c t r i c c a n b e c a l c u l a t e d f r o m t h e p r o p a g a t i o n c o n s t a n t , a n d t h i s r e s u l t w i l l a p p l y t o a n y g u i d e o r l i n e w i t h a h o m o g e n e o u s d i e l e c t r i c f i l l i n g .

T h u s , u s i n g t h e c o m p l e x d i e l e c t r i c c o n s t a n t a l l o w s t h e c o m p l e x p r o p a g a t i o n c o n s t a n t t o b e w r i t t e n a s

= ad + jp = yjk2 - k2

= A 2 - c o V o e o f r O - j t a n S).

I n p r a c t i c e , m o s t d i e l e c t r i c m a t e r i a l s h a v e a v e r y s m a l l l o s s ( t a n 8 < £

Ex - E v P_ÜK

Pv

k '( 3 . 2 6)

Z t m = 7 T =Hy H x

Page 11: Consider a Section of Air

1 ) , s o t h i s e x p r e s s i o n

Page 12: Consider a Section of Air
Page 13: Consider a Section of Air

( 3 . 31 )

( 3 . 33 )

3.2 Parallel Plate Waveguide 99

c a n b e i g n o r e d . A m a t e r i a ] w i t h p e r m i t t i v i t y e a n d p e r m e a b i l i t y n i s a s s u m e d t o f i l l t h e r e g i o n b e t w e e n t h e t w o p l a t e s . W e w i l l d i s c u s s s o l u t i o n s f o r T E M , T M , a n d T E w a v e s .

TEM Modes

A s d i s c u s s e d i n S e c t i o n 3 . 1 , t h e T E M m o d e s o l u t i o n c a n b e o b t a i n e d b y s o l v i n g L a p l a c e ’ s e q u a t i o n , ( 3 . 1 4 ) , f o r t h e e l e c t r o s t a t i c p o t e n t i a l < t > U , y ) b e t w e e n t h e t w o p l a t e s . T h u s ,

V (2< J > ( ; c , y ) = 0 , f o r O < x < W , 0 < y < d .

I f w e a s s u m e t h a t t h e b o t t o m p l a t e i s a t g r o u n d ( z e r o ) p o t e n t i a l a n d t h e t o p p l a t e a t a p o t e n t i a l o f V o , t h e n t h e b o u n d a r y c o n d i t i o n s f o r y ) a r e

S i n c e t h e r e i s n o v a r i a t i o n i n x, t h e g e n e r a l s o l u t i o n t o ( 3 . 3 1 ) f o r 4 > ( j c , y ) i s

< J > ( x , y) = A + By,

a n d t h e c o n s t a n t s A , B c a n b e e v a l u a t e d f r o m t h e b o u n d a r y c o n d i t i o n s o f ( 3 . 3 2 ) t o g i v e t h e f i n a l s o l u t i o n a s

< t > ( j c , y ) = Vay/d.

T h e t r a n s v e r s e e l e c t r i c f i e l d i s , f r o m ( 3 . 1 3 ) ,

( 3 . 3 4 )

s o t h a t t h e t o t a l e l e c t r i c f i e l d i s

( 3 . 3 5 )

w h e r e k = & > , / / ! ? i s t h e p r o p a g a t i o n c o n s t a n t o f t h e T E M w a v e , a s i n ( 3 . 8 ) . T h e m a g n e t i c f i e l d , f r o m ( 3 . 1 8 ) , i s

( 3 . 3 6 )

w h e r e i] = v W e i s t h e i n t r i n s i c i m p e d a n c e o f t h e m e d i u m b e t w e e n t h e p a r a l l e l p l a t e s . N o t e t h a t Ez = Hz = 0 a n d t h a t t h e f i e l d s a r e s i m i l a r i n f o r m t o a p l a n e w a v e i n a h o m o g e n e o u s r e g i o n .T h e v o l t a g e o f t h e t o p p l a t e w i t h r e s p e c t t o t h e b o t t o m p l a t e c a n b e

c a l c u l a t e d f r o m(3.15) a n d ( 3 . 3 5 ) a s

( 3 . 3 7 )

( 3 . 3 2 a)

( 3 . 3 2 b)

< D ( j c , 0 ) =

0 , < £ ( * , d)

— V0.

Ê(x , y , z ) = e (x , y )e i k z = —y-d

i _ y .H(x , y , z ) = -7 x Ë(x . v. z) = x—e~ i k l

Page 14: Consider a Section of Air

a s e x p e c t e d . T h e t o t a l c u r r e n t o n t h e t o p p l a t e c a n b e f o u n d f r o m A m p e r e ’ s l a w o r t h e

Page 15: Consider a Section of Air

15 Chapter 3: Transmission Lines and Waveguides s u r f a c e c u r r e n t d e n s i t y :

fw - fw - fw ivV „1=1 /i' zdx = I (—y x H) ■ zdx = I Hxdx = —~Te

■ (3.38) Jx= 0 Jx=0 Jx=0

Thus the characteristic impedance can be found asV nd

Z o = -7 = — , ( 3 . 3 9 )/ w

w h i c h i s s e e n t o b e a c o n s t a n t d e p e n d e n t o n l y o n t h e g e o m e t r y a n d m a t e r i a l p a r a m e t e r s o f t h e g u i d e . T h e p h a s e v e l o c i t y i s a l s o a c o n s t a n t :

W 1 ( 3 . 4 0 )

w h i c h i s t h e s p e e d o f l i g h t i n t h e m a t e r i a l m e d i u m .A t t e n u a t i o n d u e t o d i e l e c t r i c l o s s i s g i v e n b y ( 3 . 3 0 ) . T h e f o r m u l a

f o r c o n d u c t o r a t t e n u a t i o n w i l l b e d e r i v e d i n t h e n e x t s u b s e c t i o n , a s a s p e c i a l c a s e o f T M m o d e a t t e n u a t i o n .

TM Modes

A s d i s c u s s e d i n S e c t i o n 3 . 1 , T M w a v e s a r e c h a r a c t e r i z e d b y Hz = 0 a n d a n o n z e r o E. f i e l d t h a t s a t i s f i e s t h e r e d u c e d w a v e e q u a t i o n o f ( 3 . 2 5 ) , w i t h d/dx = 0 :

( ¿ + * c ) ez(x,y) = 0, ( 3 . 4 1 )

w h e r e f c 2 = k1 — ft1 i s t h e c u t o f f w a v e n u m b e r , a n d Ez(x, y , z ) = ez(x, y )e~Jtlz.The g e n e r a l s o l u t i o n t o ( 3 . 4 1 ) i s o f t h e f o r m

ez( x > y ) — A s i n kcy + B c o s kcy, ( 3 . 4 2 )

s u b j e c t t o t h e b o u n d a r y c o n d i t i o n s t h a t

e z ( * , y ) = 0 , a t y = 0 . d. ( 3 . 4 3 )

T h i s i m p l i e s t h a t B = 0 a n d kcd = nit, f o r n = 0 , 1 . 2 , 3 . . . . o rkc = n = 0 , 1 , 2 , 3 . . . . ( 3 . 4 4 )

d

T h u s t h e c u t o f f w a v e n u m b e r kc i s c o n s t r a i n e d t o d i s c r e t e v a l u e s a s g i v e n b y ( 3 . 4 4 ) ; t h i s i m p l i e s t h a t t h e p r o p a g a t i o n c o n s t a n t fi i s g i v e n b y

p = yjp-kl = y/k2 - (nTcjdf. (3.45)

T h e s o l u t i o n f o r ez(x, y ) i s t h e nez(x, y ) = A „ s i n ( 3 . 4 6 )

a

t h u s ,

Ez(x, y, z ) = s i n ( 3 . 4 7 )a

Page 16: Consider a Section of Air

3.2 Parallel Plate Waveguide 16

cos —— e

d

cos ——enn y r -iBi

d

( 3 . 49 )

T h e t r a n s v e r s e f i e l d c o m p o n e n t s c a n b e f o u n d , u s i n g ( 3 . 2 3 ) , t o b e

( 3 . 4 8 a )

( 3 . 4 8 b )

( 3 . 4 8 c )

O b s e r v e t h a t f o r n = 0 , fi = k = ca^/JIe, a n d t h a t Ez = 0 . T h e Ey a n d Hx

f i e l d s a r e t h e n c o n s t a n t i n y, s o t h a t t h e T M o m o d e i s a c t u a l l y i d e n t i c a l t o t h e T E M m o d e . F o r n > 1 , h o w e v e r , t h e s i t u a t i o n i s d i f f e r e n t . E a c h v a l u e o f n c o r r e s p o n d s t o a d i f f e r e n t T M m o d e , d e n o t e d a s t h e T M „ m o d e , a n d e a c h m o d e h a s i t s o w n p r o p a g a t i o n c o n s t a n t g i v e n b y ( 3 . 4 5 ) , a n d f i e l d e x p r e s s i o n s a s g i v e n b y ( 3 . 4 8 ) .

F r o m ( 3 . 4 5 ) i t c a n b e s e e n t h a t ft i s r e a l o n l y w h e n k > kc. S i n c e k = (njju i s p r o p o r t i o n a l t o f r e q u e n c y , t h e T M „ m o d e s ( f o r n > 0 ) e x h i b i t a c u t o f f p h e n o m e n o n , w h e r e b y n o p r o p a g a t i o n w i l l o c c u r u n t i l t h e f r e q u e n c y i s s u c h t h a t k > kc. T h e c u t o f f f r e q u e n c y o f t h e T M „ m o d e c a n t h e n b e d e d u c e d a s

kc n

2n<fjZ( Id^fjji^'

T h u s , t h e T M m o d e t h a t p r o p a g a t e s a t t h e l o w e s t f r e q u e n c y i s t h e T M j m o d e , w i t h a c u t o f f f r e q u e n c y o f fc = 1 / 2d^ffu \ t h e T M 2 m o d e h a s a c u t o f f f r e q u e n c y e q u a l t o t w i c e t h i s v a l u e , a n d s o o n . A t f r e q u e n c i e s b e l o w t h e c u t o f f f r e q u e n c y o f a g i v e n m o d e , t h e p r o p a g a t i o n c o n s t a n t i s p u r e l y i m a g i n a r y , c o r r e s p o n d i n g t o a r a p i d e x p o n e n t i a l d e c a y o f t h e f i e l d s . S u c h m o d e s a r e r e f e r r e d t o a s c u t o f f , o r e v a n e s c e n t , m o d e s . T M „ m o d e p r o p a g a t i o n i s a n a l o g o u s t o a h i g h - p a s s f i l t e r r e s p o n s e .

T h e w a v e i m p e d a n c e o f t h e T M m o d e s , f r o m ( 3 . 2 6 ) , i s a f u n c t i o n o f f r e q u e n c y :

w h i c h w e s e e i s p u r e r e a l f o r / > fc, b u t p u r e i m a g i n a r y f o r / < fc. T h e p h a s e v e l o c i t y i s a l s o a f u n c t i o n o f f r e q u e n c y :

( 3 . 5 1 )

a n d i s s e e n t o b e g r e a t e r t h a n 1/ ^ / z Z ? = a>/k, t h e s p e e d o f l i g h t i n t h e m e d i u m , s i n c e fi < k T h e g u i d e w a v e l e n g t h i s d e f i n e d a s

( 3 . 5 2 )

a n d i s t h e d i s t a n c e b e t w e e n e q u i p h a s e p l a n e s a l o n g t h e z - a x i s . N o t e t h a t Xg > k — 2izjk, t h e w a v e l e n g t h o f a p l a n e w a v e i n t h e m a t e r i a l . T h e

Page 17: Consider a Section of Air

3.2 Parallel Plate Waveguide 17p h a s e v e l o c i t y a n d g u i d e w a v e l e n g t h a r e d e f i n e d o n l y f o r a p r o p a g a t i n g m o d e , f o r w h i c h fi i s r e a l . O n e m a y a l s o d e f i n e a c u t o f f w a v e l e n g t h f o r t h e T M „ m o d e a s

Page 18: Consider a Section of Air

18 Chapter 3: Transmission Lines and Waveguides

( 3 . 55 )

( 3 . 56 )

I t i s i n s t r u c t i v e t o c o m p u t e t h e P o y n t i n g v e c t o r t o s e e h o w p o w e r p r o p a g a t e s i n t h e T M „ m o d e . F r o m ( 1 . 9 1 ) , t h e t i m e - a v e r a g e p o w e r p a s s i n g a t r a n s v e r s e c r o s s s e c t i o n o f t h e p a r a l l e l p l a t e g u i d e i s

w h e r e ( 3 . 4 8 a , b ) w e r e u s e d f o r Ey, Hx. T h u s , Pa i s p o s i t i v e a n d n o n z e r o w h e n i s r e a l , w h i c h o c c u r s f o r / > fc. W h e n t h e m o d e i s b e l o w c u t o f f , fi i s i m a g i n a r y a n d s o P„ = 0.

T h e T M ( o r T E ) w a v e g u i d e m o d e p r o p a g a t i o n h a s a n i n t e r e s t i n g i n t e r p r e t a t i o n w h e n v i e w e d a s a p a i r o f b o u n c i n g p l a n e w a v e s . F o r e x a m p l e , c o n s i d e r t h e d o m i n a n t T M i m o d e , w h i c h h a s a p r o p a g a t i o n c o n s t a n t .

Pi = y/k2- (nId)2,

a n d Ez f i e l d ,

Ez = A i s i n ^-e d

w h i c h c a n b e r e w r i t t e n a s

£ _ 2±^ei\vyld-M _ e~j[ity/d+fiiz\ j

T h i s r e s u l t i s i n t h e f o r m o f t w o p l a n e w a v e s t r a v e l i n g o b l i q u e l y , i n t h e —y, +z a n d + y , +z d i r e c t i o n s , r e s p e c t i v e l y , a s s h o w n i n F i g u r e 3 . 3 . B y c o m p a r i s o n w i t h t h e p h a s e f a c t o r o f ( 1 . 1 3 2 ) , t h e a n g l e 6 t h a t e a c h p l a n e w a v e m a k e s w i t h t h e z - a x i s s a t i s f i e s t h e r e l a t i o n s

( 3 . 5 7 a )

( 3 . 5 7 b )

s o t h a t (n/d)2 + fij = k2, a s i n ( 3 . 5 5 ) . F o r / > fc, p i s r e a l a n d l e s s t h a n k\, so 6 i s s o m e a n g l e b e t w e e n 0 ° a n d 9 0 ° , a n d t h e m o d e c a n b e t h o u g h t o f a s t w o p l a n e w a v e s a l t e r n a t e l y b o u n c i n g o f f o f t h e t o p a n d b o t t o m p l a t e s .

•d 'y=0

wRe(P)cued t

4^t u R

e ( / 3 ) o > € i /f o r n > 0

f o r n — 0

( 3 . 5 4 )

uiRe(P)oj€2k}

nny\A dy =

2k}

j pw rd i pw pd

P„ = -Re Ex H’ zdy dx = --Re E y H* x dy dx2 Jx=0 Jy=0 ̂Jx=0 Jy=0

■\A„\ 2

rdn\2 COS2

J y =0| A „

Page 19: Consider a Section of Air

3.2 Parallel Plate Waveguide 19

Page 20: Consider a Section of Air

3.2 Parallel Plate Waveguide 20

( 3 . 58 )

f o r n > 0 .

( 3 . 60 )

( 3 . 61 )

T h e p h a s e v e l o c i t y o f e a c h p l a n e w a v e a l o n g i t s d i r e c t i o n o f p r o p a g a t i o n (6 d i r e c t i o n ) i s co/k = 1 / y/JTiy w h i c h i s t h e s p e e d o f l i g h t i n t h e m a t e r i a l f i l l i n g t h e g u i d e . B u t t h e p h a s e v e l o c i t y o f t h e p l a n e w a v e s i n t h e z d i r e c t i o n i s (o/f) i = 1/ , / / ! ? c o s # , w h i c h i s g r e a t e r t h a n t h e s p e e d o f l i g h t i n t h e m a t e r i a l . ( T h i s s i t u a t i o n i s a n a l o g o u s t o o c e a n w a v e s h i t t i n g a s h o r e l i n e : t h e i n t e r s e c t i o n p o i n t o f t h e s h o r e a n d a n o b l i q u e l y i n c i d e n t w a v e c r e s t m o v e s f a s t e r t h a n t h e w a v e c r e s t i t s e l f . ) T h e s u p e r p o s i t i o n o f t h e t w o p l a n e w a v e f i e l d s i s s u c h t h a t c o m p l e t e c a n c e l l a t i o n o c c u r s a t y = 0 a n d > - = d, t o s a t i s f y t h e b o u n d a r y c o n d i t i o n t h a t Ez = 0 a t t h e s e p l a n e s . A s / d e c r e a s e s t o fc, f)\ a p p r o a c h e s z e r o s o t h a t , b y ( 3 . 5 7 b ) , 9 a p p r o a c h e s 9 0 ° . T h e t w o p l a n e w a v e s a r e t h e n b o u n c i n g u p a n d d o w n w i t h n o m o t i o n i n t h e + z d i r e c t i o n , a n d n o r e a l p o w e r f l o w o c c u r s i n t h e z d i r e c t i o n .

A t t e n u a t i o n d u e t o d i e l e c t r i c l o s s c a n b e f o u n d f r o m ( 3 . 2 9 ) . C o n d u c t o r l o s s c a n b e t r e a t e d u s i n g t h e p e r t u r b a t i o n m e t h o d . T h u s ,

Pt_ 2 P0'

w h e r e Pa i s t h e p o w e r f l o w d o w n t h e g u i d e i n t h e a b s e n c e o f c o n d u c t o r l o s s , a s g i v e n b y ( 3 . 5 4 ) . Pt i s t h e p o w e r d i s s i p a t e d p e r u n i t l e n g t h i n t h e t w o l o s s y c o n d u c t o r s a n d c a n b e f o u n d f r o m ( 2 . 9 7 ) a s

/Rs\ fw - i w2€2Riw ,- o 1 ’ 1 — ( }

w h e r e Rs i s t h e s u r f a c e r e s i s t i v i t y o f t h e c o n d u c t o r s . U s i n g ( 3 . 5 4 ) a n d ( 3 . 5 9 ) i n ( 3 . 5 8 ) g i v e s t h e a t t e n u a t i o n d u e t o c o n d u c t o r l o s s a s

2OL>(R S 2kRs ac = ——— = ——- Np/m, fid firjd

A s d i s c u s s e d p r e v i o u s l y , t h e T E M m o d e i s i d e n t i c a l t o t h e T M o m o d e f o r t h e p a r a l l e l p l a t e w a v e g u i d e , s o t h e a b o v e a t t e n u a t i o n r e s u l t s f o r t h e T M „ m o d e c a n b e u s e d t o o b t a i n t h e T E M m o d e a t t e n u a t i o n b y l e t t i n g n = 0 . F o r t h i s c a s e , t h e n = 0 r e s u l t o f ( 3 . 5 4 ) m u s t b e u s e d i n ( 3 . 5 8 ) , t o o b t a i n

ac = — N p / m . r\d

TE Modes

T E m o d e s , c h a r a c t e r i z e d b y Ez = 0 , c a n a l s o p r o p a g a t e o n t h e p a r a l l e l p l a t e w a v e g u i d e . F r o m ( 3 . 2 1 ) , w i t h d/dx = 0 , H, m u s t s a t i s f y t h e r e d u c e d w a v e e q u a t i o n ,

( ¿ 2 + ^ ) m ^ 3 - ) = 0 .

tuVmro b“ --------------- t-2 _______ ^2 In Piitnff omH t-l ( V — It ( v- m \ ^ ^ Tha nonArol

( 3 . 6 2 )

Page 21: Consider a Section of Air

21 Chapter 3: Transmission Lines and Waveguides

nnK = t . ( 3 . 6 5

)

( 3 . 6 6)

( 3 . 6 7a )

( 3 . 6 7b )

( 3 . 6 7c )

( 3 . 6 8)

fc -

( 3 . 70 )

f o r n > 0 ,

( 3 . 71 )

a n d a p p l y i n g t h e b o u n d a r y

c o n d i t i o n s s h o w s t h a t A — 0

a n d

n = 1 , 2 , 3 . . . , a s f o r t h e T M c a s e . T h e f i n a l

s o l u t i o n f o r H- i s t h e nH, Jx, y) = B„ Cos r~e ih.

a

T h e t r a n s v e r s e f i e l d s c a n b e c o m p u t e d f r o m ( 3 . 1 9 ) a s

Ex = !^Bn^e->* kc

a

(i

E y = Ht = 0 .

' I h e p r o p a g a t i o n c o n s t a n t o f t h e T E „ m o d e i s t h u s ,

w h i c h i s t h e s a m e a s t h e p r o p a g a t i o n c o n s t a n t o f t h e T M „ m o d e . T h e c u t o f f f r e q u e n c y o f t h e T E „ m o d e i s

( 3 . 6 9 )

w h i c h i s a l s o i d e n t i c a l t o t h a t o f t h e T M „ m o d e . T h e w a v e i m p e d a n c e o f t h e T E „ m o d e i s , f r o m ( 3 . 2 2 ) ,

Ex con kr\Z T e - ~ H , - T ~ T

w h i c h i s s e e n t o b e r e a l f o r p r o p a g a t i n g m o d e s a n d i m a g i n a r y f o r n o n p r o p a g a t i n g , o r c u t o f f , m o d e s . T h e p h a s e v e l o c i t y , g u i d e w a v e l e n g t h , a n d c u t o f f w a v e l e n g t h a r e s i m i l a r t o t h e r e s u l t s f o r t h e T M m o d e s .

T h e p o w e r f l o w d o w n t h e g u i d e f o r a T E „ m o d e c a n b e c a l c u l a t e d a s

1 nw pd i p w pd

Po = -Re/ E x H* • zdy dx = -Re/ E x H* dy dx

2 Jx—0 Jy=0 2 Jx=0 Jv=0

CD fid w4k:

Page 22: Consider a Section of Air

22 Chapter 3: Transmission Lines and Waveguides

w h i c h i s z e r o i f t h e o p e r a t i n g f r e q u e n c y i s b e l o w t h e c u t o f f f r e q u e n c y (fi i m a g i n a r y ) .

N o t e t h a t i f n = 0 , t h e n Ex = Hv = 0 f r o m ( 3 . 6 7 ) , a n d t h u s Pa = 0 , i m p l y i n g t h a t t h e r e i s n o T E o m o d e .

A t t e n u a t i o n c a n b e c a l c u l a t e d i n t h e s a m e w a y a s f o r t h e T M m o d e s . T h e a t t e n u a t i o n d u e t o d i e l e c t r i c l o s s i s g i v e n b y ( 3 . 2 9 ) . I t i s l e f t a s a p r o b l e m t o s h o w t h a t t h e a t t e n u a t i o n d u e t o c o n d u c t o r l o s s f o r T E m o d e s i s g i v e n b y

Page 23: Consider a Section of Air

3.2 Parallel Plate Waveguide 23

F i g u r e 3 . 4 s h o w s t h e a t t e n u a t i o n d u e t o c o n d u c t o r l o s s f o r t h e T E M , T M i , a n d T E | m o d e s . O b s e r v e t h a t ac - » o o a s c u t o f f i s a p p r o a c h e d f o r t h e T M a n d T E m o d e s .

T a b l e 3 . 1 s u m m a r i z e s a n u m b e r o f u s e f u l r e s u l t s f o r T E M , T M , a n d T E m o d e p r o p a g a -t i o n o n p a r a l l e l p l a t e w a v e g u i d e s . F i e l d l i n e s f o r t h e T E M . T M ] , a n d T E | m o d e s a r e s h o w n i n F i g u r e 3 . 5 .

TABLE 3.1 Summary of Results for Parallel Plate WaveguideQ u a n t i t

yT E M M o d e T M „ M o d e T E n M o d e

k COyfjte (ojjie (Oy/Jii

kc 0 rut/d nn/d

P k = Myfjie s/k- - k* Jk2-kt

K o o 2 n/kc = 2 d/n 2 n/kr = 2 d/n

2n/k 2jt/p 271/Pvr co/k - 1 //¡n <o/p co/p

aj ( * t a n « ) / 2 (k2lanS)/2p ( J f c - t a n < 5 ) / 2 y 8Otc R<hd 2kRJpr,d 2k;RJkpr}d

E\ 0 A„ s i n (nn y / d)e~ ilSz 0Hz 0 0 B„ c o s (njzy/d)e~^1

Ex 0 0 (j(a(t/kc)B„ s i n (nny/d)e ~,fit

Ey (~V,/d)e^ (—jfi/kc)A„ c o s ( nny/d)e~ 0Hx (VJnd)e-^ (ja>f/kc)An c o s (nnyjd)e^>fil 0Hy 0 0 < Jp/kc)B„ s i n (mtyfd)e~lft

a^d~R7

0 1 2 3 4 5 6 7 8 9 1 0_k__kd

k. tr

FIGURE 3.4 Attenuation due to conductor loss for the TEM, TM , and TEi modes of a parallel plate waveguide.

Page 24: Consider a Section of Air

24 Chapter 3: Transmission Lines and Waveguides

Z Z t e m = r)d/w z ™ = Pn/k ZTE = kr,/p

Page 25: Consider a Section of Air

(b)

FIGURE 3.5

3.3

3.2 Parallel Plate Waveguide 25

la)

-------E--------H

11■ i i » ■ i » i i i i i i i ■11 i i i i

(c)

Field lines for the (a) TEM, (b) TM-,, and (c) TE) modes of a parallel plate waveguide. There is no variation across the width of the waveguide.

Page 26: Consider a Section of Air

26 Chapter 3: Transmission Lines and Waveguides

RECTANGULAR WAVEGUIDE

R ec t an g ul a r w av e gu i de s w e re o n e o f t h e e a rl i es t t y pe s of t r an sm i ss i on l i ne s u s ed t o t r an s po r t m i cr ow av e s i gn a ls a n d a r e s t i ll

Page 27: Consider a Section of Air

3.2 Parallel Plate Waveguide 27

u s ed t o da y f o r m an y a p pl i ca t io n s. A l a rg e v a ri e ty o f c om po -n e nt s s u ch a s c o up l er s , d e te c to r s, i s ol a to r s, a t te n ua t or s , a n d s l ot t ed l i ne s a r e c om me r ci a l l

Page 28: Consider a Section of Air

28 Chapter 3: Transmission Lines and Waveguides

y a v ai l ab l e f o r v a ri o us s t an d ar d w av e gu i de b a nd s f r om 1 G Hz t o o v er 2 2 0 G Hz . F i gu r e 3 . 6 s h ow s s om e o f t h e s t an d ar d r e ct a ng u la r w av e gu i de c om po n en t s

Page 29: Consider a Section of Air

3.2 Parallel Plate Waveguide 29

t h at a r e a v ai l ab l e. B ec a us e o f t h e r e ce n t t r en d t o wa r d m in i at u ri z at i on a n d i n te g ra t io n , a l o t o f m i cr ow av e c i rc u it r y i s c u rr e nt l y f a br i ca t ed u s in g p l an a r t r a

Page 30: Consider a Section of Air

30 Chapter 3: Transmission Lines and Waveguides

n sm i ss i on l i ne s , s u ch a s m i cr o st r ip a n d s t r ip l in e , r a th e r t h an w av e gu i de . T he r e i s , h ow ev e r, s t i ll a n e ed f o r w av e gu i de s i n m an y a p pl i ca t io n s s u ch a s h i g

Page 31: Consider a Section of Air

3.2 Parallel Plate Waveguide 31

h -p ow e r s y st e ms , m i ll i me t er w av e s y st e ms , a n d i n s om e p r ec i si o n t e st a p pl i ca t io n s.

Th e h o ll o w r e ct a ng u la r w av e gu i de c a n p r op a ga t e T M a n d T E m od e s, b u t

Page 32: Consider a Section of Air

32 Chapter 3: Transmission Lines and Waveguides

n o t T EM w av e s, s i nc e o n ly o n e c o nd u ct o r i s p r es e nt . W e w i ll s e e t h at t h e T M a n d T E m od e s o f a r e ct a ng u la r w av e gu i de h a ve c u to f f f r eq u en c ie s b e lo w w h ic h

Page 33: Consider a Section of Air

3.2 Parallel Plate Waveguide 33

p r op a ga t io n i s n o t p o ss i bl e , s i mi l a r t o t h e T M a n d T E m od e s o f t h e p a ra l le l p l at e g u id e .

TE Modes

T he g e om e tr y o f a r e ct a ng u la r w av e gu i de i s s h ow n i n F i gu r e 3 . 7

Page 34: Consider a Section of Air

34 Chapter 3: Transmission Lines and Waveguides

, w he r e i t i s a s su me d t h at t h e g u id e i s f i l le d w i th a m a te r ia l o f p e rm i tt i v it y e a n d p e rm ea b il i t y fi. I t i s s t an d ar d c o nv e nt i on t o h a ve t h e l o ng e st s i de o f

Page 35: Consider a Section of Air

3.2 Parallel Plate Waveguide 35

t h e w av e gu i de a l on g t h e x -a x is , s o t h at a > b.

Th e T E i n od e s a r e c h ar a ct e r iz e d b y f i e ld s w i th Ez = 0 , w h il e H, m us t s a ti s fy t h e r e du c ed w av e e q ua t io n o f ( 3 .2 1 )

Page 36: Consider a Section of Air

36 Chapter 3: Transmission Lines and Waveguides

:

/ 3 2 3 2

(373)

w i th H

z(x, y, z) =

hz(x, y)e~^z, a n d k2 = k2

— fi2 i s t h e c u to f f w av e nu mb e r. T he p a rt i a l d i ff e re n ti a l e q ua t io n o f ( 3 .7 3 ) c a n b e s o lv e d b y t h e m e th o d o f s e pa r a

Page 37: Consider a Section of Air

3.2 Parallel Plate Waveguide 37

t i on o f v a ri a bl e s b y l e t ti n g

Mjc, y) = X(x)Y(y),

a n d s u bs t i tu t in g i n to ( 3 .7 3 ) t o o b ta i n

1

d2

X

X

d

^2

Page 38: Consider a Section of Air
Page 39: Consider a Section of Air

3.3 Rectangular Waveguide 39

T h e g e n e r a l s o l u t i o n f o r hz c a n t h e n b e w r i t t e n a s

hz(x, y) = ( A coskxx + B s i n f c , j c ) ( C c o s kyy + D sinkyy). ( 3 . 7 8 )

T o e v a l u a t e t h e c o n s t a n t s i n ( 3 . 7 8 ) w e m u s t a p p l y t h e b o u n d a r y c o n d i t i o n s o n t h e e l e c t r i c f i e l d c o m p o n e n t s t a n g e n t i a l t o t h e w a v e g u i d e w a l l s . T h a t i s ,

e * ( j r , y ) = 0 , a t y = 0 , f > , ( 3 . 7 9 a )

ey(x, y) = 0 , a t ; r = 0 , a. ( 3 . 7 9 b )

W e t h u s c a n n o t u s e hz o f ( 3 . 7 8 ) d i r e c t l y , b u t m u s t f i r s t u s e ( 3 . 1 9 c ) a n d ( 3 . 1 9 d ) t o f i n d ex a n d ey f r o m hz:

ex = —TT~~ky(Acoiikxx + B sin kxx)(—C sin kyy + D cos kyy), (3.80a)kc

ey = — jT~kx(-A s i n kxx + B c o s kxx)(C c o s kyy + D s i n kyy). ( 3 . 8 0 b )

T h e n f r o m ( 3 . 7 9 a ) a n d ( 3 . 8 0 a ) , w e s e e t h a t D = 0 , a n d ky = nn/b f o r n — 0 , 1 , 2 _________________________________________________________________________F r o m ( 3 . 7 9 b ) a n d ( 3 . 8 0 b ) w e h a v e t h a t B = 0 a n d kx = mn/a f o r m = 0 , 1 , 2 ------------------------------------------------------------------------------------------------------T h ef i n a l s o l u t i o n f o r Hz i s t h e n

Hz(x, y,z) = Amn cos cos —-e~ iPz, (3.81)a b

w h e r e Amn i s a n a r b i t r a r y a m p l i t u d e c o n s t a n t c o m p o s e d o f t h e r e m a i n i n g c o n s t a n t s A a n d C o f ( 3 . 7 8 ) .

T h e t r a n s v e r s e f i e l d c o m p o n e n t s o f t h e T E m „ m o d e c a n b e f o u n d u s i n g ( 3 . 1 9 ) a n d ( 3 . 8 1 ) :

„ jeounn , mnx , nny ¡„r ,Ex = ■ 2 Am„ cos-sin -~r-e'jPc, (3.82a)k~b a b

„ -jcoumn , . mnx nny „Ey = ■—-z Amn sm - cos ——e jPz. (3.82b)kza a b.. jBmn . . mnx nny ___ vHx = —-—A„„ sm-cos —~e Jfiz, (3.82c)k*a a b

.. jBnn mnx . nny _________________Hy = —t-A^ cos sm —~e jPz. (3.82d)

' k-b a bT h e p r o p a g a t i o n c o n s t a n t i s

(MS)

w h i c h i s s e e n t o b e r e a l , c o r r e s p o n d i n g t o a p r o p a g a t i n g m o d e ,

w h e n

, , l/mn\2 . Snn\2

k > k ' = \ l ( — ) + ( t ) ■

E a c h m o d e ( c o m b i n a t i o n o f m a n d n) t h u s h a s a c u t o f f f r e q u e n c y fCmn g i v e n b y

, kc 1 /inns’2 /nn\2 .

Page 40: Consider a Section of Air

40 Chapter 3: Transmission Lines and Waveguides

fcm' = 2 j r v / / Z e = 2 ( v ) + ( t ) ’ }

Page 41: Consider a Section of Air

( 3 . 85 )

( 3 . 87 )

3.3 Rectangular Waveguide 41

T h e m o d e w i t h t h e l o w e s t c u t o f f f r e q u e n c y i s c a l l e d t h e d o m i n a n t m o d e ; s i n c e w e h a v e a s s u m e d a > b, t h e l o w e s t fc o c c u r s f o r t h e T E j o (m — \ ,n — 0) m o d e :

1fct o ~la*fjx€

T h u s t h e T E j o m o d e i s t h e d o m i n a n t T E m o d e a n d , a s w e w i l l s e e , t h e o v e r a l l d o m i n a n t m o d e o f t h e r e c t a n g u l a r w a v e g u i d e . O b s e r v e t h a t t h e f i e l d e x p r e s s i o n s f o r E a n d H i n ( 3 . 8 2 ) a r e a l l z e r o i f b o t h m = n — 0; t h u s t h e r e i s n o T E o o m o d e .

A t a g i v e n o p e r a t i n g f r e q u e n c y / , o n l y t h o s e m o d e s h a v i n g fc< f w i l l p r o p a g a t e ; m o d e s w i t h fc>f w i l l l e a d t o a n i m a g i n a r y fi ( o r r e a l a ) , m e a n i n g t h a t a l l f i e l d c o m p o n e n t s w i l l d e c a y e x p o n e n t i a l l y a w a y f r o m t h e s o u r c e o f e x c i t a t i o n . S u c h m o d e s a r e r e f e r r e d t o a s c u t o f f , o r evanescent, m o d e s . I f m o r e t h a n o n e m o d e i s p r o p a g a t i n g , t h e w a v e g u i d e i s s a i d t o b e overmoded.

F r o m ( 3 . 2 2 ) t h e w a v e i m p e d a n c e t h a t r e l a t e s t h e t r a n s v e r s e e l e c t r i c a n d m a g n e t i c f i e l d si s

w h e r e r] = v V / f i s t h e i n t r i n s i c i m p e d a n c e o f t h e m a t e r i a l f i l l i n g t h e w a v e g u i d e . N o t e t h a t Z j e i s r e a l w h e n fi i s r e a l ( a p r o p a g a t i n g m o d e ) , b u t i s i m a g i n a r y w h e n fi i s i m a g i n a r y ( a n e v a n e s c e n t m o d e ) .

T h e g u i d e w a v e l e n g t h i s d e f i n e d a s t h e d i s t a n c e b e t w e e n t w o e q u a l p h a s e p l a n e s a l o n g t h e w a v e g u i d e , a n d i s e q u a l t o

2* 2n g fi > k '

w h i c h i s t h u s g r e a t e r t h a n k, t h e w a v e l e n g t h o f a p l a n e w a v e i n t h e f i l l i n g m e d i u m . T h e p h a s e v e l o c i t y i s

( 3 . 8 8 )

w h i c h i s g r e a t e r t h a n 1 t h e s p e e d o f l i g h t ( p l a n e w a v e ) i n t h e f i l l i n g m a t e r i a l .

I n t h e v a s t m a j o r i t y o f a p p l i c a t i o n s t h e o p e r a t i n g f r e q u e n c y a n d g u i d e d i m e n s i o n s a r e c h o s e n s o t h a t o n l y t h e d o m i n a n t T E i o m o d e w i l l p r o p a g a t e . B e c a u s e o f t h e p r a c t i c a l i m p o r t a n c e o f t h e TEKi m o d e , w e w i l l l i s t t h e f i e l d c o m p o n e n t s a n d d e r i v e t h e a t t e n u a t i o n d u e t o c o n d u c t o r l o s s f o r t h i s c a s e .

S p e c i a l i z i n g ( 3 . 8 1 ) a n d ( 3 . 8 2 ) t o t h e m = 1 , n = 0 c a s e g i v e s t h e f o l l o w i n g r e s u l t s f o r t h e T E t o m o d e f i e l d s :

illW ,

kr)

J '

Z *=t = ( 3 . 8 6)

Page 42: Consider a Section of Air

y-

rh

x=0 J y~

cofxa'

c o / z a 3 | A | o |

2 f c ,

42 Chapter 3: Transmission Lines and Waveguides

I n a d d i t i o n , f o r t h e T E j o m o d e ,

kc = n/a, (3.90)

a n d p = s/k2-{Ti/a)2.

( 3 . 9 1 )

T h e p o w e r f l o w d o w n t h e g u i d e f o r t h e T E m m o d e i s c a l c u l a t e d a s

rbPw=\tef f E x H* • z dy dx

2 Jx=0 Jy=0

= \ef f EyH* dy dx £ Jx=0 Jy=0

2 pa fb _— R e ( ^ ) l A i o t /

s i n 2 —dy dxJx=0 JyssO ^

R e ( y S ) . ( 3 . 9 2 )47T2

N o t e t h a t t h i s r e s u l t g i v e s n o n z e r o r e a l p o w e r o n l y w h e n fi i s r e a l , c o r r e s p o n d i n g t o a p r o p a g a t i n g m o d e .

A t t e n u a t i o n i n a r e c t a n g u l a r w a v e g u i d e c a n o c c u r b e c a u s e o f d i e l e c t r i c l o s s o r c o n d u c t o r l o s s . D i e l e c t r i c l o s s c a n b e t r e a t e d b y m a k i n g e c o m p l e x a n d u s i n g a T a y l o r s e r i e s a p p r o x i m a t i o n , w i t h t h e g e n e r a l r e s u l t g i v e n i n ( 3 . 2 9 ) .

C o n d u c t o r l o s s i s b e s t t r e a t e d u s i n g t h e p e r t u r b a t i o n m e t h o d . T h e p o w e r l o s t p e r u n i t l e n g t h d u e t o f i n i t e w a l l c o n d u c t i v i t y i s , f r o m ( 1 . 1 3 1 ) ,

Pi = y j f \Js\lde, ( 3 . 9 3 )

w h e r e Rs i s t h e w a l l s u r f a c e r e s i s t a n c e , a n d t h e i n t e g r a t i o n c o n t o u r C e n c l o s e s t h e p e r i m e t e r o f t h e g u i d e w a l l s . T h e r e a r e s u r f a c e c u r r e n t s o n a l l f o u r w a l l s , b u t f r o m s y m m e t r y t h e c u r r e n t s o n t h e t o p a n d b o t t o m w a l l s a r e i d e n t i c a l , a s a r e t h e c u r r e n t s o n t h e l e f t a n d r i g h t s i d e w a l l s . S o w e c a n c o m p u t e t h e p o w e r l o s t i n t h e w a l l s a t x = 0 a n d y = 0 a n d d o u b l e t h e i r s u m t o o b t a i n t h e t o t a l p o w e r l o s s . T h e s u r f a c e c u r r e n t o n t h e x = 0 ( l e f t ) w a l l i s

I = n x R\x=0 = - i x 2 / ^ = 0 = = -yAwe~mt ( 3 . 9 4 a )

w h i l e t h e s u r f a c e c u r r e n t o n t h e y = 0 ( b o t t o m ) w a l l i s

Js-hx H\y=0 = 5* x 4 - lHt | > = 0 )= — z^-^-A\Q s i n — e~^z - I - i A i o C O S — ( 3 . 9 4 b )

tc a a

Substituting (3.94) into (3.93) gives

rb paPe = R, I \Jsy\2dy + Rs [|i„|2 + \Jsz\2]dx Jy=0

Jir=0

Page 43: Consider a Section of Air

3.3 Rectangular Waveguide 43

= * | A 10|2 ( * + ! + £ £ ) . ( 3 . 9 5 )

Page 44: Consider a Section of Air

( 3 . 96 )

( 3 . 97 )

E z (x, y, z) = B mn sin ( 3 . 1 00 )

mux . nny ------sin —— e JPZ,

—jfimn mrrxc jr........... D .......... ■ n*y —jfiz

Ex =---------r—B„„ cos ----------sin —e lp i

akt

w h e r e Bmn i s a n a r b i t r a r y a m p l i t u d e c o n s t a n t .T h e t r a n s v e r s e f i e l d c o m p o n e n t s f o r t h e T M „ „ m o d e c a n b e

c o m p u t e d f r o m ( 3 . 2 3 ) a n d ( 3 . 1 0 0 ) a s

44 Chapter 3: Transmission Lines and Waveguides

T h e a t t e n u a t i o n d u e t o c o n d u c t o r l o s s f o r t h e T E j o m o d e i s t h e n

P t 2n2Rs(b+a/2 +p2a3/2x2)ac =

2P.0

(2bn i -f ar'k1) Np/m.a^bfikr}

TM ModesT h e T M m o d e s a r e c h a r a c t e r i z e d b y f i e l d s w i t h Hz = 0 , w h i l e Ez m u s t s a t i s f y t h e r e d u c e d w a v e e q u a t i o n o f ( 3 . 2 5 ) :

W + w+K)‘Ax':')= ■w i t h Ez(x, y, z) = ez(x, y)e~^z a n d k2 = k2 — fi2. E q u a t i o n ( 3 . 9 7 ) c a n b e s o l v e d b y t h e s e p a r a t i o n o f v a r i a b l e s p r o c e d u r e t h a t w a s u s e d f o r t h e T E m o d e s . T h e g e n e r a l s o l u t i o n i s t h e n

ez(x, y) = ( A c o s kxx + B s i n kxx)(C c o s kyy + D s i n kyy). ( 3 . 9 8 )

T h e b o u n d a r y c o n d i t i o n s c a n b e a p p l i e d d i r e c t l y t o e, :

e z ( j : , y ) = : 0 , a t j c = 0 , a, ( 3 . 9 9 a )

e z ( j c , > ’ ) = 0 , a t y = 0 , b. ( 3 . 9 9 b )

W e w i l l s e e t h a t s a t i s f a c t i o n o f t h e a b o v e c o n d i t i o n s o n e. w i l l l e a d t o s a t i s f a c t i o n o f t h e b o u n d a r y c o n d i t i o n s b y ex a n d ey.

A p p l y i n g ( 3 . 9 9 a ) t o ( 3 . 9 8 ) s h o w s t h a t A = 0 a n d kx = mji/a, f o r m = 1 , 2 , 3 _______________________________________________________________________

S i m i l a r l y , a p p l y i n g ( 3 . 9 9 b ) t o ( 3 . 9 8 ) s h o w s t h a t C = 0 a n d ky = nn/b. f o r n = 1 . 2 . 3 _____________________________________________________________T h e s o l u t i o n f o r Ez t h e n r e d u c e s t o

Page 45: Consider a Section of Air

18

1

/ o n —

( 3 . 1 0 4)

3.3 Rectangular Waveguide 45

0.5- 1 1 TEio

- 1 1 fc = a/2 TM,,_ te10

b = a, b - a

TE.o

cuioff TM,,1

.1 .cutoff T

1 1 l

cutoff̂

1 1 1 1 1 1

FIGURE 3.8 Attenuation of various modes in a rectangular brass waveguide with a = 2.0 cm.

a n d i s r e a l f o r p r o p a g a t i n g m o d e s , a n d i m a g i n a r y f o r e v a n e s c e n t

m o d e s . T h e c u t o f f f r e q u e n c y f o r t h e T M m „ m o d e s i s a l s o t h e s a m e

a s t h a t o f t h e T E m „ m o d e s , a s g i v e n i n ( 3 . 8 4 ) . T h e g u i d e

w a v e l e n g t h a n d p h a s e v e l o c i t y f o r T M m o d e s a r e a l s o t h e s a m e a s t h o s e f o r T E m o d e s .

O b s e r v e t h a t t h e f i e l d e x p r e s s i o n s f o r E a n d H i n ( 3 . 1 0 1 ) a r e i d e n t i c a l l y z e r o i f e i t h e r m o r n i s z e r o . T h u s t h e r e a r e n o T M o o , T M o i , o r T M t o m o d e s , a n d t h e l o w e s t o r d e r T M m o d e t o p r o p a g a t e ( l o w e s t fc) i s t h e T M | i m o d e , h a v i n g a c u t o f f f r e q u e n c y o f

( 3 . 1 0 3 )

w h i c h i s s e e n t o b e l a r g e r t h a n fCm f o r t h e c u t o f f f r e q u e n c y o f t h e T E i o m o d e .

T h e w a v e i m p e d a n c e r e l a t i n g t h e t r a n s v e r s e e l e c t r i c a n d m a g n e t i c f i e l d s i s , f r o m

( 3 . 2 6 ) ,

Ex ~Ey P1)

A t t e n u a t i o n d u e t o d i e l e c t r i c l o s s i s c o m p u t e d i n t h e s a m e w a y a s f o r t h e T E m o d e s , w i t h t h e s a m e r e s u l t . T h e c a l c u l a t i o n o f a t t e n u a t i o n d u e t o c o n d u c t o r l o s s i s l e f t a s a p r o b l e m ;

0.4

0.3

8 0.2

0.1

10 12 14

Frequency (GHz)

16

Page 46: Consider a Section of Air

46 Chapter 3: Transmission Lines and Waveguides

F i g u r e 3 . 8 s h o w s t h e a t t e n u a t i o n v e r s u s f r e q u e n c y f o r s o m e T E a n d T M m o d e s i n a r e c t a n g u l a r w a v e g u i d e . T a b l e 3 . 2 s u m m a r i z e s r e s u l t s f o r T E a n d T M w a v e p r o p a g a t i o n i n

Q u a n t i t y T E , „ „ M o d e T M „ , M o d e

k (Dy/fÜ

kc yj(mn/a)2 + (nn/b)2 y/(mn/a)7 + (nn/b)2

P s/V-V

2j r In

Kc K kc

271 2n

p P

*>P a) f t )P P

k2 t a n < 5 Ip k2 t a n â 2p

Ez 0 _ . mnx . nny ,RBmn s m -----s i n —-—e JP

a b

Hi mnx nnyAm„ c o s ----c o s ——e ,p

a b0

E, k¿b a b —jBmn mnx . nny— 7; - - -Bm„ c o s -----s i n

k~a a b

F —jiofimn , mnx nny —jBnn „ . mnx nnyBm„ s i n ----c o s —Le->H

k]b a bkfa a b

H, jPmn . . mnx nnyAm„ s » n c o s e m k2a a b

jcoenn n . mnx nny _Bm„ s i n ----c o s

kfb a b

u jpnn mnx . nny— — A „ , „ c o s - s i n — « m

k2b a b

—júKmn mnx . nny- — — - -Bmn c o s -- - - s i n -e m

kfa a bnyZ

*.-! ¡

z -fin ™ " T

Solution

Page 47: Consider a Section of Air

C o m p u t i n g fc f o r t h e f i r s t f e w v a l u e s o f m a n d n g i v e s

Mode m n /.(GHz)T E i 0 9 . 7 2T E 2 0 1 9 . 4 4

T E 0 1 2 4 . 1 9

T E , T M 1 1 2 6 . 0 7

T E , T M 2 1 3 1 . 0 3

3.3 Rectangular Waveguide 47

F r o m A p p e n d i x G , f o r T e f l o n , er = 2 . 0 8 a n d t a n S = 0 . 0 0 0 4 . F r o m ( 3 . 8 4 ) t h e c u t o f f f r e q u e n c i e s a r e g i v e n b y

Page 48: Consider a Section of Air

114

Ch

ap

ter 3

: Tran

smiss

ion

Lin

es an

d W

aveg

uid

es

FIGURE 3.9 Field lines for some of the lower order modes of a rectangular waveguide.Reprinted with permission from Fields and Waves in Communication Electronics, S. Ramo, J.R. Whinnery, and T. Van Duzer. Copyright © 1965 by John Wiley & Sons, Inc. Table 8.02.

Page 49: Consider a Section of Air

- iP =

( 3 . 1 0 5a )

( 3 . 1 0 5b )

3.3 Rectangular Waveguide 49

T h u s t h e T E i o , T E 20, T E 01, T E n , a n d T M n m o d e s w i l l b e t h e f i r s t f i v e m o d e s t o p r o p a g a t e .

A t 1 5 G H z , k — 3 4 5 . 1 m - 1 , a n d t h e p r o p a g a t i o n c o n s t a n t f o r t h e T E j o m o d e

i s

345.1 m

TEmo Modes of a Partially Loaded Waveguide

T h e a b o v e r e s u l t s a l s o a p p l y f o r a r e c t a n g u l a r w a v e g u i d e f i l l e d w i t h a h o m o g e n e o u s d i e l e c t r i c o r m a g n e t i c m a t e r i a l , b u t i n m a n y c a s e s o f p r a c t i c a l i n t e r e s t ( s u c h a s i m p e d a n c e m a t c h i n g o r p h a s e - s h i f t i n g s e c t i o n s ) a w a v e g u i d e i s u s e d w i t h o n l y a p a r t i a l f i l l i n g . T h e n a n a d d i t i o n a l s e t o f b o u n d a r y c o n d i t i o n s a r e i n t r o d u c e d a t t h e m a t e r i a l i n t e r f a c e , n e c e s s i t a t i n g a n e w a n a l y s i s . T o i l l u s t r a t e t h e t e c h n i q u e w e w i l l c o n s i d e r t h e T E m o m o d e s o f a r e c t a n g u l a r w a v e g u i d e t h a t i s p a r t i a l l y l o a d e d w i t h a d i e l e c t r i c s l a b , a s s h o w n i n F i g u r e 3 . 1 0 . T h e a n a l y s i s s t i l l f o l l o w s t h e b a s i c p r o c e d u r e o u t l i n e d a t t h e e n d o f S e c t i o n 3 . 1 .

S i n c e t h e g e o m e t r y i s u n i f o r m i n t h e y d i r e c t i o n a n d n — 0, t h e T E m0 m o d e s h a v e n o y d e p e n d e n c e . T h e n t h e w a v e e q u a t i o n o f ( 3 . 2 1 ) f o r h, c a n b e w r i t t e n s e p a r a t e l y f o r t h e d i e l e c t r i c a n d a i r r e g i o n s a s

(Jl~2 + = 0, f o r 0 < x < r ,

(¿2 +^)A*=0’ for t < x < a,

w h e r e kd a n d ka a r e t h e c u t o f f w a v e n u m b e r s f o r t h e d i e l e c t r i c a n d a i r r e g i o n s , d e f i n e d a s

\

F r o m ( 3 . 2 9 ) , t h e a t t e n u a t i o n d u e t o

d i e l e c t r i c l o s s i s k2 t a n S-- 0 . 1 1 9 n p / m = 1 . 0 3 d B / i u .2p

T h e s u r f a c e r e s i s t i v i t y o f t h e c o p p e r w a l l s i s (a = 5 . 8 x 1 0 7 S / m )

R,= 0 . 0 3 2 Í 2 ,

a n d t h e a t t e n u a t i o n d u e t o c o n d u c t o r l o s s , f r o m ( 3 . 9 6 ) , i s

( 2 bn1 + a^k2) = 0 . 0 5 0 n p / m = 0 . 4 3 4 d B / m .a 3 bfikti

a d =

- Í 02 a

=

Page 50: Consider a Section of Air

3.3 Rectangular Waveguide 50

Page 51: Consider a Section of Air

51 Chapter 3: Transmission Lines and Waveguides

f o l l o ws :

h, = ( 3 . 1 07 )

JCOjlQ

kd

j(0flQ

k a

( 3 . 1 08 )

( 3 . 1 09 )

( 3 . 1 0 6 a )

( 3 . 1 0 6 b )

T h e s e r e l a t i o n s i n c o r p o r a t e t h e f a c t t h a t t h e p r o p a g a t i o n c o n s t a n t , fi, m u s t b e t h e s a m e i n b o t h r e g i o n s t o e n s u r e p h a s e m a t c h i n g o f t h e f i e l d s a l o n g t h e i n t e r f a c e a t x = t. T h e s o l u t i o n s t o ( 3 . 1 0 5 ) c a n b e w r i t t e n a s

A c o s kj,x + B s i n kjx f o r 0 < x < t

C cos ku(a — x) 4- D sinka(a — x) for t < x < a.

w h e r e t h e f o r m o f t h e s o l u t i o n f o r t < x < a w a s c h o s e n t o s i m p l i f y t h e e v a l u a t i o n o f b o u n d a r y c o n d i t i o n s a t x = a.

N o w w e n e e d y a n d z f i e l d c o m p o n e n t s t o a p p l y t h e b o u n d a r y c o n d i t i o n s a t x = 0 , t, a n d a. Ez= 0 f o r T E m o d e s , a n d Hy = 0 s i n c e d/dy ~ 0 . Ey i s f o u n d f r o m ( 3 . 1 9 d ) a s

[ — A s i n kdx + B c o s / t ^ j : ] f o r 0 < x < t

[C sin£fl(fl — x) — Dco$ka(a —-v)J for t < x < a.

T o s a t i s f y t h e b o u n d a r y c o n d i t i o n s t h a t Ey = 0 a t x = 0 a n d x = a r e q u i r e s t h a t B =

D = 0 . N e x t w e m u s t e n f o r c e c o n t i n u i t y o f t a n g e n t i a l f i e l d s ( Ey , H?) a t x = t. E q u a t i o n s ( 3 . 1 0 7 ) a n d ( 3 . 1 0 8 ) t h e n g i v e t h e f o l l o w i n g :

-A . , C . ,— — s i n ^ f = — s i n ka(a — t), kd ka

A cos kdt = C cos ka(a — t).

S i n c e t h i s i s a h o m o g e n e o u s s e t o f e q u a t i o n s , t h e d e t e r m i n a n t m u s t v a n i s h i n o r d e r t o h a v e a n o n t r i v i a l s o l u t i o n . T h u s ,

ka t a n kdt + kd t a n ka(a — t) = 0.

U s i n g ( 3 . 1 0 6 ) a l l o w s ka a n d kd t o b e e x p r e s s e d i n t e r m s o f / ? , s o ( 3 . 1 0 9 ) c a n b e s o l v e d n u m e r i c a l l y f o r p. T h e r e i s a n i n f i n i t e n u m b e r o f s o l u t i o n s t o ( 3 . 1 0 9 ) , c o r r e s p o n d i n g t o t h e p r o p a g a t i o n c o n s t a n t s o f t h e T E m o m o d e s .

T h i s t e c h n i q u e c a n b e a p p l i e d t o m a n y o t h e r w a v e g u i d e g e o m e t r i e s i n v o l v i n g d i e l e c t r i c o r m a g n e t i c i n h o m o g e n e i t i e s , s u c h a s t h e s u r f a c e w a v e g u i d e o f S e c t i o n 3 . 6 o r t h e f e r r i t e - l o a d e d w a v e g u i d e o f S e c t i o n 9 . 3 . I n s o m e c a s e s , h o w e v e r , i t w i l l b e i m p o s s i b l e t o s a t i s f y a l l t h e n e c e s s a r y b o u n d a r y c o n d i t i o n s w i t h o n l y T E - o r T M - t y p e m o d e s , a n d a h y b r i d

c o m b i n a t i o n o f b o t h t y p e s o f m o d e s w i l l b e r e q u i r e d .

POINT OF INTEREST: Waveguide Flanges

There are two commonly used waveguide flanges: the cover flange and the choke flange. As shown in the figure, two waveguides with cover-type flanges can be bolted together to form a contacting joint.

To avoid reflections and resistive loss at this joint, it is necessary that the contacting surfaces be smooth, clean, and square, because RF currents must flow across this discontinuity. In high-power applications voltage breakdown may occur at this joint. Otherwise, the simplicity of the cover-to-cover connection makes it preferable for general use. The SWR from such a joint is typically less than 1.03.

Page 52: Consider a Section of Air

FIGURE 3.11 Geometry of a circular waveguide.

An alternative waveguide connection uses a cover flange against a choke flange, as shown in the figure. The choke flange is machined to form an effective radial transmission line in the narrow gap between the two flanges; this line is approximately As/4 in length between the guide and the point of contact for the two flanges. Another kg/4 line is formed by a circular axial groove in the choke flange. So the short circuit at the right-hand end of this groove is transformed to an open circuit at the contact point of the flanges. Any resistance in this contact is in series with an infinite (or very high) impedance and thus has little effect. Then this high impedance is transformed back to a short circuit (or very low impedance) at the edges of the waveguides, to provide an effective low-resistance path for current flow across the joint Since there is a negligible voltage drop across the ohmic contact between the flanges, voltage breakdown is avoided. Thus, the cover-to- choke connection can be useful for high-power applications. The SWR for this joint is typically less than l .05, but is more frequency dependent than the cover-to-cover joint.

Reference: C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits, McGraw-Hill, New York, 1948.

CIRCULAR WAVEGUIDE

A h o l l o w m e t a l t u b e o f c i r c u l a r c r o s s s e c t i o n a l s o s u p p o r t s T E a n d T M w a v e g u i d e m o d e s . F i g u r e 3 . 1 1 s h o w s t h e c r o s s - s e c t i o n g e o m e t r y o f s u c h a c i r c u l a r w a v e g u i d e o f i n n e r r a d i u s a.

Cover-to-cover Cover-to-chokeconnection connection

Page 53: Consider a Section of Air

3.4 Circular Waveguide 53

Page 54: Consider a Section of Air

Chapter 3: Transmission Lines and Waveguides

S i n c e a c y l i n d r i c a l g e o m e t r y i s i n v o l v e d , i t i s a p p r o p r i a t e t o e m p l o y c y l i n d r i c a l c o o r d i n a t e s . A s i n t h e r e c t a n g u l a r c o o r d i n a t e c a s e , t h e t r a n s v e r s e f i e l d s i n c y l i n d r i c a l c o o r d i n a t e s c a n b e d e r i v e d f r o m Ez o r Hz f i e l d c o m p o n e n t s , f o r T M a n d T E m o d e s , r e s p e c t i v e l y . P a r a l l e l i n g t h e d e v e l o p m e n t o f S e c t i o n 3 . 1 , t h e c y l i n d r i c a l c o m p o n e n t s o f t h e t r a n s v e r s e f i e l d s c a n b e d e r i v e d f r o m t h e l o n g i t u d i n a l c o m p o n e n t s a s

( 3 ' 1 1 0 W

j (axdEz dHz\ „Hp = {¿{—TZ-P-T1)' (31l0c>

kl\ p d<t> dp )

I, ~j ( dEz P d Hz ^“'“«("17+P~S*)’ aim)

w h e r e k2 — k2 — fi2, a n d p r o p a g a t i o n h a s b e e n a s s u m e d . F o r e+1^z p r o p a g a t i o n , r e p l a c e w i t h — i n a l l e x p r e s s i o n s .

TE Modes

F o r T E m o d e s , Ez = 0 , a n d Hz i s a s o l u t i o n t o t h e w a v e e q u a t i o n ,

V2Hz + k2Hz = 0. (3.111)

I f Hz{p, <f>, z ) = hz(p, 4>)e~iPz, ( 3 . 1 1 1 ) c a n b e e x p r e s s e d i n c y l i n d r i c a l

c o o r d i n a t e s a s

/ 3 2 1 9 1 d2 2\ „(s?+;rP + ? i 5 ? + * ? ) w ' , ' w = 0 - ( 3 'm )

A g a i n , a s o l u t i o n c a n b e d e r i v e d u s i n g t h e m e t h o d o f s e p a r a t i o n o f v a r i a b l e s .

T h u s , w e l e t

hz(p,<t>) = R(p)P(</>), (3.113)

a n d s u b s t i t u t e i n t o ( 3 . 1 1 2 ) t o o b t a i n1 d2R 1 dR 1 d2P , , „ „ „ , ,

+ — — + ^ — — - r + ^ 2= 0 , ( 3 . 1 1 4 )R dp2 pR dp p2P d<f>2c orp2d2R p dR ,,, -1 d2P— h —--1- o k = -R dp2 R dp c P dtp2'

T h e l e f t s i d e o f t h i s e q u a t i o n d e p e n d s o n p ( n o t < / > ) , w h i l e t h e r i g h t s i d e d e p e n d s o n l y o n 4>. T h u s , e a c h s i d e m u s t b e e q u a l t o a c o n s t a n t , w h i c h w e w i l l c a l l ki. T h e n ,

Page 55: Consider a Section of Air

3.4 Circular Waveguide 55

T h e g e n e r a l s o l u t i o n t o ( 3 . 1 1 5 ) i s

P(4>) = A sin k,p<p -I- B cos k,),4>. (3.117)

S i n c e t h e s o l u t i o n t o hz m u s t b e p e r i o d i c i n 0 ( t h a t i s , hz(p, <p) = hz(p, <p ± k#

m u s t b e a n i n t e g e r , n. T h u s ( 3 . 1 1 7 ) b e c o m e s

P((f>) = A sin ncp + B cos ntp, (3.118)

w h i l e ( 3 . 1 1 6 ) b e c o m e s

p2^-^ + p^-+ (p2k2 - n2) R = 0, (3.119)dp2 dp ' '

w h i c h i s r e c o g n i z e d a s B e s s e l ’ s d i f f e r e n t i a l e q u a t i o n . T h e s o l u t i o n i s

R(p) = CJn(kcp) + DY„(kcp), (3.120)

w h e r e J„(x) a n d Yn{x) a r e t h e B e s s e l f u n c t i o n s o f f i r s t a n d s e c o n d k i n d s , r e s p e c t i v e l y . S i n c e Y„(kcp) b e c o m e s i n f i n i t e a t p ~ 0 , t h i s t e r m i s p h y s i c a l l y u n a c c e p t a b l e f o r t h e c i r c u l a r w a v e g u i d e p r o b l e m , s o t h a t D = 0 . T h e s o l u t i o n f o r hz c a n t h e n b e w r i t t e n a s

hz(p, <f>) = (A sinn# + B cosn<j>)J„(kcp), (3.121)

w h e r e t h e c o n s t a n t C o f ( 3 . 1 2 0 ) h a s b e e n a b s o r b e d i n t o t h e c o n s t a n t s A a n d B o f ( 3 . 1 2 1 ) . W e m u s t s t i l l d e t e r m i n e t h e c u t o f f w a v e n u m b e r kc, w h i c h w e c a n d o b y e n f o r c i n g t h e b o u n d a r y c o n d i t i o n t h a t E t a r i = 0 o n t h e w a v e g u i d e w a l l . S i n c e E, = 0 , w e m u s t h a v e t h a t

E<t>(P,<t>) = 0, at p = a . (3.122)

F r o m ( 3 . 1 1 0 b ) , w e f i n d E# f r o m H, a s

E<fi(p-(t>' z) = ~¡T"(^ sin«0 + B cos n<f>)J'n(kcp)e~ iPz, (3.123)

w h e r e t h e n o t a t i o n J'n(kcp) r e f e r s t o t h e d e r i v a t i v e o f . / „ w i t h r e s p e c t t o i t s a r g u m e n t . F o r £0 t o v a n i s h a t p = a , w e m u s t h a v e

J'n(kca) = 0. (3.124)

I f t h e r o o t s o f J'n(x) a r e d e f i n e d a s p'nm, s o t h a t J'n{p'nm) = 0 , w h e r e p'nm i s t h e m t h r o o t o f t h e n kc m u s t h a v e t h e v a l u e

= ( 3 . 1 2 5 )a

V a l u e s o f p'nm a r e g i v e n i n m a t h e m a t i c a l t a b l e s ; t h e f i r s t f e w v a l u e s a r e l i s t e d i n T a b l e 3 . 3 .

T h e T E „ m m o d e s a r e t h u s d e f i n e d b y t h e c u t o f f w a v e n u m b e r , kCnm = p'nm/a, w h e r e n r e f e r s t o t h e n u m b e r o f c i r c u m f e r e n t i a l ( < / > ) v a r i a t i o n s , a n d m r e f e r s t o t h e

n u m b e r o f r a d i a l

TABLE 33 Values of p'^ for TE Modes of a Circular Waveguide

" Pnl Pti2 Pn3

3.832

1.841

3.054

7.016

5.331

6.706

10.174

8.536

9.970

012

Page 56: Consider a Section of Air

56 Chapter 3: Transmission Lines and Waveguides

( / o ) v a r i a t i o n s . T h e p r o p a g a t i o n c o n s t a n t o f t h e T E „ „ m o d e i s

finm = J k t - k i = jlc* - , (3.126)

w i t h a c u t o f f f r e q u e n c y o f

fc = - k' = — ^ 5 - " — . ( 3 . 1 2 7 )JCnm InJJLe lnajjlc

T h e f i r s t T E m o d e t o p r o p a g a t e i s t h e m o d e w i t h t h e s m a l l e s t p'nm, w h i c h f r o m T a b l e 3 . 3 i s s e e n t o b e t h e T E | i m o d e . T h i s m o d e i s t h e n t h e d o m i n a n t c i r c u l a r w a v e g u i d e m o d e , a n d t h e o n e m o s t f r e q u e n t l y u s e d . B e c a u s e m > 1 , t h e r e i s n o T E i o m o d e , b u t t h e r e i s a T E o i m o d e .

T h e t r a n s v e r s e f i e l d c o m p o n e n t s a r e , f r o m ( 3 . 1 1 0 ) a n d ( 3 . 1 2 1 ) ,

Ep = n ( A c o s n<p — B s i n n<J>) Jn ( kcp) e~^z, ( 3 . 1 2 8 a )k-p

E<j, — (A s i n « 0 + B c o s nip) J'n(kcp)e~ ; / 3 j , ( 3 . 1 2 8 b )Kc

Hp = —j—(A sin nip + B cosn<p)J'n(kcp)e~^1, (3.128c)kc

H$ = - jy—(A c o s nip - B s i n ntp)J„(kcp)e~^z. ( 3 . 1 2 8 d )"f P

T h e w a v e i m p e d a n c e i s

= S = ^ * ( 3 1 2 9 )n<t> Hp p

I n t h e a b o v e s o l u t i o n s t h e r e a r e t w o r e m a i n i n g a r b i t r a r y a m p l i t u d e c o n s t a n t s , A a n d B. T h e s e c o n s t a n t s c o n t r o l t h e a m p l i t u d e o f t h e s i n nip a n d c o s n<p t e r m s , w h i c h a r e i n d e p e n d e n t . T h a t i s , b e c a u s e o f t h e a z i m u t h a l s y m m e t r y o f t h e c i r c u l a r w a v e g u i d e , b o t h t h e s i n nip a n d c o s n<p t e r m s a r e v a l i d s o l u t i o n s , a n d c a n b e p r e s e n t i n a s p e c i f i c p r o b l e m t o a n y d e g r e e . T h e a c t u a l a m p l i t u d e s o f t h e s e t e r m s w i l l b e d e p e n d e n t o n t h e e x c i t a t i o n o f t h e w a v e g u i d e . F r o m a d i f f e r e n t v i e w p o i n t , t h e c o o r d i n a t e s y s t e m c a n b e r o t a t e d a b o u t t h e z - a x i s t o o b t a i n a n w i t h e i t h e r A = 0 o r B = 0 .

N o w c o n s i d e r t h e d o m i n a n t T E i i m o d e w i t h a n e x c i t a t i o n s u c h t h a t B = 0 . T h e f i e l d s c a n b e w r i t t e n a s

Hz = A sin ip Ji(kcp)e tt>z. ( 3 . 1 3 0 a )

Ep = / 2 — A c o s ip J\ (kcp)e~iP\ kcp ( 3 . 1 3 0 b )

E# = ^—A sm<pJ[(kcp)e~iPz, kc ( 3 . 1 3 0 c )

Hp = -~-A s i n <pJ[(kcp)e~^\Kc

( 3 . 1 3 0 d )

H# = — ^ A c o s (pJi (kcp)e~Jfiz, ( 3 . 1 3 0 e )

Ez = 0 . ( 3 . 1 3 0 0

Page 57: Consider a Section of Air

ntofi\A\2 k*

( 3 . 1 31 )4 kj

o r r —

( 3 . 1 33 )

( 3 . 1 3 4)

( 3 . 1 3 5)

3.4 Circular Waveguide 57

\^J' (kcP) + ^cJl2^] JP

j r w / x | i 4 | 2R e ( £ )( P i t - 0 J i M ,

w h i c h i s s e e n t o b e n o n z e r o o n l y w h e n p i s r e a l , c o r r e s p o n d i n g t o a p r o p a g a t i n g m o d e . ( T h e r e q u i r e d i n t e g r a l f o r t h i s r e s u l t i s g i v e n i n A p p e n d i x C . )

A t t e n u a t i o n d u e t o d i e l e c t r i c l o s s i s g i v e n b y ( 3 . 2 9 ) . T h e a t t e n u a t i o n d u e t o a l o s s y w a v e g u i d e c o n d u c t o r c a n b e f o u n d b y c o m p u t i n g t h e p o w e r l o s s

p e r u n i t l e n g t h o f g u i d e :

T h e a t t e n u a t i o n c o n s t a n t i s t h e n

P( _ Rs (k^a2 + P2)2 P„ Tjkpciipfi - 1)

= ~ZLâ(ke + ~à .)NP/m-akrjp V / > , , — ! /

TM ModesF o r t h e T M m o d e s o f t h e c i r c u l a r w a v e g u i d e , w e m u s t s o l v e f o r Ez f r o m t h e w a v e e q u a t i o n i n c y l i n d r i c a l c o o r d i n a t e s :

/a2 13 1 a2 i2\ \»?+~pVe + 7'W+ K)‘‘ '

w h e r e Ez(p, tp, z) = ez(p, tp)e~lfil, a n d k2 = k2 — p2. S i n c e t h i s e q u a t i o n i s i d e n t i c a l t o ( 3 . 1 0 7 ) , t h e g e n e r a l s o l u t i o n s a r e t h e s a m e . T h u s , f r o m ( 3 . 1 2 1 ) ,

ez(p,tP) = (A sin ntp + B cos ntP)J„{kcp).

jp=oJ<f>=

COII\A\2RC(P) r f[4-Jp=oJ<p=o IP

ri\k cP )^p dtp dp

2k*

T h e p o w e r f l o w d o w n t h e g u i d e c a n b e c o m p u t e d a s

P 0 = -Re I E x H m ■ ip dtp dp2 J p=oJ 0=0

= ^Re f r [EPH; - E*H;]pd<pdp£ J p=oJ<b=&

c o s / <pJ{(kcp) H - k2 s i n 2 < ? * > . / ,

Jr(k c a)a dtp

( 3 . 1 3 2)

J,(k c a).

R f= ~ f \l\ 2 ad<p ~ J 0=0

= T r [\H*\ 2 + \H z \ 2 ]adtp |A|2/?, f2*

[ p2 2 . 2 '

=—LI*FCOS

_ 7rlA\ 2 R s a / P 2 \2 V

Page 58: Consider a Section of Air

( 3 . 1 39 )

58 Chapter 3: Transmission Lines and Waveguides

TABLE 3.4 Values of pnm for TM Modes of a Circular Waveguide

n Pn\ Pnl Pn 3

0 2 . 4 0 5 5 . 5 2 0 8 . 6 5 4

i 3 . 8 3 2 7 . 0 1 6 1 0 . 1 7 4

2 5 . 1 3 5 8 . 4 1 7 1 1 . 6 2 0

T h e d i f f e r e n c e b e t w e e n t h e T E s o l u t i o n a n d t h e p r e s e n t s o l u t i o n i s t h a t t h e b o u n d a r y c o n d i t i o n s c a n n o w b e a p p l i e d d i r e c t l y t o et o f ( 3 . 1 3 5 ) , s i n c e

w h e r e pnm i s t h e w i t h r o o t o f J„(x)\ t h a t i s , = 0 . V a l u e s o f pnm a r e g i v e n i nm a t h e m a t i c a l t a b l e s ; t h e f i r s t f e w v a l u e s a r e l i s t e d i n T a b l e 3 . 4 .T h e p r o p a g a t i o n c o n s t a n t o f t h e T M n m m o d e i s

ftim — \Jk~ ~ — s/k~ — {p„m ¡O-Ÿ■

T h e c u t o f f f r e q u e n c y i s

kc

( 3 . 1 4 0 )2 n^/Jie

T h u s , t h e f i r s t T M m o d e t o p r o p a g a t e i s t h e T M o i m o d e , w i t h p o i = 2 . 4 0 5 . S i n c e t h i s i s g r e a t e r t h a n p'n = 1 . 8 4 1 o f t h e l o w e s t o r d e r T E n m o d e , t h e T E n m o d e i s t h e d o m i n a n t m o d e o f t h e c i r c u l a r w a v e g u i d e . A s w i t h t h e T E m o d e s , m > 1 , s o t h e r e i s n o T M i o m o d e . F r o m ( 3 . 1 1 0 ) , t h e t r a n s v e r s e f i e l d s c a n b e d e r i v e d a s

C a l c u l a t i o n o f t h e a t t e n u a t i o n f o r T M m o d e s i s l e f t a s a p r o b l e m . F i g u r e 3 . 1 2 s h o w s t h e a t t e n u a t i o n d u e t o c o n d u c t o r l o s s v e r s u s f r e q u e n c y f o r v a r i o u s m o d e s o f a c i r c u l a r w a v e g u i d e . O b s e r v e t h a t t h e a t t e n u a t i o n o f t h e T E 01 m o d e d e c r e a s e s t o a v e r y s m a l l v a l u e w i t h i n c r e a s i n g f r e q u e n c y . T h i s p r o p e r t y m a k e s t h e T E 01 m o d e o f i n t e r e s t f o r l o w - l o s s t r a n s m i s s i o n o v e r l o n g d i s t a n c e s . U n f o r t u n a t e l y , t h i s m o d e i s n o t t h e d o m i n a n t m o d e o f t h e c i r c u l a r

( 3 . 1 3 6)

( 3 . 1 3 7)

( 3 . 1 3 8)

E z ( P . 0) = O ,

a t p = a.

T h u s , w e m u s t h a v e

J„(k c a) = 0,

K = Pnm! a.o r

( 3 . 1 4 1 a)

( 3 . 1 4 1 b

)

( 3 . 1 4 1 c

)

( 3 . 1 4 1 d

)

( 3 . 1 4 2 )

En =

-E 4H n a

t k '

<p

E+ = --Jf- 7 (A cosn<p - B sinn<j>)J„(k c p)e K c p

H p = JW ^- n -(A cos n<t> - B sin n<p)J„(k c p)e' j P\ k-p

H * = —^-(Asinn0+ B cos n<t>)J^(k c p)e~ Jf iz .

— P~(A sin«0 + B cos n<p)J' n (k c p)e

T h e w a v e i m p e d a n c e i s

Z t m = — — = H,

k c

k c

Page 59: Consider a Section of Air

3.4 Circular Waveguide 59

w a v e g u i d e , s o i n p r a c t i c e p o w e r c a n b e l o s t f r o m t h e T E o i m o d e t o l o w e r - o r d e r p r o p a g a t i n g m o d e s .

F i g u r e 3 . 1 3 s h o w s t h e r e l a t i v e c u t o f f f r e q u e n c i e s o f t h e T E a n d T M m o d e s , a n d T a b l e 3 . 5 s u m m a r i z e s r e s u l t s f o r w a v e p r o p a g a t i o n i n c i r c u l a r w a v e g u i d e . F i e l d l i n e s f o r s o m e o f t h e l o w e s t o r d e r T E a n d T M m o d e s a r e s h o w n i n F i g u r e 3 . 1 4 .

EXAMPLE 3.2 CHARACTERISTICS OF A CIRCULAR WAVEGUIDE

F i n d t h e c u t o f f f r e q u e n c i e s o f t h e f i r s t t w o p r o p a g a t i n g m o d e s o f a T e f l o n - f i l l e d c i r c u l a r w a v e g u i d e w i t h a = 0 . 5 c m . I f t h e i n t e r i o r o f t h e g u i d e i s g o l d p l a t e d , c a l c u l a t e t h e o v e r a l l l o s s i n d B f o r a 3 0 c m l e n g t h o p e r a t i n g a t 1 4 G H z .

Solution

F r o m F i g u r e 3 . 1 3 , t h e f i r s t t w o p r o p a g a t i n g m o d e s o f a c i r c u l a r w a v e g u i d e a r e t h e T E n a n d T M o i m o d e s . T h e c u t o f f f r e q u e n c i e s c a n b e f o u n d u s i n g ( 3 . 1 2 7 ) a n d( 3 . 1 4 0 ) :

Quantity TE„m Mode TM„r„ Mode

k (OyfJIi

fc =

fc =

= 1 2 . 1 9

G H z , =

1 5 . 9 2 G H z .

T E „ :

T M o

i :

2naJ7~ r 2 t t ( 0 . 0 0 5 ) v / 2 !

0 8 p0lc _ 2 . 4 0 5 ( 3 x

1 0 8 ) 27vaJTr ~

2tt( 0 . 0 0 5 ) V T 0 8

p'nc 1 . 8 4 1 ( 3 x 1 0 8 )

Frequency (GHz)FIGURE 3.12 Attenuation of various modes in a circular copper waveguide with a = 2.54 cm.

Page 60: Consider a Section of Air

m " 1 .

60 Chapter 3: Transmission Lines and Waveguides

TABLE 3.4 Values of pnm for TM Modes of a Circular Waveguide

fcc Pnm Pnm

a a

p Jk2 - k? y/V ~ k2c

2n In

A c kc kc

2tt lit

ß

a)

T

a)P ß

«</k2 tan S 2 P k2 tanS 2ß

Ez 0 (A sinn0 4- B cos n<l>)Jn(kcp)e it>l

Hz (A sin n<t> + B cos mp)JB(kcp)e~^1 0

Ep —~~~(A cos n<f> — B sin n<f>)J„(kcp)e~^z KP K (A sin n<t>-\- B cos n<t>)J'„{kcp)e~

E* ¡COLI . ..——(Asinntf) + Bcosn<p)Jn(kcp)e "l

-jpnk*p

(A cos ntp — B sin n<t>)J„(kcp)e~)ßi

h9 -~-(A sin n<p + B cos n<f>)J'n(kcp)e~iei

Kcjaxnk}p

(A cos nip — B sin n<t>)J„(kcp)e~ifl

//* -~f - (A cosn<t> - B sin n<p)J„(kcp)e~JPz kcP —j(oekc

(A sin/i0 B cos n<t>)J'„(kcp)e~ifil

z -7 kVZjE~J N t II - 15

S o o n l y t h e T E n m o d e i s p r o p a g a t i n g a t 1 4 G H z . T h e w a v e n u m b e r i s

t = 2 ^ j W i 4 * i o y ^ = 4 2 2 9 m _ ,

c 3 x 1 0 8

a n d t h e p r o p a g a t i o n c o n s t a n t o f t h e T E i i m o d e i s

f = v ~ (^) ! = r 422,9’2 ~ (ss)1= 2080

T h e a t t e n u a t i o n d u e t o d i e l e c t r i c l o s s i s c a l c u l a t e d f r o m ( 3 . 2 9 ) a s

* 2 t a n 5 ( 4 2 2 . 9 ) 2 ( 0 . 0 0 0 4 ) nad — — ^ — = -------„ „ -----------= 0 . 1 7 2 n p / m = 1 . 4 9 d B / m .2p 2 ( 2 0 8 . 0 ) H

T h e c o n d u c t i v i t y o f g o l d i s a = 4 . 1 x 1 0 7 S / m , s o t h e s u r f a c e r e s i s t a n c e i s

Rs = 0 . 0 3 6 7 $2.V 2a

Page 61: Consider a Section of Air

3.4 C

ircula

r Wa

veg

uid

e 125

Reprinted with permission from Fields and Waves in Communication Electronics, S. Ramo, J R. Whinnery, and T. Van Duzer. Copyright © 1965 by John Wiley & Sons, Inc. Table 8.04.

FIGURE 3.14 Field lines for some of the lower order modes of a circular waveguide.

Page 62: Consider a Section of Air
Page 63: Consider a Section of Air

3.5 Coaxial Line 63

S u b s t i t u t i o n o f ( 3 . 1 4 5 ) i n t o ( 3 . 1 4 3 ) g i v e s

p d / dR\ 1 d 2 P n- — I p — 1 + ----------- = 0 . ( 3 . 1 4 6 )

R d p \ d p J p d < t >2

B y t h e u s u a l s e p a r a t i o n o f v a r i a b l e s a r g u m e n t , t h e t w o t e r m s i n ( 3 . 1 4 6 ) m u s t b e e q u a l t o c o n s t a n t s , s o t h a t

a n d K + k ; = 0 . ( 3 . 1 4 9 )

T h e g e n e r a l s o l u t i o n t o ( 3 . 1 4 8 ) i s

P ( ( f > ) = A c o s « < / > + B s i n n < / > , ( 3 . 1 5 0 )

w h e r e = n m u s t b e a n i n t e g e r , s i n c e i n c r e a s i n g 0 b y a m u l t i p l e o f 2 n s h o u l d n o t c h a n g e t h e r e s u l t . N o w , b e c a a s e o f t h e f a c t t h a t t h e b o u n d a r y c o n d i t i o n s o f ( 3 . 1 4 4 ) d o n o t v a r y w i t h $ , t h e p o t e n t i a l < t > ) s h o u l d n o t v a r y w i t h < p . T h u s , n m u s t b e z e r o . B y ( 3 . 1 4 9 ) , t h i s i m p l i e s t h a t k p m u s t a l s o b e z e r o , s o t h a t t h e e q u a t i o n f o r R ( p ) i n ( 3 . 1 4 7 ) r e d u c e s t o

3( dR\ n dp\dp)~ •T h e s o l u t i o n f o r R ( p ) i s t h e n

/?(p) —C\rip D,

a n d s o < t > ( p , < j > ) = C I n p + D . ( 3 . 1 5 1 )

A p p l y i n g t h e b o u n d a r y c o n d i t i o n s o f ( 3 . 1 4 4 ) g i v e s t w o e q u a t i o n s f o r t h e c o n s t a n t s C a n d D :

< t > ( a , 0 ) = V 0 = C I n a + £ > , ( 3 . 1 5 2 a )

< ( > ) = 0 = C I n b + D . ( 3 . 1 5 2 b )A f t e r s o l v i n g f o r C a n d D , t h e f i n a l s o l u t i o n f o r i > ( p , < J > ) c a n b e w r i t t e n a s

Vohb/p< t > ( p , 4 > ) = — . ( 3 . 1 5 3 )

I n p / a

T h e E a n d H f i e l d s c a n t h e n b e f o u n d u s i n g ( 3 . 1 3 ) a n d ( 3 . 1 8 ) . T h e n t h e v o l t a g e , c u r r e n t , a n d c h a r a c t e r i s t i c i m p e d a n c e c a n b e d e t e r m i n e d a s i n C h a p t e r 2 . A t t e n u a t i o n d u e t o d i e l e c t r i c o r c o n d u c t o r l o s s h a s a l r e a d y b e e n t r e a t e d i n C h a p t e r 2 .

Higher Order ModesT h e c o a x i a l l i n e , l i k e t h e p a r a l l e l p l a t e w a v e g u i d e , c a n a l s o s u p p o r t T E a n d T M w a v e g u i d e m o d e s i n a d d i t i o n t o a T E M m o d e . I n p r a c t i c e , t h e s e m o d e s a r e u s u a l l y c u t o f f ( e v a n e s c e n t ) , a n d s o h a v e o n l y a r e a c t i v e e f f e c t n e a r d i s c o n t i n u i t i e s o r s o u r c e s , w h e r e t h e y a r e e x c i t e d . I t i s i m p o r t a n t i n p r a c t i c e , h o w e v e r , t o b e a w a r e o f t h e c u t o f f f r e q u e n c y o f t h e l o w e s t o r d e r

t i lRBp\

dp )

1 d 2 P P d<t >2

= -kl

( 3 . 1 4 8 )

p( 3 . 1 4 7 )

Page 64: Consider a Section of Air

( 3 . 1 55 )

( 3 . 1 59 )

64 Chapter 3: Transmission Lines and Waveguides

w a v e g u i d e - t y p e m o d e s , t o a v o i d t h e p r o p a g a t i o n o f t h e s e m o d e s . D e l e t e r i o u s e f f e c t s m a y o t h e r w i s e o c c u r , d u e t o t h e s u p e r p o s i t i o n o f t w o o r m o r e p r o p a g a t i n g m o d e s w i t h d i f f e r e n t p r o p a g a t i o n c o n s t a n t s . A v o i d i n g t h e p r o p a g a t i o n o f h i g h e r o r d e r m o d e s s e t s a n u p p e r l i m i t o n t h e s i z e o f a c o a x i a l c a b l e ; t h i s u l t i m a t e l y l i m i t s t h e p o w e r h a n d l i n g c a p a c i t y o f a c o a x i a l l i n e ( s e e t h e P o i n t o f I n t e r e s t o n p o w e r c a p a c i t y o f t r a n s m i s s i o n l i n e s ) .

W e w i l l d e r i v e t h e s o l u t i o n f o r t h e T E m o d e s o f t h e c o a x i a l l i n e ; t h e T E n m o d e i s t h e d o m i n a n t w a v e g u i d e m o d e o f t h e c o a x i a l l i n e , a n d s o i s o f p r i m a r y i m p o r t a n c e .

F o r T E m o d e s , E , = 0 , a n d H z s a t i s f i e s t h e w a v e e q u a t i o n o f ( 3 . 1 1 2 ) :

/ 1 3 1 d 2

( v + p * ~ p + 7 - W + ‘ ) h z i p ’ = °’ { ]

w h e r e H z ( p , < / > , z ) = h z ( p , < p ) e ~ ^ z , a n d k 2 = k 2 — f ) 2 . T h e g e n e r a l s o l u t i o n t o t h i s e q u a t i o n , a s d e r i v e d i n S e c t i o n 3 . 4 , i s g i v e n b y t h e p r o d u c t o f ( 3 . 1 1 8 ) a n d ( 3 . 1 2 0 ) :

hz(p, 4>) = (A sin«0 + B cosn<f>)(CJ„(kcp) + DY„(kcp)).

I n t h i s c a s e , a < p < b , s o w e h a v e n o r e a s o n t o d i s c a r d t h e Y „ t e r m . T h e b o u n d a r y c o n d i t i o n s a r e t h a t

Eçip, <j>, z) = 0, io\p=a,b. (3.156)

U s i n g ( 3 . 1 1 0 b ) t o f i n d f r o m H z g i v e s

= ^-r—(A sin n<f> + B cos nip)(C J^(k çp) + DY'n(kcp))e~ iflz . (3.157)kc

A p p l y i n g ( 3 . 1 5 6 ) t o ( 3 . 1 5 7 ) g i v e s t w o e q u a t i o n s :CJ'n(kca) + DY'n(kca) = 0, (3.158a)CJ'n(kcb)+ DY'„(kcb) = 0. (3.158b)

S i n c e t h i s i s a h o m o g e n e o u s s e t o f e q u a t i o n s , t h e o n l y n o n t r i v i a l ( C ^ 0 , D ^ 0 ) s o l u t i o n o c c u r s w h e n t h e d e t e r m i n a n t i s z e r o . T h u s w e m u s t h a v e

J'n{kca)Y’n(kcb) = J'n(kcb)Y'n{kcd).

T h i s i s a c h a r a c t e r i s t i c ( o r e i g e n v a l u e ) e q u a t i o n f o r k c . T h e v a l u e s o f k c t h a t s a t i s f y ( 3 . 1 5 9 ) t h e n d e f i n e t h e T E „ m m o d e s o f t h e c o a x i a l l i n e .

E q u a t i o n ( 3 . 1 5 9 ) i s a t r a n s c e n d e n t a l e q u a t i o n , w h i c h m u s t b e s o l v e d n u m e r i c a l l y f o r k c . F i g u r e 3 . 1 6 s h o w s t h e r e s u l t o f s u c h a s o l u t i o n f o r n = 1 , f o r v a r i o u s b / a r a t i o s . A n a p p r o x i m a t e s o l u t i o n t h a t i s o f t e n u s e d i n p r a c t i c e i s

* - - 2 - c — 11 * q b

O n c e k c i s k n o w n , t h e p r o p a g a t i o n c o n s t a n t o r c u t o f f f r e q u e n c y c a n b e d e t e r m i n e d . S o l u t i o n s f o r t h e T M m o d e s c a n b e f o u n d i n a s i m i l a r m a n n e r ; t h e r e q u i r e d d e t e r m i n a n t a l e q u a t i o n i s t h e s a m e a s ( 3 . 1 5 9 ) ,

e x c e p t f o r t h e d e r i v a t i v e s . F i e l d l i n e s f o r t h e T E M a n d T E n m o d e s o f t h e c o a x i a l l i n e a r e s h o w n i n F i g u r e 3 . 1 7 .

Page 65: Consider a Section of Air

3.5 Coaxial Line 65

E X A M P L E 3 . 3 H I G H E R O R D E R M O D E O F A C O A X I A L L I N E

C o n s i d e r a p i e c e o f R G - 1 4 2 c o a x i a l c a b l e , w i t h a — 0 . 0 3 5 ” a n d b = 0 . 1 1 6 ” , a n d a d i e l e c t r i c w i t h e r = 2 . 2 . W h a t i s t h e h i g h e s t u s a b l e f r e q u e n c y , b e f o r e t h e T E n w a v e g u i d e m o d e s t a r t s t o p r o p a g a t e ?

Page 66: Consider a Section of Air
Page 67: Consider a Section of Air

3.6 Surface Waves on a Grounded Dielectric Slab 67

i s t h a t a n a i r - f i l l e d c o a x i a l l i n e h a s m i n i m u m a t t e n u a t i o n f o r a c h a r a c t e r i s t i c i m p e d a n c e o f 7 7 £ 2 ( P r o b l e m 2 . 2 8 ) , w h i l e m a x i m u m p o w e r c a p a c i t y o c c u r s f o r a c h a r a c t e r i s t i c i m p e d a n c e o f 3 0 ( P r o b l e m 3 . 2 8 ) . A 5 0 £ 2 c h a r a c t e r i s t i c i m p e d a n c e t h u s r e p r e s e n t s a c o m p r o m i s e b e t w e e n m i n i m u m a t t e n u a t i o n a n d m a x i m u m p o w e r c a p a c i t y . R e q u i r e m e n t s f o r c o a x i a l c o n n e c t o r s i n c l u d e l o w S W R , h i g h e r - o r d e r - m o d e - f r e e o p e r a t i o n a t a h i g h f r e q u e n c y , h i g h r e p e a t a b i l i t y a f t e r a c o n n e c t - d i s c o n n e c t c y c l e , a n d m e c h a n i c a l s t r e n g t h . C o n n e c t o r s a r e u s e d i n p a i r s , w i t h a m a l e e n d a n d a f e m a l e e n d ( o r p l u g a n d j a c k ) . T h e p h o t o a b o v e s h o w s s e v e r a l t y p e s o f c o m m o n l y u s e d c o a x i a l c o n n e c t o r s a n d a d a p t e r s . F r o m t o p l e f t : T y p e - N , T N C , S M A , A P C - 7 , 2 . 4 m m .

T y p e - N : T h i s c o n n e c t o r w a s d e v e l o p e d i n 1 9 4 2 a n d n a m e d a f t e r i t s i n v e n t o r , P . N e i l , o f B e l l L a b s . T h e o u t e r d i a m e t e r o f t h e f e m a l e e n d i s a b o u t 0 . 6 2 5 i n . T h e r e c o m m e n d e d u p p e r f r e q u e n c y l i m i t r a n g e s f r o m 1 1 t o 1 8 G H z , d e p e n d i n g o n c a b l e s i z e . T h i s r u g g e d b u t l a r g e c o n n e c t o r i s o f t e n f o u n d o n o l d e r e q u i p m e n t .

T N C : T h i s i s a t h r e a d e d v e r s i o n o f t h e v e r y c o m m o n B N C c o n n e c t o r . I t s u s a g e i s l i m i t e d t o f r e q u e n c i e s b e l o w 1 G H z .

S M A : T h e n e e d f o r s m a l l e r a n d l i g h t e r c o n n e c t o r s l e d t o t h e d e v e l o p m e n t o f t h i s c o n n e c t o r i n t h e 1 9 6 0 s . T h e o u t e r d i a m e t e r o f t h e f e m a l e e n d i s a b o u t 0 . 2 5 0 i n . I t c a n b e u s e d u p t o f r e q u e n c i e s i n t h e r a n g e o f 1 8 - 2 5 G H z , a n d i s p r o b a b l y t h e m o s t c o m m o n l y u s e d m i c r o w a v e c o n n e c t o r t o d a y .

Page 68: Consider a Section of Air

68 Chapter 3: Transmission Lines and Waveguides

A P C - 7 : T h i s i s a p r e c i s i o n c o n n e c t o r ( A m p h e n o l p r e c i s i o n c o n n e c t o r ) t h a t c a n r e p e a t e d l y a c h i e v e a n S W R l e s s t h a n 1 . 0 4 a t f r e q u e n c i e s u p t o 1 8 G H z . T h e c o n n e c t o r s a r e “ s e x l e s s , ” w i t h b u t t c o n t a c t b e t w e e n b o t h i n n e r c o n d u c t o r s a n d o u t e r c o n d u c t o r s . T h i s c o n n e c t o r i s u s e d m o s t c o m m o n l y f o r m e a s u r e m e n t a n d i n s t r u m e n t a t i o n a p p l i c a t i o n s .

2.4 m m : T h e n e e d f o r c o n n e c t o r s a t m i l l i m e t e r w a v e f r e q u e n c i e s l e d t o t h e d e v e l o p m e n t o f t w o v a r i a t i o n s o f t h e S M A c o n n e c t o r : t h e K c o n n e c t o r i s u s e f u l t o a b o u t 4 0 G H z , w h i l e t h e2.4 m m c o n n e c t o r i s u s e f u l t o a b o u t 5 0 G H z . T h e s i z e o f t h e s e c o n n e c t o r s i s s i m i l a r t o t h e S M A c o n n e c t o r .

Page 69: Consider a Section of Air

3.6

( 3 . 1 6 0b )

.XDielectric

Ground plane

FIGURE 3.18 Geometry of a grounded dielectric slab.

/

3.6 Surface Waves on a Grounded Dielectric Slab 69

SURFACE WAVES ON A GROUNDED DIELECTRIC SLAB

W e b r i e f l y d i s c u s s e d s u r f a c e w a v e s i n C h a p t e r 1 , i n c o n n e c t i o n w i t h t h e f i e l d o f a p l a n e w a v e t o t a l l y r e f l e c t e d f r o m a d i e l e c t r i c i n t e r f a c e . I n g e n e r a l , s u r f a c e w a v e s c a n e x i s t i n a v a r i e t y o f g e o m e t r i e s i n v o l v i n g d i e l e c t r i c i n t e r f a c e s . H e r e w e c o n s i d e r t h e T M a n d T E s u r f a c e w a v e s t h a t c a n b e e x c i t e d a l o n g a g r o u n d e d d i e l e c t r i c s l a b . O t h e r g e o m e t r i e s t h a t c a n b e u s e d a s s u r f a c e w a v e g u i d e s i n c l u d e a n u n g r o u n d e d d i e l e c t r i c s l a b , a d i e l e c t r i c r o d , a c o r r u g a t e d c o n d u c t o r , o r a d i e l e c t r i c c o a t e d c o n d u c t i n g r o d .

S u r f a c e w a v e s a r e t y p i f i e d b y a f i e l d t h a t d e c a y s e x p o n e n t i a l l y a w a y f r o m t h e d i e l e c t r i c s u r f a c e , w i t h m o s t o f t h e f i e l d c o n t a i n e d i n o r n e a r t h e d i e l e c t r i c . A t h i g h e r f r e q u e n c i e s t h e f i e l d g e n e r a l l y b e c o m e s m o r e t i g h t l y b o u n d t o t h e d i e l e c t r i c , m a k i n g s u c h w a v e g u i d e s p r a c t i c a l . B e c a u s e o f t h e p r e s e n c e o f t h e d i e l e c t r i c , t h e p h a s e v e l o c i t y o f a s u r f a c e w a v e i s l e s s t h a n t h e v e l o c i t y o f l i g h t i n a v a c u u m . A n o t h e r r e a s o n f o r s t u d y i n g s u r f a c e w a v e s i s t h a t t h e y m a y b e e x c i t e d o n s o m e t y p e s o f p l a n a r t r a n s m i s s i o n l i n e s , s u c h a s m i c r o s t r i p a n d s l o t l i n e .

TM Modes

f o r d < x < o o ,

where Ez(x, y, z) = ez(x, y)eN o w d e f i n e t h e c u t o f f w a v e n u m b e r s f o r t h e t w o r e g i o n s a s

( 3 . 1 6 1 a )

( 3 . 1 6 1 b )

w h e r e t h e s i g n o n h z h a s b e e n s e l e c t e d i n a n t i c i p a t i o n o f a n e x p o n e n t i a l l y d e c a y i n g r e s u l t f o r x > d . O b s e r v e t h a t t h e s a m e p r o p a g a t i o n c o n s t a n t P h a s b e e n u s e d f o r b o t h r e g i o n s . T h i s

Figure 3.18 shows the geometry of a grounded dielectric slab waveguide. The dielectric slab, of thickness d and relative dielectric constant er, is assumed to be of infinite extent in the y and z directions. We will assume propagation in the +z direction with an e~^z propagation factor, and no variation in the y direction (3/3y = 0).

Because there are two distinct regions, with and without a dielectric, we must separately consider the field in these regions, and then match tangential fields across the interface. Ez must satisfy the wave equation of (3.25) in each region:

( 3 . 1 6 0 a)

Page 70: Consider a Section of Air

70 Chapter 3: Transmission Lines and Waveguides

( 3 . 1 6 4a )

( 3 . 1 6 4b )

( 3 . 1 65 )

( 3 . 1 66 )

m u s t b e t h e c a s e t o a c h i e v e p h a s e m a t c h i n g o f t h e t a n g e n t i a l f i e l d s a t t h e x = d i n t e r f a c e f o r a l l v a l u e s o f z .

T h e g e n e r a l s o l u t i o n s t o ( 3 . 1 6 0 ) a r e t h e n

N o t e t h a t t h e s e s o l u t i o n s a r e v a l i d f o r / c c a n d h e i t h e r r e a l o r i m a g i n a r y ; i t w i l l t u r n o u t t h a t b o t h k c a n d h a r e r e a l , b e c a u s e o f t h e c h o i c e o f d e f i n i t i o n s i n ( 3 . 1 6 1 ) .

T h e b o u n d a r y c o n d i t i o n s t h a t m u s t b e s a t i s f i e d a r e

a t x = 0 , ( 3 . 1 6 3 a )

a s x — * ■ o o . ( 3 . 1 6 3 b )

a t x = d . ( 3 . 1 6 3 c )

a t j c — d . ( 3 . 1 6 3 d )

F r o m ( 3 . 2 3 ) , H x = E y = H z = 0 . C o n d i t i o n ( 3 . 1 6 3 a ) i m p l i e s t h a t B = O i n ( 3 . 1 6 2 a ) . C o n d i t i o n ( 3 . 1 6 3 b ) c o m e s a b o u t a s a r e q u i r e m e n t f o r f i n i t e f i e l d s ( a n d e n e r g y ) i n f i n i t e l y f a r a w a y f r o m a s o u r c e , a n d i m p l i e s t h a t C = 0 . T h e c o n t i n u i t y o f E , l e a d s t o

A s i n k c d = D e h ( t , w h i l e ( 3 . 2 3 b )

m u s t b e u s e d t o a p p l y c o n t i n u i t y t o H y , t o o b t a i n

——cos kcd = —e~ h<i . k c h

F o r a n o n t r i v i a l s o l u t i o n , t h e d e t e r m i n a n t o f t h e t w o e q u a t i o n s o f ( 3 . 1 6 4 ) m u s t v a n i s h , l e a d i n g t o

kc tankcd = €rh. E l i m i n a t i n g f r o m

( 3 . 1 6 1 a ) a n d ( 3 . 1 6 1 b ) g i v e s

k ] + h r = ( e r - 1 ) * | .

ez(x, y) — A s i n kcx + B c o s kcx, f o r O < x < d,

f o r d < x <

o o .

( 3 . 1 6 2 a)

( 3 . 1 6 2 b)

.-hxe z (x, y) = Ce hx + De

Ez(x, y, z) = 0, E t(x,y,

z) < oo,

Ez(x, y, z) continuous,

Hy(x, y, z) continuous,

Page 71: Consider a Section of Air

3.6 Surface Waves on a Grounded Dielectric Slab 71

E q u a t i o n s ( 3 . 1 6 5 ) a n d ( 3 . 1 6 6 ) c o n s t i t u t e a s e t o f s i m u l t a n e o u s t r a n s c e n d e n t a l e q u a t i o n s t h a t m u s t b e s o l v e d f o r t h e p r o p a g a t i o n c o n s t a n t s k c a n d h , g i v e n k 0 a n d e r . T h e s e e q u a t i o n s a r e b e s t s o l v e d n u m e r i c a l l y , b u t F i g u r e 3 . 1 9 s h o w s a g r a p h i c a l r e p r e s e n t a t i o n o f t h e s o l u t i o n s . M u l t i p l y i n g b o t h s i d e s o f ( 3 . 1 6 6 ) b y d 2 g i v e s

(M)2 + ( h d f = (er - 1 )(M)2,

w h i c h i s t h e e q u a t i o n o f a c i r c l e i n t h e k c d , h d p l a n e , a s s h o w n i n F i g u r e 3 . 1 9 . T h e r a d i u s o f t h e c i r c l e i s y / e r — l k 0 d , w h i c h i s p r o p o r t i o n a l t o t h e e l e c t r i c a l t h i c k n e s s o f t h e d i e l e c t r i c

Page 72: Consider a Section of Air

s l a b . M u l t i p l y i n g ( 3 . 1 6 5 ) b y d g i v e s

kcd tan kcd = erhd,

w h i c h i s a l s o p l o t t e d i n F i g u r e 3 . 1 9 . T h e i n t e r s e c t i o n o f t h e s e c u r v e s i m p l i e s a s o l u t i o n t o b o t h ( 3 . 1 6 5 ) a n d ( 3 . 1 6 6 ) . O b s e r v e t h a t k c m a y b e p o s i t i v e o r n e g a t i v e ; f r o m ( 3 . 1 6 2 a ) t h i s i s s e e n t o m e r e l y c h a n g e t h e s i g n o f t h e c o n s t a n t A . A s - J e r - I k o d b e c o m e s l a r g e r , t h e c i r c l e m a y i n t e r s e c t m o r e t h a n o n e b r a n c h o f t h e t a n g e n t f u n c t i o n , i m p l y i n g t h a t m o r e t h a n o n e T M m o d e c a n p r o p a g a t e . S o l u t i o n s f o r n e g a t i v e h , h o w e v e r , m u s t b e e x c l u d e d s i n c e w e a s s u m e d h w a s p o s i t i v e r e a l w h e n a p p l y i n g b o u n d a r y c o n d i t i o n ( 3 . 1 6 3 b ) .

F o r a n y n o n z e r o t h i c k n e s s s l a b , w i t h a p e r m i t t i v i t y g r e a t e r t h a n u n i t y , t h e r e i s a t l e a s t o n e p r o p a g a t i n g T M m o d e , w h i c h w e w i l l c a l l t h e T M o m o d e . T h i s i s t h e d o m i n a n t m o d e o f t h e d i e l e c t r i c s l a b w a v e g u i d e , a n d h a s a z e r o c u t o f f f r e q u e n c y . ( A l t h o u g h f o r k o = 0 , k c = h = 0 a n d a l l f i e l d s v a n i s h . ) F r o m F i g u r e 3 . 1 9 , i t c a n b e s e e n t h a t t h e n e x t T M m o d e , t h e T M i m o d e , w i l l n o t t u r n o n u n t i l t h e r a d i u s o f t h e c i r c l e b e c o m e s g r e a t e r t h a n n . T h e c u t o f f f r e q u e n c y o f t h e T M „ m o d e c a n t h e n b e d e r i v e d a s

( 3 . 1 6 7 )

O n c e k c a n d h h a v e b e e n f o u n d f o r a p a r t i c u l a r s u r f a c e w a v e m o d e , t h e f i e l d e x p r e s s i o n s c a n b e f o u n d a s

Page 73: Consider a Section of Air

for 0 < x < d

( 3 . 1 6 8b )

f o r d < x < o o ,

( 3 . 1 6 8c )

3.6 Surface Waves on a Grounded Dielectric Slab 73

EAx,y,z) =

'-^-As\nkcde- h(x ~ d) e-^

for 0 s x <dHy(x, y, z) =

-—- A s'mkcde~ H< *~ d) e

for d < x < oo.h

A sin k c xe

A sin k c de~ hix ~ d) e~^ z f o r 0 < x <d

f o r d < x <

o o .

£ . : ( * > y\ z ) =

( 3 . 1 6 8 a)

kcd

FIGURE 3.19 Graphical solution of the transcendental equation for the cutoff frequency of a TM surface wave mode of the grounded dielectric slab.

Page 74: Consider a Section of Air
Page 75: Consider a Section of Air

3.6 Surface Waves on a Grounded Dielectric Slab 75

Chapt

e

r

3

:

T

r

a

n

s

m

i

s

s

i

o

n

L

i

n

e

s

Page 76: Consider a Section of Air

a

n

d

W

a

v

e

g

u

i

d

e

s

T

E

M

o

d

e

s

T E m o d e s c a n a l s o b e s u p p o r t e d b y t h e g r o u n d e d d i e l e c t r i c

Page 77: Consider a Section of Air

3.6 Surface Waves on a Grounded Dielectric Slab 77

s l a b . T h e H z f i e l d s a t i s f i e s t h e w a v e e q u a t i o n s

^ ^ “ " 2 + h z ( x , y ) = 0 , f o r 0

< * < £ / , ( 3 . 1 6 9 a )

— h 2 ^j h z(x, y) = 0, foTd<x<oo,

(3.169b)

w i t h H z ( x , y , z ) = h z ( x , y ) e ~ i f t z , a n d k 2 a n d h 2 d e f i n e d i n ( 3 . 1 6 1 a ) a n d ( 3 . 1 6 1 b ) . A s f o r t h e T M m o d e s , t h e g e n e r a l s o l u t i o n s t o ( 3 . 1 6 9 ) a r e

hz(x, y) = A s'mkcx + B coskcx, (3.170a)hz(x, y) = Ce hx + De~ hx . (3.170b)

T o s a t i s f y t h e r a d i a t i o n c o n d i t i o n , C = 0 . U s i n g ( 3 . 1 9 d ) t o f i n d £ v f r o m H z l e a d s t o A = 0 f o r E y = 0 a t x = 0 , a n d t o t h e e q u a t i o n

— ^ s i n k c d = ^ - e ~ h d , ( 3 . 1 7 1 a )kc h

f o r c o n t i n u i t y o f E y a t x

— d . C o n t i n u i t y o f H z a t

x = d g i v e s

B c o s k c d = D e ~ h d . ( 3 . 1 7 1 b )

S i m u l t a n e o u s l y s o l v i n g

( 3 . 1 7 1 a ) a n d ( 3 . 1 7 1 b )

l e a d s t o t h e

d e t e r m i n a n t a l e q u a t i o n

—kccolkcd = h. (3.172)

F r o m ( 3 . 1 6 1 a ) a n d

Page 78: Consider a Section of Air

( 3 . 1 6 1 b ) w e a l s o h a v e

t h a t

k% + h 2 = (€ r — 1)*0. (3.173)

E q u a t i o n s ( 3 . 1 7 2 ) a n d ( 3 . 1 7 3 ) m u s t b e s o l v e d s i m u l t a n e o u s l y f o r t h e v a r i a b l e s k c a n d h . E q u a t i o n ( 3 . 1 7 3 ) a g a i n r e p r e s e n t s c i r c l e s i n t h e k c d , h d p l a n e , w h i l e ( 3 . 1 7 2 ) c a n b e r e w r i t t e n a s

—kcd cot krd = hd,

a n d p l o t t e d a s a f a m i l y o f c u r v e s i n t h e k c d , h d p l a n e , a s s h o w n i n F i g u r e 3 . 2 0 . S i n c e n e g a t i v e v a l u e s o f h m u s t b e e x c l u d e d , w e s e e f r o m F i g u r e 3 . 2 0 t h a t t h e f i r s t T E m o d e d o e s n o t s t a r t t o p r o p a g a t e u n t i l t h e r a d i u s o f t h e c i r c l e , s / e , — 1 k o d , b e c o m e s g r e a t e r t h a n j i / 2 . T h e c u t o f f f r e q u e n c y o f t h e T E „ m o d e s c a n t h e n b e f o u n d a s

f c = ^ f o r « = 1 , 2 , 3 ......( 3 . 1 7 4 )

4ds/€, — 1

C o m p a r i n g w i t h ( 3 . 1 6 7 ) s h o w s t h a t t h e o r d e r o f p r o p a g a t i o n f o r t h e T M „ a n d T E „ m o d e s i s , T M q , T E j , T M i , T E 2 , T M 2 , . . . .

Page 79: Consider a Section of Air

3.6 Surface Waves on a Grounded Dielectric Slab 79

A f t e r f i n d i n g t h e c o n s t a n t s k c a n d h , t h e f i e l d e x p r e s s i o n s c a n b e d e r i v e d a s

E X A M P L E 3 . 4 S U R F A C E W A V E P R O P A G A T I O N C O N S T A N T S

C a l c u l a t e a n d p l o t t h e p r o p a g a t i o n c o n s t a n t s o f t h e f i r s t t h r e e p r o p a g a t i n g s u r f a c e w a v e m o d e s o f a g r o u n d e d d i e l e c t r i c s h e e t w i t h e , = 2 . 5 5 , f o r d / X o = 0 t o 1 . 2 .

SolutionThe

B cos k c xe ipz

Bco&k c de~ h ̂ - d) e-j pz

jBB . .— - — s i n i t , . x e ,p t

cos k c de~ h(x ~ d) e~ iPz h

-ja>HoB . ------------ sin k c xe Jpz

k c

jcon„B

f o r 0 < x < d

f o r d < x <

o o ,

f o r 0 < x < d

f o r d < x < o o ,

f o r 0 < x < d

f o r d < x <

o o .

Hz(x, y, z) = ( 3 . 1 7 5 a)

HAx, y. z ) = ( 3 . 1 7 5 b)

E y (x, y , z) = ( 3 . 1 7 5 c)cosi k r de- h(x ~ d) e- j lSz

hd,

\ /I -» \ 2/

\ TT /\2 / rr J

\/ M

\ Invalid j/ /

\ solutions (

FIGURE 3.20 Graphical solution of the transcendental equation for the cutoff frequency of a TE surface wave mode. Figure depicts a mode below cutoff.

Page 80: Consider a Section of Air

first three propagating surface wave modes are the T

Page 81: Consider a Section of Air

3.6 Surface Waves on a Grounded Dielectric Slab 81

M0

, TEi, and TMi modes. The cutoff frequencies for th

Page 82: Consider a Section of Air

ese modes can be found from (3.167) and (3.174) as

Page 83: Consider a Section of Air

3.6 Surface Waves on a Grounded Dielectric Slab 83

Page 84: Consider a Section of Air

84 Chapter 3: Transmission Lines and Waveguides

•ft,

be d

one with a relatively simple ro

FIGURE 3.21 Surface wave propagation constants for a grounded dielectric slab with

di

Page 85: Consider a Section of Air

3.7 Stripline 85

ot-finding algorithm (see the Point of Interest on root-find

Page 86: Consider a Section of Air

86 Chapter 3: Transmission Lines and Waveguides

ing algorithms); the results are shown in Figure 3.21.

POINT OF INTEREST: Root-Finding

Page 87: Consider a Section of Air

3.7 Stripline 87

Algorithms

I n s e v er a l e x am p l es t h r ou g ho u t t h i s b o o k w e w i l l n e e d t o n u me r i ca l l y f i n d t h e r o o t o f a t r a ns c en -d e n ta l e q u at i o n, s o i t m a y b e u s e fu l t o r e v ie w r w o r e l at i v e ly s i m pl e b u t e f f ec t i ve a l g or i t hm s f o r d o i ng t h i s . B o t h m e t h

Page 88: Consider a Section of Air

88 Chapter 3: Transmission Lines and Waveguides

o d s c a n b e e a s il y p r o gr a mm e d .

In t h e i n t er v a l-h a l vi n g m e t ho d t h e r o o t o f f ( x ) — 0 i s f i r s t b r a ck e t ed b e t we e n t h e v a l ue s * i a n d x 2 . T h e se v a l ue s c a n o f t en b e e s t im a t ed f r o m t h e p r o bl e m u n d er c o n si d e ra t i on . I f a s i n gl e

Page 89: Consider a Section of Air

3.7 Stripline 89

r o o t l i e s b e t we e n . t j a n d x 2 , t h e n / ( j c i) / ( . x2 ) < 0 . A n e s t im a t e, x j , o f t h e r o o t i s m a de b y h a l vi n g t h e i n t er v a l b e t we e n x t

a n d x 2 . T h u s,

I f f ( x \ )f ( x y) < 0 , t h e n t h e r o o t m u s t l i e i n t h e i n t er v a l x \ < x < x y , i f f ( x% ) f (x 2 )

Page 90: Consider a Section of Air

90 Chapter 3: Transmission Lines and Waveguides

< 0 , t h e n t h e r o o t m u s t b e i n t h e i n t er v a l x - $ < x < . x 2 . A n e w e s t im a t e, x t , c a n b e m a de b y h a l vi n g t h e a p p ro p r ia t e i n t er v a l, a n d t h i s p r o ce s s r e p ea t e d u n t il t h e l o c at i o n o f t h e r o o t h a s b e e n d e -t e r mi n e d w i t h t h e d e s ir e d a c c ur a c y. T h e

Page 91: Consider a Section of Air

3.7 Stripline 91

f i g ur e b e l ow i l l u st r a te s t h i s a l g or i t hm f o r s e v er a l i t e ra t i on s .

Th e N e wt o n -R a ph s o n m e t ho d b e g in s w i t h a n e s t im a t e, X i , o f t h e r o o t o f f ( x ) = 0 . T h en a n e w e s t im a t e, x 2 , i s o b t ai n e d f r o m t h e f o r mu l a

fix|)

w h er e / '( -V i )

Page 92: Consider a Section of Air

92 Chapter 3: Transmission Lines and Waveguides

i s t h e d e r iv a t iv e o f f ( x ) a t X \ . T h i s r e s ul t i s e a s il y d e r iv e d f r o m a t w o -t e r m T a y lo r s e r ie s e x p an s i on o f / ( x )n e a rx = j c > :/ ( . x ) = / ( * ]) + ( * - x i ) / '( x i ) . I t c a n a l s o b e i n t er p r et e d g e om e t ri c a ll y a s f i t t in g a s t r ai g h t l i n e a t x = x i w i t h t h e

Page 93: Consider a Section of Air

3.7 Stripline 93

s a me s l o pe a s f i x ) a t t h i s p o i nt ; t h i s l i n e t h e n i n t er c e pt s t h e .r -a x i s a t x = x 2 , a s s h ow n i n t h e f i g ur e b e l ow . R e ap p l yi n g t h e a b o ve f o r mu l a

Page 94: Consider a Section of Air

94 Chapter 3: Transmission Lines and Waveguides

gi v e s i m pr o v ed e s t im a te s o f t h e r o o t. C o nv e r ge n c e i s g e ne r a ll y m u ch f a s te r t h a n w i t h t h e i n t er v a l h a l vi n g m e th o d , b u t a d i s ad v an t a ge i s t h a t t h e d e r iv a t iv e o f f ( x ) i s r e q ui r e d; t h i s c a n o f t en b e c o mp u t ed n u me r i c

Page 95: Consider a Section of Air

3.7 Stripline 95

a l l y. T h e N e wt o n -R a ph s on t e c hn i q ue c a n e a s il y b e a p p li e d t o t h e c a s e w h er e t h e r o o t i s c o mp l e x ( a s i t ua t i on t h a t o c cu r s , f o r e x am p le , w h en f i n di n g t h e p r op a ga t i on c o n st a n t o f a l i n e o r g u i de w i t h l o s s) .

Page 96: Consider a Section of Air

96 Chapter 3: Transmission Lines and Waveguides

Reference: R. W. Horabeck, Numerical Methods. Quantum Publishers, New York, 1975.

STRIPLINE

W e n o w c o ns i d er s t r ip l i ne , a p l a na r -t y p e o f t r a ns m is s i on l i n e t h a t l e n ds i t s el f w e l l t o m i -c r ow a ve

Page 97: Consider a Section of Air

3.7 Stripline 97

i n t eg r a te d c i r cu i t ry a n d p h o to l i th o gr a p hi c f a b ri c a ti o n . T h e g e om e tr y o f a s t r ip l i ne i s s h ow n i n F i gu r e 3 . 2 2a . A t h i n c o nd u c ti n g s t r ip o f w i d th W i s c e n te r e d b e tw e en t w o w i de c o nd u c ti n g g r ou n d p l a n

Page 98: Consider a Section of Air

98 Chapter 3: Transmission Lines and Waveguides

e s o f s e p ar a t io n b . a n d t h e e n t ir e r e g io n b e tw e en t h e g r ou n d p l a ne s i s f i l l ed w i t h a d i e le c t ri c . I n p r a ct i c e, s t r ip l i ne i s u s ua l l y c o ns t r uc t e d b y e t c hi n g t h e c e n te r c o nd u c to r o n a g r ou n de d

Page 99: Consider a Section of Air

3.7 Stripline 99

s u b st r a te o f t h i ck n es s b / 2 , a n d t h e n c o ve r i ng w i t h a n o th e r g r ou n de d s u b st r a te o f t h e s a me t h i ck n es s . A n e x am p le o f a s t r ip l i ne c i r cu i t i s s h ow n i n F i gu r e 3 . 2 3.

Si n c e s t r ip l i ne h a s t w o c o n

Page 100: Consider a Section of Air

100 Chapter 3: Transmission Lines and Waveguides

d u c to r s a n d a h o mo g en e ou s d i e le c t ri c , i t c a n s u pp o r t a T EM w a ve , a n d t h i s i s t h e u s ua l m o de o f o p e ra t i on . L i ke t h e p a r al l e l p l a te g u i de a n d c o ax i a l l i n es , h o we v e r, t h e s t r ip l i ne c a n

Page 101: Consider a Section of Air

3.7 Stripline 101

a l s o s u pp o r t h i g he r o r d er T M a n d T E m o de s , b u t t h e se a r e u s ua l l y a v o id e d i n p r a ct i c e ( s u ch m o de s c a n b e s u pp r e ss e d w i t h s h o rt i n g s c r ew s b e tw e en t h e g r ou n d

Page 102: Consider a Section of Air

102 Chapter 3: Transmission Lines and Waveguides

(b)FIGURE 3.22 Stripline transmission line, fa) Geometry, (b) Electric and magnetic field lines.

Page 103: Consider a Section of Air

3.7 Stripline 103

Page 104: Consider a Section of Air

104 Chapter 3: Transmission Lines and Waveguides

Page 105: Consider a Section of Air

3.7 Stripline 105

FIGURE 3.23 Photograph of a stripline circuit assembly, showing four quadrature hybrids, open- circuit tuning stubs, and coaxial transitions.Courtesy of Harlan Howe, Jr., M/A-COM Inc.

Page 106: Consider a Section of Air

106 Chapter 3: Transmission Lines and Waveguides

p l a ne s a n d b y r e s tr i c t in g t h e g r o un d p l a ne s p a ci n g t o l e s s t h a n A / 4 ). I n t ui t i ve l y , o n e c a n t h i nk o f s t r ip l i ne a s a s o r t o f “ f l at t e ne d o u t ” c o a x—b o t h h a v e a c e n te r c o nd u c to r c o mp l e te l y e n c lo s e d b y a n o u t e

Page 107: Consider a Section of Air

3.7 Stripline 107

r c o nd u c to r a n d a r e u n i fo r m ly f i l l ed w i t h a d i e le c t ri c m e di u m . A s k e tc h o f t h e f i e ld l i n es f o r s t r ip l i ne i s s h ow n i n F i g ur e 3 . 2 2b . T h e m a in d i f f ic u l ty w e w i l l h a v e w i t h s t r ip l i ne i s t h a t i t d o e s n o t

Page 108: Consider a Section of Air

108 Chapter 3: Transmission Lines and Waveguides

l e n d i t s e lf t o a s i mp l e a n a ly s i s, a s d i d t h e t r a ns m i ss i o n l i n es a n d w a ve g u id e s t h a t w e h a v e p r e vi o u sl y d i s cu s s ed . S i n ce w e w i l l b e c o n ce r n ed p r i ma r i ly w i t h t h e T EM m o de o f t h e s t r ip l i ne , a n e l e ct r o st a t i c a n a l

Page 109: Consider a Section of Air

3.7 Stripline 109

y s i s i s s u f fi c i en t t o g i v e t h e p r o pa g a ti o n c o n st a n t a n d c h a ra c t er i s t ic i m pe d a nc e . A n e x a ct s o l ut i o n o f L a p la c e ’s e q u at i o n i s p o s si b l e b y a c o n fo r ma l m a pp i n g a p p ro a c h [ 6 ] , b u t t h e p r o ce d u re a n d r e s ul t s a r e c u m

Page 110: Consider a Section of Air

110 Chapter 3: Transmission Lines and Waveguides

b e r so m e. T h us , w e w i l l p r e se n t c l o se d -f o rm e x p re s s io n s t h a t g i v e g o od a p p ro x im a t io n s t o t h e e x a ct r e s ul t s a n d t h e n d i s cu s s a n a p p ro x im a te n u me r i ca l t e c hn i q ue f o r s o l vi n g L a p la c e ’s e q u at i o n f o r

Page 111: Consider a Section of Air

3.7 Stripline 111

a g e om e t ry s i m il a r t o s t r ip l i ne ; t h i s t e c hn i q ue w i l l a l s o b e a p p li e d t o m i c ro s t ri p l i n e i n t h e f o l lo w in g s e c ti o n .

Formulas for Propagat

Page 112: Consider a Section of Air

112 Chapter 3: Transmission Lines and Waveguides

ion Constant, Characteristic Impedance, and Attenuati

Page 113: Consider a Section of Air

3.7 Stripline 113

on

F r om S e c ti o n 3 . 1 w e k n ow t h a t t h e p h a se v e l oc i t y o f a T EM m o de i s g i v en b y

v p = l / V ^o e o f r = c / y /

F r ,

( 3 . 17 6 )

Page 114: Consider a Section of Air

3.7 Stripline 114

( 3 . 1 8 0a )

( 3 . 1 8 0b )

t h u s t h e p r o p a g a t i o n c o n s t a n t o f t h e s t r i p l i n e i s

T h e s e f o r m u l a s a s s u m e a z e r o s t r i p t h i c k n e s s , a n d a r e q u o t e d a s b e i n g a c c u r a t e t o a b o u t 1 % o f t h e e x a c t r e s u l t s . I t i s s e e n f r o m ( 3 . 1 7 9 ) t h a t t h e c h a r a c t e r i s t i c i m p e d a n c e d e c r e a s e s a s t h e s t r i p w i d t h I V i n c r e a s e s .

W h e n d e s i g n i n g s t r i p l i n e c i r c u i t s , o n e u s u a l l y n e e d s t o f i n d t h e s t r i p w i d t h , g i v e n t h e c h a r a c t e r i s t i c i m p e d a n c e ( a n d h e i g h t b a n d p e r m i t t i v i t y e r ) , w h i c h r e q u i r e s t h e i n v e r s e o f t h e f o r m u l a s i n ( 3 . 1 7 9 ) . S u c h f o r m u l a s h a v e b e e n d e r i v e d a s

W | x f o r y / i ' r Z o < 1 2 0b | 0 . 8 5 — v / 0 . 6 — x f o r y / c 7 Z o > 1 2 0 ,w h e r e- 0 . 4 4 1 .

S i n c e s t r i p l i n e i s a T E M t y p e o f l i n e , t h e a t t e n u a t i o n d u e t o d i e l e c t r i c l o s s i s o f t h e s a m e f o r m a s t h a t f o r o t h e r T E M l i n e s a n d i s g i v e n i n ( 3 . 3 0 ) . T h e a t t e n u a t i o n d u e t o c o n d u c t o r l o s s c a n b e f o u n d b y t h e p e r t u r b a t i o n m e t h o d o r W h e e l e r ’ s i n c r e m e n t a l i n d u c t a n c e r u l e . A n a p p r o x i m a t e r e s u l t i s

P = — = COy/Ll 0f 0 t r = JT r k 0 .c o

I n ( 3 . 1 7 6 ) , c = 3 x 1 0 s m / s e c i s t h e s p e e d o f l i g h t i n f r e e - s p a c e . T h e c h a r a c t e r i s t i c i m p e d a n c e o f a t r a n s m i s s i o n l i n e i s g i v e n b y

s/LC( 3 . 1 7 8)

w h e r e L a n d C a r e t h e i n d u c t a n c e a n d c a p a c i t a n c e p e r u n i t l e n g t h o f t h e l i n e . T h u s , w e c a n f i n d Z o i f w e k n o w C . A s m e n t i o n e d a b o v e , L a p l a c e ’ s e q u a t i o n c a n b e s o l v e d b y c o n f o r m a l m a p p i n g t o f i n d t h e c a p a c i t a n c e p e r u n i t l e n g t h o f t h e s t r i p l i n e . T h e r e s u l t i n g s o l u t i o n , h o w e v e r , i n v o l v e s c o m p l i c a t e d s p e c i a l f u n c t i o n s [ 6] , s o f o r p r a c t i c a l c o m p u t a t i o n s s i m p l e f o r m u l a s h a v e b e e n d e v e l o p e d b y c u r v e f i t t i n g t o t h e e x a c t s o l u t i o n [ 6] , [ 7 ] . T h e r e s u l t i n g f o r m u l a f o r c h a r a c t e r i s t i c i m p e d a n c e i s

3 0 ? r bZ 0 =

JTr We + 0.441b' w h e r e

We i s t h e e f f e c t i v e w i d t h o f t h e c e n t e r c o n d u c t o r

g i v e n b y0

Wf o r — > 0 . 3 5 b

( 0 . 3 5 - W/b)2

( 3 . 1 7 9 a)

W

~b

( 3 . 1 7 7)

( 3 . 1 7 9 b)b W

f o r — < 0 . 3 5 . b

Page 115: Consider a Section of Air

3.7 Stripline 115

1 4tt W \2ï l n - r >

2W 1 b + t, (2b-t\A = l + r ----+ — r — I n ----------- .

b — t 7i b — t \ t J/ , 0 . 4 1 4 / 0 . 7 / ) ( ' + W

w i t h

B = 1 + ----------------------------------------

( 0 . 5 W +

w h e r e t i s t h e t h i c k n e s s o f t h e s t r i p .

f o r y ? 7Z o < 120

N p / m . ( 3 . 1 8 1 )a c =

f o r v / e 7Z o > 120

2.7 x 10- 3 R s e r Zo 30x(b

-1)

0 . 1 6 / ? ,

Z Q b-B

Page 116: Consider a Section of Air

116 Chapter 3: Transmission Lines and Waveguides

An Approximate Electrostatic Solution

M a n y p r a c t i c a l p r o b l e m s i n m i c r o w a v e e n g i n e e r i n g a r e v e r y c o m p l i c a t e d a n d d o n o t l e n d t h e m s e l v e s t o s t r a i g h t f o r w a r d a n a l y t i c s o l u t i o n s , b u t r e q u i r e s o m e s o r t o f n u m e r i c a l a p p r o a c h . T h u s i t i s u s e f u l f o r t h e s t u d e n t t o b e c o m e a w a r e o f s u c h t e c h n i q u e s ; w e w i l l i n t r o d u c e s u c h m e t h o d s w h e n a p p r o p r i a t e t h r o u g h o u t t h i s b o o k , b e g i n n i n g w i t h a n u m è r i c a l s o l u t i o n f o r t h e c h a r a c t e r i s t i c i m p e d a n c e o f s t r i p l i n e .

W e k n o w t h a t t h e f i e l d s o f t h e T E M m o d e o n a s t r i p l i n e m u s t s a t i s f y L a p l a c e ’ s e q u a t i o n , ( 3 . 1 1 ) , i n t h e r e g i o n b e t w e e n t h e t w o p a r a l l e l p l a t e s . T h e a c t u a l s t r i p l i n e g e o m e t r y o f F i g u r e 3 . 2 2 a e x t e n d s t o ± o o , w h i c h m a k e s t h e a n a l y s i s m o r e d i f f i c u l t . S i n c e w e s u s p e c t , f r o m t h e f i e l d l i n e d r a w i n g o f F i g u r e 3 . 2 2 b , t h a t t h e f i e l d l i n e s d o n o t e x t e n d v e r y f a r a w a y f r o m t h e c e n t e r c o n d u c t o r , w e c a n

Page 117: Consider a Section of Air

3.7 Stripline 117

s i m p l i f y t h e g e o m e t r y b y t r u n c a t i n g t h e p l a t e s b e y o n d s o m e d i s t a n c e , s a y [ x | > a / 2 , a n d p l a c i n g m e t a l w a l l s o n t h e s i d e s . T h u s , t h e g e o m e t r y w e w i l l

Page 118: Consider a Section of Air

( 3 . 1 8 2)

( 3 . 1 8 3a )

( 3 . 1 8 3b )

118 Chapter 3: Transmission Lines and Waveguides

a n a l y z e l o o k s l i k e t h a t s h o w n i n F i g u r e 3 . 2 4 . w h e r e a b s o t h a t t h e f i e l d s a r o u n d t h e c e n t e r c o n d u c t o r a r e n o t p e r t u r b e d b y t h e s i d e w a l l s . W e t h e n h a v e a c l o s e d , f i n i t e r e g i o n i n w h i c h t h e p o t e n t i a l 4 > ( x , y ) s a t i s f i e s L a p l a c e ’ s e q u a t i o n ,

V , 2 < t > ( ; t , y ) = 0 , f o r | ; c | < a / 2 , 0 < y < b ,

w i t h t h e b o u n d a r y c o n d i t i o n s t h a t

< ! > ( * , y ) = 0 , a t x = ± a / 2 ,< t > C x , y ) = 0 , a t y = 0 , b .

L a p l a c e ' s e q u a t i o n c a n b e s o l v e d b y t h e m e t h o d o f s e p a r a t i o n o f v a r i a b l e s . S i n c e t h e c e n t e r c o n d u c t o r a t y = b / 2 w i l l c o n t a i n a s u r f a c e c h a r g e d e n s i t y , t h e p o t e n t i a l < J > ( x , y ) w i l l h a v e a s l o p e d i s c o n t i n u i t y t h e r e , b e c a u s e D = —€ 0 e r V , < t > i s d i s c o n t i n u o u s a t y — b / 2 . S o s e p a r a t e s o l u t i o n s f o r , y ) m u s t b e f o u n d f o r 0 < y < b / 2 , a n d b / 2 < y < b . T h e g e n e r a l s o l u t i o n s f o r < t > ( x , y ) i n t h e s e t w o r e g i o n s c a n b e w r i t t e n a s

I n t h i s s o l u t i o n , o n l y t h e o d d - ; ? t e r m s a r e n e e d e d b e c a u s e t h e s o l u t i o n i s a n e v e n f u n c t i o n o f x . T h e r e a d e r c a n v e r i f y b y s u b s t i t u t i o n t h a t ( 3 . 1 8 4 ) s a t i s f i e s L a p l a c e ’ s e q u a t i o n i n t h e t w o r e g i o n s a n d s a t i s f i e s t h e b o u n d a r y c o n d i t i o n s o f ( 3 . 1 8 3 ) .

T h e p o t e n t i a l m u s t b e c o n t i n u o u s a t y — b / 2 , w h i c h f r o m ( 3 . 1 8 4 ) l e a d s t o

( 3 . 1 8 5 )

T h e r e m a i n i n g s e t o f c o n s t a n t s , A „ , c a n b e f o u n d b y s o l v i n g f o r t h e c h a r g e d e n s i t y o n t h e c e n t e r s t r i p . S i n c e E y = — d < t > / d y , w e h a v e

for 0 < y < b/2

for b/2 <y<b.

( 3 . 1 8 4)

<t>(x,y) =

a nnx ■ u nny > A„ c o s--------------------s r n h ------n = l a aodd

„ nnx . , nn,, ,X , B„ c o s ----s r n h — ( b-y)»=1 a a odd

for 0 < y < b/2

for b/2 < y < b.

( 3 . 1 8 6)

E y =nnx .nn

c o s -----c o s h — (b — y )a a

~ , /nn\ nnx nny — An ( -------- ) C O S - - -C O S h -----

n=1 V a I a a odd

t A - ( - )«=1 ' a /odd

FIGURE 3.24 Geometry of enclosed stripline.

Page 119: Consider a Section of Air

119 Chapter 3: Transmission Lines and Waveguides(3.187)

PÄx) = ( 3 . 1 88 )

( 3 . 1 8 9)

!c'v p C

T h e s u r f a c e c h a r g e d e n s i t y o n t h e s t r i p a t y = b / 2 i s

P, = Dy(x. y = b/2 + ) - Dy(x, y = b/2~) = €0er[Ev(x,

y = b/2+) - Ey(*, y =_ / r m \ n T T J t , n ? r b= 2 ( 0 * r / A „ I — I c o s - -c o s h ----,

“ V a > a 2a n=lodd

w h i c h i s s e e n t o b e a F o u r i e r s e r i e s i n x f o r t h e s u r f a c e c h a r g e d e n s i t y , p . , . I f w e k n o w t h e s u r f a c e c h a r g e d e n s i t y , w e c o u l d e a s i l y f i n d t h e u n k n o w n c o n s t a n t s , A „ , a n d t h e n t h e c a p a c i t a n c e . W e d o n o t k n o w t h e e x a c t s u r f a c e c h a r g e d e n s i t y , b u t w e c a n m a k e a g o o d g u e s s b y a p p r o x i m a t i n g i t a s a c o n s t a n t o v e r t h e w i d t h o f t h e s t r i p

f o r | * | < W / 2 f o r \ x \ > W / 2 .

E q u a t i n g t h i s t o ( 3 . 1 8 7 ) a n d u s i n g t h e o r t h o g o n a l i t y p r o p e r t i e s o f t h e c o s ( n n x / a ) f u n c t i o n s g i v e s t h e c o n s t a n t s A „ a s

2asm{nnW/2a)A n =

(n7r)26ofr cosh(H7r£>/2tf)

T h e v o l t a g e o f t h e c e n t e r s t r i p r e l a t i v e t o t h e b o t t o m c o n d u c t o r i s

( 3 . 1 9 0 )

_ [l s/lc 0 V c c

w h e r e c = 3 x 1 0 8 m / s e c .

E X A M P L E 3 . 6 N U M E R I C A L C A L C U L A T I O N O F S T R I P L I N E P A R A M E T E R S

E v a l u a t e t h e a b o v e e x p r e s s i o n s f o r a s t r i p l i n e h a v i n g e r = 2 . 5 5 a n d a = 1 0 0 6 , t o f i n d t h e c h a r a c t e r i s t i c i m p e d a n c e f o r W / b = 0 . 2 5 t o

5 . 0 . C o m p a r e w i t h t h e r e s u l t s f r o m ( 3 . 1 7 9 ) .

rWl 2= I Ps J-wn

{x)dx = W " C / m , ( 3 . 1 9 1)

( 3 . 1 9 2)

F d / m .

odd

T h e t o t a l c h a r g e , p e r u n i t l e n g t h , o n t h e c e n t e r c o n d u c t o r i s

*W / 2

-W/2

s o t h a t t h e c a p a c i t a n c e p e r u n i t l e n g t h o f t h e

s t r i p l i n e i s

Q W

C = — = ----------------------------------------: ------V 2®, 2cisin(n7rW/2a)sinh(nHb/2a)

B=1 (mr)2€o(r cof>h(nnb/2a)odd

T h e c h a r a c t e r i s t i c i m p e d a n c e i s t h e n f o u n d a s

Page 120: Consider a Section of Air

FIGURE 3.25 Microstrip transmission line, (a) Geometry, (b) Electric and magnetic field lines.

120 Chapter 3: Transmission Lines and Waveguides

SolutionA c o m p u t e r p r o g r a m w a s w r i t t e n t o e v a l u a t e ( 3 . 1 9 2 ) . T h e s e r i e s w a s t r u n c a t e d a f t e r 5 0 0 t e r m s , a n d t h e r e s u l t s a r e s h o w n b e l o w .

W/b Numerical Eq.

(3.192)

Formula

Eq.

(3.179)0.25 98.8 86.6 ft

0.50 73.3 62.7

1.0 49.0 41.0

2.0 28.4 24.2

3.5 16.8 15.0

5.0 11.8 10.8

W e s e e t h a t t h e r e s u l t s a r e i n r e a s o n a b l e a g r e e m e n t w i t h t h e c l o s e d - f o r m e q u a t i o n s o f ( 3 . 1 7 9 ) , p a r t i c u l a r l y f o r w i d e r s t r i p s . B e t t e r r e s u l t s c o u l d b e o b t a i n e d i f m o r e s o p h i s t i c a t e d e s t i m a t e s w e r e u s e d f o r t h e c h a r g e d e n s i t y , p s . ■

MICROSTRIP

M i c r o s t r i p l i n e i s o n e o f t h e m o s t p o p u l a r t y p e s o f p l a n a r t r a n s m i s s i o n l i n e s , p r i m a r i l y b e c a u s e i t c a n b e f a b r i c a t e d b y p h o t o l i t h o g r a p h i c p r o c e s s e s a n d i s e a s i l y i n t e g r a t e d w i t h o t h e r p a s s i v e a n d a c t i v e m i c r o w a v e d e v i c e s . T h e g e o m e t r y o f a m i c r o s t r i p l i n e i s s h o w n i n F i g u r e 3 . 2 5 a . A c o n d u c t o r o f w i d t h W i s p r i n t e d o n a t h i n , g r o u n d e d d i e l e c t r i c s u b s t r a t e o f t h i c k n e s s d a n d r e l a t i v e p e r m i t t i v i t y e r \ a s k e t c h o f t h e f i e l d l i n e s i s s h o w n i n F i g u r e 3 . 2 5 b .

I f t h e d i e l e c t r i c w e r e n o t p r e s e n t ( e r = 1 ) , w e c o u l d t h i n k o f t h e l i n e a s a t w o - w i r e l i n e c o n s i s t i n g o f t w o f l a t s t r i p c o n d u c t o r s o f

w i d t h W , s e p a r a t e d b y a d i s t a n c e 2 d ( t h e

Page 121: Consider a Section of Air

3.8 Microstrip 121

Page 122: Consider a Section of Air

122 Chapter 3: Transmission Lines and Waveguides

g r o u n d p l a n e c a n b e r e m o v e d v i a i m a g e t h e o r y ) . I n t h i s c a s e w e w o u l d h a v e a s i m p l e T E M t r a n s m i s s i o n l i n e , w i t h v p = c a n d = k o .

T h e p r e s e n c e o f t h e d i e l e c t r i c , a n d p a r t i c u l a r l y t h e f a c t t h a t t h e d i e l e c t r i c d o e s n o t f i l l t h e a i r r e g i o n a b o v e t h e s t r i p ( v > d ) , c o m p l i c a t e s t h e b e h a v i o r a n d a n a l y s i s o f m i c r o s t r i p l i n e . U n l i k e s t r i p l i n e , w h e r e a l l t h e f i e l d s a r e c o n t a i n e d w i t h i n a h o m o g e n e o u s d i e l e c t r i c r e g i o n , m i c r o s t r i p h a s s o m e ( u s u a l l y m o s t ) o f i t s f i e l d l i n e s i n t h e d i e l e c t r i c r e g i o n , c o n c e n t r a t e d b e t w e e n t h e s t r i p c o n d u c t o r a n d t h e g r o u n d p l a n e , a n d s o m e f r a c t i o n i n t h e a i r r e g i o n a b o v e t h e s u b s t r a t e . F o r t h i s r e a s o n t h e m i c r o s t r i p l i n e c a n n o t s u p p o r t a p u r e T E M w a v e , s i n c e t h e p h a s e v e l o c i t y o f T E M f i e l d s i n t h e d i e l e c t r i c r e g i o n w o u l d b e c / V ? 7 , b u t t h e p h a s e v e l o c i t y o f T E M f i e l d s i n t h e a i r r e g i o n w o u l d b e c . T h u s , a p h a s e m a t c h a t t h e d i e l e c t r i c - a i r i n t e r f a c e w o u l d b e i m p o s s i b l e t o a t t a i n f o r a T E M -t y p e w a v e .

I n a c t u a l i t y , t h e e x a c t f i e l d s o f a m i c r o s t r i p l i n e c o n s t i t u t e a h y b r i d T M - T E w a v e , a n d r e q u i r e m o r e a d v a n c e d a n a l y s i s t e c h n i q u e s t h a n w e a r e p r e p a r e d t o d e a l w i t h h e r e . I n m o s t p r a c t i c a l a p p l i c a t i o n s , h o w e v e r , t h e d i e l e c t r i c s u b s t r a t e i s e l e c t r i c a l l y v e r y t h i n ( d A . ) , a n d s o t h e f i e l d s a r e q u a s i - T E M . I n o t h e r w o r d s , t h e f i e l d s a r e e s s e n t i a l l y t h e s a m e a s t h o s e o f t h e s t a t i c c a s e . T h u s , g o o d a p p r o x i m a t i o n s f o r t h e p h a s e v e l o c i t y , p r o p a g a t i o n c o n s t a n t , a n d c h a r a c t e r i s t i c i m p e d a n c e c a n b e o b t a i n e d f r o m s t a t i c o r q u a s i -s t a t i c s o l u t i o n s . T h e n t h e p h a s e v e l o c i t y a n d p r o p a g a t i o n c o n s t a n t c a n b e e x p r e s s e d a s

<3-194>

w h e r e ( e i s t h e e f f e c t i v e d i e l e c t r i c c o n s t a n t o f t h e m i c r o s t r i p l i n e . S i n c e s o m e o f t h e f i e l d l i n e s a r e i n t h e d i e l e c t r i c r e g i o n a n d s o m e a r e i n a i r , t h e e f f e c t i v e d i e l e c t r i c c o n s t a n t s a t i s f i e s t h e r e l a t i o n

1 •< < 6r,

a n d i s d e p e n d e n t o n t h e s u b s t r a t e t h i c k n e s s , d , a n d c o n d u c t o r w i d t h , W ,

W e w i l l f i r s t p r e s e n t d e s i g n f o r m u l a s f o r t h e e f f e c t i v e d i e l e c t r i c c o n s t a n t a n d c h a r a c t e r i s t i c i m p e d a n c e o f m i c r o s t r i p l i n e ; t h e s e r e s u l t s a r e c u r v e - f i t a p p r o x i m a t i o n s t o r i g o r o u s q u a s i - s t a t i c s o l u t i o n s [ 8 ] , [ 9 ] . T h e n w e w i l l o u t l i n e a n u m e r i c a l m e t h o d o f s o l u t i o n ( s i m i l a r t o t h a t u s e d i n t h e p r e v i o u s s e c t i o n f o r s t r i p l i n e ) f o r t h e c a p a c i t a n c e p e r u n i t l e n g t h o f m i c r o s t r i p l i n e .

Formulas for Effective Dielectric Constant, Characteristic Impedance, and Attenuation

T h e e f f e c t i v e d i e l e c t r i c c o n s t a n t o f a m i c r o s t r i p l i n e i s g i v e n a p p r o x i m a t e l y b y

Page 123: Consider a Section of Air

3.8 Microstrip 123

+ I (3.195) 2 2 s/\ + 12d/W

T h e e f f e c t i v e d i e l e c t r i c c o n s t a n t c a n b e i n t e r p r e t e d a s t h e d i e l e c t r i c c o n s t a n t o f a h o m o g e n e o u s m e d i u m t h a t r e p l a c e s t h e a i r a n d d i e l e c t r i c r e g i o n s o f t h e m i c r o s t r i p , a s s h o w n i n F i g u r e 3 . 2 6 . T h e p h a s e v e l o c i t y a n d p r o p a g a t i o n c o n s t a n t a r e t h e n g i v e n b y ( 3 . 1 9 3 ) a n d ( 3 . 1 9 4 ) .

Page 124: Consider a Section of Air

for W/d < 1

for W/d <2

f o r W/d >

2 , ( 3 . 1 9 7 )

W

~d

w h e r eB =

( 3 . 1 98 )

124 Chapter 3: Transmission Lines and Waveguides

G i v e n t h e d i m e n s i o n s o f t h e m i c r o s t r i p l i n e , t h e c h a r a c t e r i s t i c i m p e d a n c e c a n b e c a l c u l a t e d a s

6 0 / 8 d W \

F o r a g i v e n c h a r a c t e r i s t i c i m p e d a n c e Z o a n d d i e l e c t r i c c o n s t a n t e r , t h e W / d r a t i o c a n b e f o u n d a s

ieA

a _ * / i + i + i z « ( o .23 + M ) 60 V 2 e r + 1 \ e r )

3 7 7 ? r 2 Z 0 s / T r '

C o n s i d e r i n g m i c r o s t r i p a s a q u a s i - T E M l i n e , t h e a t t e n u a t i o n d u e t o d i e l e c t r i c l o s s c a n b e d e t e r m i n e d a s

k o ( r ( C ' - 1 ) t a n 8

2 , / g f c , - l ) ^

w h e r e t a n 8 i s t h e l o s s t a n g e n t o f t h e d i e l e c t r i c . T h i s r e s u l t i s d e r i v e d f r o m ( 3 . 3 0 ) b y m u l t i p l y i n g b y a “ f i l l i n g f a c t o r , ”

f r ( g « ~ 1 )¿Atr ~ 1)’

w h i c h a c c o u n t s f o r t h e f a c t t h a t t h e f i e l d s a r o u n d t h e m i c r o s t r i p l i n e a r e p a r t l y i n a i r ( l o s s l e s s ) a n d p a r t l y i n t h e d i e l e c t r i c . T h e a t t e n u a t i o n d u e t o c o n d u c t o r l o s s i s g i v e n a p p r o x i m a t e l y b y [ 8 ]

w h e r e R s = ^ a ) f i q / 2 o i s t h e s u r f a c e r e s i s t i v i t y o f t h e c o n d u c t o r . F o r m o s t m i c r o s t r i p

( 3 . 1 9 6)

Z f , =

f o r W/d> 1.V Ü [ w/d + 1 . 3 9 3 + 0 . 6 6 7 I n ( W/d + 1 . 4 4 4 ) ]

1207T

( 3 . 1 9 9)

N p / m ,Clc = R,z 0 w

FIGURE 3.26 Equivalent geometry of quasi-TEM microstnp line, where the dielectric slab of thickness d and relative permittivity er has been replaced with a homogeneous medium of effective relative permittivity, et.

Page 125: Consider a Section of Air

3.8 Microstrip 125s u b s t r a t e s , c o n d u c t o r l o s s i s m u c h m o r e s i g n i f i c a n t t h a n d i e l e c t r i c l o s s ; e x c e p t i o n s m a y o c c u r w i t h s o m e s e m i c o n d u c t o r s u b s t r a t e s ,

h o w e v e r .

E X A M P L E 3 . 7 M I C R O S T R I P D E S I G N

C a l c u l a t e t h e w i d t h a n d l e n g t h o f a m i c r o s t r i p l i n e f o r a 5 0 c h a r a c t e r i s t i c i m p e d a n c e a n d a 9 0 ° p h a s e s h i f t a t 2 . 5 G H z . T h e s u b s t r a t e t h i c k n e s s i s d = 0 . 1 2 7 c m , w i t h e r = 2 . 2 0 .

SolutionW e f i r s t f i n d W / d f o r Z q = 5 0 £ 2 , a n d i n i t i a l l y g u e s s t h a t W / d > 2 . F r o m ( 3 . 1 9 7 ) ,

B = 7 . 9 8 5 , W / d = 3 . 0 8 1 .

S o W / d > 2 ; o t h e r w i s e w e w o u l d u s e t h e e x p r e s s i o n f o r W / d < 2 . T h e n W = 3 . 0 8 1 * / = 0 . 3 9 1 c m . F r o m ( 3 . 1 9 5 ) t h e e f f e c t i v e d i e l e c t r i c c o n s t a n t i s

6 , = 1 . 8 7 .

T h e l i n e l e n g t h , i , f o r a 9 0 ° p h a s e s h i f t i s f o u n d a s

0 = 9 0 = = / ^ = * / r e k 0 e ,

k 0 = = 5 2 . 3 5 m - 1 , c

( _ 9 0 ° ( t / 1 8 0 ° ) = 2 [ 9 e m

- v / c 7 * o ■

An Approximate Electrostatic Solution

W e n o w l o o k a t a n a p p r o x i m a t e q u a s i - s t a t i c s o l u t i o n f o r t h e m i c r o s t r i p l i n e , s o t h a t t h e a p p e a r a n c e o f d e s i g n e q u a t i o n s l i k e t h o s e o f ( 3 . 1 9 5 ) - ( 3 . 1 9 7 ) i s n o t a c o m p l e t e m y s t e r y . T h i s a n a l y s i s i s v e r y s i m i l a r t o t h a t c a r r i e d o u t f o r s t r i p l i n e i n t h e p r e v i o u s s e c t i o n . A s i n t h a t a n a l y s i s , i t i s a g a i n c o n v e n i e n t t o p l a c e c o n d u c t i n g s i d e w a l l s o n t h e m i c r o s t r i p l i n e , a s s h o w n i n F i g u r e 3 . 2 7 . T h e s i d e w a l l s a r e p l a c e d a t x = ± « / 2 , w h e r e a d , s o t h a t t h e w a l l s s h o u l d n o t p e r t u r b t h e f i e l d l i n e s l o c a l i z e d a r o u n d t h e s t r i p c o n d u c t o r . W e t h e n c a n s o l v e L a p l a c e ’ s e q u a t i o n i n t h e r e g i o n b e t w e e n t h e s i d e w a l l s :

V , 1< l > ( ; t , y ) = 0 , f o r | x ( < a / 2 , 0 < y < o o , ( 3 . 2 0 0 )

1B - 1 - ln(2B - 1) + i { l n ( f i - 1 ) +

2er

, Jt

Page 126: Consider a Section of Air

126 Chapter 3: Transmission Lines and Waveguides

i

FIGURE 3.27 Geometry of a microstrip line with conducting sidewalls.

Page 127: Consider a Section of Air

P,(x) = (3.207)

3.8 Microstrip 127

w i t h b o u n d a r y c o n d i t i o n s ,

4 > ( x , y ) = 0, a t x = ±a/2,

< £ ( j r , y ) = 0, a t > > = 0,oo.

( 3 . 2 0 1 a)

( 3 . 2 0 1 b)

S i n c e t h e r e a r e t w o r e g i o n s d e f i n e d b y t h e a i r / d i e l e c t r i c i n t e r f a c e , w i t h a c h a r g e d i s c o n t i n u i t y o n t h e s t r i p , w e w i l l h a v e s e p a r a t e e x p r e s s i o n s f o r < t > ( x , y ) i n t h e s e r e g i o n s . S o l v i n g ( 3 . 2 0 0 ) b y t h e m e t h o d o f s e p a r a t i o n o f v a r i a b l e s a n d a p p l y i n g t h e b o u n d a r y c o n d i t i o n s o f ( 3 . 2 0 1 a , b ) g i v e s t h e g e n e r a l s o l u t i o n s a s

“ mix . nny > A „ c o s -----s m h ------n=i a aodd00 mit y£ B„ cos—<™/a ntj

aodd

f o r 0 < y < d

f o r d < y <

o o .

0(x, y) = ( 3 . 2 0 2)

N o w t h e p o t e n t i a l m u s t b e c o n t i n u o u s a t y = d, s o f r o m ( 3 . 2 0 2 ) w e h a v e t h a t

nnd = B„e- n ” d , a .A„ s i n h ( 3 . 2 0 3)

s o < J ) ( x , y) c a n b e w r i t t e n a s

2° mix . , nny 2An c o s--------------------s i n h ------n=l & &odd

f o r 0 < y < d

f o r d < y <

o o .

< £ ( * , y ) =

( 3 . 2 0 4)nndMIX -nx(y-d)/aAn c o s s i n h n —1 o

aodd

T h e r e m a i n i n g c o n s t a n t s , A „ , c a n b e f o u n d b y c o n s i d e r i n g t h e s u r f a c e c h a r g e d e n s i t y o n t h e s t r i p . W e f i r s t f i n d Ey = — 3 <t>/dy:

^ /nn\ nnx .nny— / A„ I — ) c o s ------c o s h —

V a / a aodd *

* , /nn\ nnx . , nnd> A„ I — ) cos-----------sinh —n=i V a / a a

f o r 0 < y <

d f o r d < y <

o o .

E y = ( 3 . 2 0 5)~nj r (y~d) ja

T h e n t h e s u r f a c e c h a r g e d e n s i t y o n t h e s t r i p a t y = d i s

p, = D y (x, y = d + ) — D y (x , y = d~)

= eoE y (x , y = d + ) — eoe r E y (x, y = d~)

/nn\ nnx f . nnd nnd 1= to ) A„ I — ) cos-------------- smh-----------(- er cosh------- ,

“ ' V a / a l a a In = l * - - *odd

( 3 . 2 0 6)

w h i c h i s s e e n t o b e a F o u r i e r s e r i e s i n x f o r t h e s u r f a c e c h a r g e d e n s i t y , ps. A s f o r t h e s t r i p l i n e c a s e , w e c a n a p p r o x i m a t e t h e c h a r g e d e n s i t y o n t h e m i c r o s t r i p l i n e b y a u n i f o r m d i s t r i b u t i o n :

f o r I * | < W/2 f o r I * | > W/2.

Page 128: Consider a Section of Air

( 3 . 2 08 )

( 3 . 2 09 )

/ w/i

•W/2

( 3 . 2 10 )

( 3 . 2 1 1)

Co

( 3 . 2 13 )

Z 0 =

128 Chapter 3: Transmission Lines and Waveguides

E q u a t i n g ( 3 . 2 0 7 ) t o ( 3 . 2 0 6 ) a n d u s i n g t h e o r t h o g o n a l i t y o f t h e c o s mix/a f u n c t i o n s g i v e s t h e c o n s t a n t s A n a s

4 a s i n n n W / 2 aA „ =

( n j r ) 2 e o [ s i n h ( n j r d / a ) + e r c o s h i n n d / a ) ]

T h e v o l t a g e o f t h e s t r i p r e l a t i v e t o t h e g r o u n d p l a n e i s* 00 mid

C JS, miV = — I Ey(x = 0. y)dy = } A„ sinh —

Jo an = Iodd

T h e t o t a l c h a r g e , p e r u n i t l e n g t h , o n t h e c e n t e r s t r i p i s

'W/2p , ( x ) d x = W C / m ,

s o t h e s t a t i c c a p a c i t a n c e p e r u n i t l e n g t h o f t h e m i c r o s t r i p l i n e i s

1C = — — —

y 004a sin(nirW/2a) sinh(nnd/a)

„ — i ( « H - ) 2 l V € o [ s m h ( n 7 r r f / a ) + e r c o s h ( m i d / a )oikl

N o w t o f i n d t h e e f f e c t i v e d i e l e c t r i c c o n s t a n t , w e c o n s i d e r t w o c a s e s o f c a p a c i t a n c e :

L e t C = c a p a c i t a n c e p e r u n i t l e n g t h o f t h e m i c r o s t r i p l i n e w i t h a

d i e l e c t r i c s u b s t r a t e ( e , * 1 )L e t C 0 = c a p a c i t a n c e p e r u n i t l e n g t h o f t h e m i c r o s t r i p l i n e w i t h a n a i r

d i e l e c t r i c ( € r = 1 )

S i n c e c a p a c i t a n c e i s p r o p o r t i o n a l t o t h e d i e l e c t r i c c o n s t a n t o f t h e m a t e r i a l h o m o g e n e o u s l y f i l l i n g t h e r e g i o n a r o u n d t h e c o n d u c t o r s , w e h a v e t h a t

( 3 . 2 1 2 )

S o ( 3 . 2 1 2 ) c a n b e e v a l u a t e d b y c o m p u t i n g ( 3 . 2 1 1 ) t w i c e ; o n c e w i t h e r e q u a l t o t h e d i e l e c t r i c c o n s t a n t o f t h e s u b s t r a t e ( f o r C ) , a n d t h e n w i t h € , = 1 ( f o r C 0 ) . T h e c h a r a c t e r i s t i c i m p e d a n c e i s t h e n

= y/c7 vpC cC '1

w h e r e c = 3 x 1 0 8 m / s e c .

E X A M P L E 3 . 8 N U M E R I C A L C A L C U L A T I O N O F M I C R O S T R I P P A R A M E T E R S

E v a l u a t e t h e a b o v e e x p r e s s i o n s f o r a m i c r o s t r i p l i n e o n a s u b s t r a t e w i t h € , = 2.55. C a l c u l a t e t h e e f f e c t i v e d i e l e c t r i c c o n s t a n t a n d c h a r a c t e r i s t i c i m p e d a n c e f o r W / d = 0.5 t o 10.0, a n d c o m p a r e w i t h t h e

Page 129: Consider a Section of Air

3.9 The Transverse Resonance Technique 129r e s u l t s f r o m ( 3 . 195) a n d ( 3 . 196). L e t a = 100i/.

SolutionA c o m p u t e r p r o g r a m w a s w r i t t e n t o e v a l u a t e ( 3 . 2 1 1 ) f o r e = e o a n d t h e n e = e r e o . T h e n ( 3 . 2 1 2 ) w a s u s e d t o e v a l u a t e t h e e f f e c t i v e d i e l e c t r i c c o n s t a n t , e e , a n d ( 3 . 2 1 3 )

Page 130: Consider a Section of Air

130 Chapter 3: Transmission Lines and Waveguides

t o e v a l u a t e t h e c h a r a c t e r i s t i c i m p e d a n c e , Z 0 . T h e s e r i e s w a s t r u n c a t e d a f t e r 5 0 t e r m s , a n d t h e r e s u l t s a r e s h o w n i n t h e f o l l o w i n g t a b l e .

NumericalSolutions Formulas

W / d f c Z o ( f l ) Z o ( f i )

0.5 1.977 100.9 1.938 119.8

1.0 1.989 94.9 1.990 89.8

2.0 2.036 75.8 2.068 62.2

4.0 2.179 45.0 2.163 39.3

7.0 2.287 29.5 2.245 25,6

10.0 2.351 21.7 2.198 19.1

T h e c o m p a r i s o n i s r e a s o n a b l y g o o d , a l t h o u g h b e t t e r r e s u l t s c o u l d b e o b t a i n e d f r o m t h e a p p r o x i m a t e n u m e r i c a l s o l u t i o n b y u s i n g a b e t t e r e s t i m a t e o f t h e c h a r g e d e n s i t y o n t h e s t r i p . ■

THE TRANSVERSE RESONANCE TECHNIQUE

A c c o r d i n g t o t h e g e n e r a l s o l u t i o n s t o M a x w e l l ’ s e q u a t i o n s f o r T E o r T M w a v e s g i v e n i n S e c t i o n 3 . 1 , a u n i f o r m w a v e g u i d e s t r u c t u r e a l w a y s h a s a p r o p a g a t i o n c o n s t a n t o f t h e f o r m

P = y * J - * c2 = y j k 2 - k \ - k ] , ( 3 . 2 1 4 )

w h e r e k c = ^ J k * + k j i s t h e c u t o f f w a v e n u m b e r o f t h e g u i d e a n d , f o r a g i v e n m o d e , i s a f i x e d f u n c t i o n o f t h e c r o s s - s e c t i o n a l g e o m e t r y o f t h e g u i d e . T h u s , i f w e k n o w k c w e c a n d e t e r m i n e t h e p r o p a g a t i o n c o n s t a n t o f t h e g u i d e . I n p r e v i o u s s e c t i o n s w e d e t e r m i n e d k c b y s o l v i n g t h e w a v e e q u a t i o n i n t h e g u i d e , s u b j e c t t o t h e a p p r o p r i a t e b o u n d a r y c o n d i t i o n s ; t h i s t e c h n i q u e i s v e r y p o w e r f u l a n d g e n e r a l , b u t c a n b e c o m p l i c a t e d f o r c o m p l e x w a v e g u i d e s , e s p e c i a l l y i f d i e l e c t r i c l a y e r s a r e p r e s e n t . I n a d d i t i o n , t h e w a v e e q u a t i o n s o l u t i o n g i v e s a c o m p l e t e f i e l d d e s c r i p t i o n i n s i d e t h e w a v e g u i d e , w h i c h i s m u c h m o r e i n f o r m a t i o n t h a n w e r e a l l y n e e d i f w e a r e o n l y i n t e r e s t e d i n t h e p r o p a g a t i o n c o n s t a n t o f t h e g u i d e . T h e t r a n s v e r s e r e s o n a n c e t e c h n i q u e e m p l o y s a t r a n s m i s s i o n l i n e m o d e l o f t h e t r a n s v e r s e c r o s s s e c t i o n o f t h e w a v e g u i d e , a n d g i v e s a m u c h s i m p l e r a n d m o r e d i r e c t s o l u t i o n f o r t h e c u t o f f f r e q u e n c y . T h i s i s a n o t h e r e x a m p l e w h e r e c i r c u i t a n d t r a n s m i s s i o n f i n e t h e o r y c a n b e u s e d t o s i m p l i f y t h e f i e l d t h e o r y s o l u t i o n .

T h e t r a n s v e r s e r e s o n a n c e p r o c e d u r e i s b a s e d o n t h e f a c t t h a t i n a w a v e g u i d e a t c u t o f f , t h e f i e l d s f o r m s t a n d i n g w a v e s i n t h e t r a n s v e r s e p l a n e o f t h e g u i d e , a s c a n b e i n f e r r e d f r o m t h e “ b o u n c i n g p l a n e w a v e ” i n t e r p r e t a t i o n o f w a v e g u i d e m o d e s d i s c u s s e d i n S e c t i o n 3 . 2 . T h i s s i t u a t i o n c a n b e m o d e l e d w i t h a n e q u i v a l e n t t r a n s m i s s i o n l i n e c i r c u i t o p e r a t i n g a t r e s o n a n c e . O n e o f t h e c o n d i t i o n s o f s u c h a r e s o n a n t l i n e i s t h e f a c t t h a t , a t a n y p o i n t o n t h e l i n e , t h e s u m o f t h e i n p u t i m p e d a n c e s s e e n l o o k i n g t o e i t h e r s i d e m u s t b e z e r o . T h a t i s ,

Page 131: Consider a Section of Air

3.9 The Transverse Resonance Technique 131Z l ( x ) + Z £ ( x ) = 0 , f o r a l l x , ( 3 . 2 1 5 )

w h e r e Z [ n ( x ) a n d Z f a ( x ) a r e t h e i n p u t i m p e d a n c e s s e e n l o o k i n g t o t h e r i g h t a n d l e f t , r e s p e c t i v e l y , a t t h e p o i n t x o n t h e r e s o n a n t l i n e .

Page 132: Consider a Section of Air

( 3 . 2 1 6a )

Z a =

( 3 . 2 17 )

( 3 . 2 18 )

or

trko - k] d = kl-k]

E q u a t i o n s ( 3 . 2 1 7 ) a n d ( 3 . 2 1 8 ) c a n t h e n b e s o l v e d ( n u m e r i c a l l y o r g r a p h i c a l l y ) t o o b t a i n kyd a n d kya. T h e r e w i l l b e a n i n f i n i t e n u m b e r o f s o l u t i o n s , c o r r e s p o n d i n g t o t h e n d e p e n d e n c e ( n u m b e r o f v a r i a t i o n s i n y) o f t h e T E o „ m o d e .

a xFIGURE 3.28 A rectangular waveguide partially filled with dielectric and the transverse resonance equivalent circuit.

132 Chapter 3: Transmission Lines and Waveguides

T h e t r a n s v e r s e r e s o n a n c e t e c h n i q u e o n l y g i v e s r e s u l t s f o r t h e c u t o f f f r e q u e n c y o f t h e g u i d e . I f f i e l d s o r a t t e n u a t i o n d u e t o c o n d u c t o r l o s s a r e n e e d e d , t h e c o m p l e t e f i e l d t h e o r y s o l u t i o n w i l l b e r e q u i r e d . T h e p r o c e d u r e w i l l n o w b e i l l u s t r a t e d w i t h a n e x a m p l e .

TE0n Modes of a Partially Loaded Rectangular Waveguide

T h e t r a n s v e r s e r e s o n a n c e t e c h n i q u e i s p a r t i c u l a r l y u s e f u l w h e n t h e g u i d e c o n t a i n s d i e l e c t r i c l a y e r s b e c a u s e t h e b o u n d a r y c o n d i t i o n s a t t h e d i e l e c t r i c i n t e r f a c e s , w h i c h r e q u i r e t h e s o l u t i o n o f s i m u l t a n e o u s a l g e b r a i c e q u a t i o n s i n t h e f i e l d t h e o r y a p p r o a c h , c a n b e e a s i l y h a n d l e d a s j u n c t i o n s o f d i f f e r e n t t r a n s m i s s i o n l i n e s . A s a n e x a m p l e , c o n s i d e r t h e r e c t a n g u l a r w a v e g u i d e p a r t i a l l y f i l l e d w i t h d i e l e c t r i c , a s s h o w n i n F i g u r e 3 . 2 8 . T o f i n d t h e c u t o f f f r e q u e n c i e s f o r t h e T E o „ m o d e s , t h e e q u i v a l e n t t r a n s v e r s e r e s o n a n c e c i r c u i t s h o w n i n t h e f i g u r e c a n b e u s e d . T h e l i n e f o r 0 < y < t r e p r e s e n t s t h e d i e l e c t r i c -f i l l e d p a r t o f t h e g u i d e , a n d h a s a t r a n s v e r s e p r o p a g a t i o n c o n s t a n t k v j a n d a c h a r a c t e r i s t i c i m p e d a n c e f o r T E m o d e s g i v e n b y

Zj - — = koVo kyd kyd

w h e r e k o = r ) o = V M o / e o - F o r t < y < b , t h e g u i d e i s a i r f i l l e d a n d h a s a t r a n sv e r s e p r o p a g a t i o n c o n s t a n t k y a a n d a n e q u i v a l e n t c h a r a c t e r i s t i c i m p e d a n c e g i v e n b y

( 3 . 2 1 6 b )\ V < '

A p p l y i n g c o n d i t i o n ( 3 . 2 1 5 ) y i e l d s

kya tan kydt + kyd tan kya(b - t) = 0.

T h i s e q u a t i o n c o n t a i n s t w o u n k n o w n s , k y a a n d k y d . A n a d d i t i o n a l e q u a t i o n i s o b t a i n e d f r o m t h e f a c t t h a t t h e l o n g i t u d i n a l p r o p a g a t i o n c o n s t a n t , / 3 , m u s t b e t h e s a m e i n b o t h r e g i o n s , f o r p h a s e m a t c h i n g o f t h e t a n g e n t i a l f i e l d s a t t h e d i e l e c t r i c i n t e r f a c e . T h u s , w i t h k x = 0 ,

Page 133: Consider a Section of Air

3.10 Wave Velocities and Dispersion 133

3.10

( 3 . 2 20 )

WAVE VELOCITIES AND DISPERSION

S o f a r , w e h a v e e n c o u n t e r e d t w o t y p e s o f v e l o c i t i e s r e l a t e d t o t h e p r o p a g a t i o n o f e l e c t r o m a g n e t i c w a v e s :

• T h e s p e e d o f l i g h t i n a m e d i u m ( 1 / , / / ! ? )• T h e p h a s e v e l o c i t y ( v p = t u / f ) )

T h e s p e e d o f l i g h t i n a m e d i u m i s t h e v e l o c i t y a t w h i c h a p l a n e w a v e w o u l d p r o p a g a t e i n t h a t m e d i u m , w h i l e t h e p h a s e v e l o c i t y i s t h e s p e e d a t w h i c h a c o n s t a n t p h a s e p o i n t t r a v e l s . F o r a T E M p l a n e w a v e , t h e s e t w o v e l o c i t i e s a r e i d e n t i c a l , b u t f o r o t h e r t y p e s o f g u i d e d w a v e p r o p a g a t i o n t h e p h a s e v e l o c i t y m a y b e g r e a t e r o r l e s s t h a n t h e s p e e d o f l i g h t .

I f t h e p h a s e v e l o c i t y a n d a t t e n u a t i o n o f a l i n e o r g u i d e a r e c o n s t a n t s t h a t d o n o t c h a n g e w i t h f r e q u e n c y , t h e n t h e p h a s e o f a s i g n a l t h a t c o n t a i n s m o r e t h a n o n e f r e q u e n c y c o m p o n e n t w i l l n o t b e d i s t o r t e d . I f t h e p h a s e v e l o c i t y i s d i f f e r e n t f o r d i f f e r e n t f r e q u e n c i e s , t h e n t h e i n d i v i d u a l f r e q u e n c y c o m p o n e n t s w i l l n o t m a i n t a i n t h e i r o r i g i n a l p h a s e r e l a t i o n s h i p s a s t h e y p r o p a g a t e d o w n t h e t r a n s m i s s i o n l i n e o r w a v e g u i d e , a n d s i g n a l d i s t o r t i o n w i l l o c c u r . S u c h a n e f f e c t i s c a l l e d d i s p e r s i o n , s i n c e d i f f e r e n t p h a s e v e l o c i t i e s a l l o w t h e “ f a s t e r ” w a v e s t o l e a d i n p h a s e r e l a t i v e t o t h e “ s l o w e r ” w a v e s , a n d t h e o r i g i n a l p h a s e r e l a t i o n s h i p s w i l l g r a d u a l l y b e d i s p e r s e d a s t h e s i g n a l p r o p a g a t e s d o w n t h e l i n e . I n s u c h a c a s e , t h e r e i s n o s i n g l e p h a s e v e l o c i t y t h a t c a n b e a t t r i b u t e d t o t h e s i g n a l a s a w h o l e . H o w e v e r , i f t h e b a n d w i d t h o f t h e s i g n a l i s r e l a t i v e l y s m a l l , o r i f t h e d i s p e r s i o n i s n o t t o o s e v e r e , a g r o u p v e l o c i t y c a n b e d e f i n e d i n a m e a n i n g f u l w a y . T h i s v e l o c i t y t h e n c a n b e u s e d t o d e s c r i b e t h e s p e e d a t w h i c h t h e s i g n a l p r o p a g a t e s .

Group Velocity

A s d i s c u s s e d a b o v e , t h e p h y s i c a l i n t e r p r e t a t i o n o f g r o u p v e l o c i t y i s t h e v e l o c i t y a t w h i c h a n a r r o w b a n d s i g n a l p r o p a g a t e s . W e w i l l d e r i v e t h e r e l a t i o n o f g r o u p v e l o c i t y t o t h e p r o p a g a t i o n c o n s t a n t b y c o n s i d e r i n g a s i g n a l f i t ) i n t h e t i m e d o m a i n . T h e F o u r i e r t r a n s f o r m o f t h i s s i g n a l i s d e f i n e d a s

( 3 . 2 1 9 a )

a n d t h e i n v e r s e t r a n s f o r m i s t h e n

( 3 . 2 1 9 b )

N o w c o n s i d e r t h e t r a n s m i s s i o n l i n e o r w a v e g u i d e o n w h i c h t h e s i g n a l / ( / ) i s p r o p a g a t i n g a s a l i n e a r s y s t e m , w i t h a t r a n s f e r f u n c t i o n Z ( w ) t h a t r e l a t e s t h e o u t p u t , F n ( w ) , o f t h e l i n e t o t h e i n p u t , F ( c o ) , o f t h e l i n e , a s s h o w n i n F i g u r e 3 . 2 9 . T h u s ,

Page 134: Consider a Section of Air

134 Chapter 3: Transmission Lines and Waveguides

F0<,co) = Z(co)F(co).

FJ<o)

F I G U R E 3 . 2 9 A t r a n s m i s s i o n l i n e o r w a v e g u i d e r e p r e s e n t e d a s a l i n e a r s y s t e m w i t h t r a n s f e r f u n c -

tion Z(a>).

FD(U>) = Z(o))F(o])

Page 135: Consider a Section of Air

3.10 Wave Velocities and Dispersion 135

( 3 . 2 21 )

( 3 . 2 22 )

( 3 . 2 24 )

( 3 . 2 2 6)

F o r a l o s s l e s s , m a t c h e d t r a n s m i s s i o n l i n e o r w a v e g u i d e , t h e t r a n s f e r f u n c t i o n Z { a > ) c a n b e e x p r e s s e d a s

Z(w) = Ae~ m = \Z(a>)\e- Jir ,

w h e r e A i s a c o n s t a n t a n d 0 i s t h e p r o p a g a t i o n c o n s t a n t o f t h e l i n e o r g u i d e . T h e t i m e - d o m a i n r e p r e s e n t a t i o n o f t h e o u t p u t s i g n a l , / „ ( / ) , c a n t h e n b e w r i t t e n a s

1fait) = — F(a>)\Z(a>)\€ J(M -^dco. J-00

N o w i f | Z ( w ) | = A i s a c o n s t a n t , a n d t h e p h a s e \ ¡ r o f Z ( c o ) i s a l i n e a r f u n c t i o n o f w , s a y \ f f = a f t ) , t h e n t h e o u t p u t c a n b e e x p r e s s e d a s

1f D ( t ) = — A F ( w ) e ^ ' - a ) d a ) = A f U - a ) , ( 3 . 2 2 3 )

2nJ_00

w h i c h i s s e e n t o b e a r e p l i c a o f / ( / ) , e x c e p t f o r a n a m p l i t u d e f a c t o r , < 4 , a n d t i m e s h i f t , a . T h u s , a t r a n s f e r f u n c t i o n o f t h e f o r m Z ( a > ) = A e ~ ^ u a d o e s n o t d i s t o r t t h e i n p u t s i g n a l . A l o s s l e s s T E M w a v e h a s a p r o p a g a t i o n c o n s t a n t fi = co/c, w h i c h i s o f t h i s f o r m , s o a T E M l i n e i s d i s p e r s i o n l e s s , a n d d o e s n o t l e a d t o s i g n a l d i s t o r t i o n . I f t h e T E M l i n e i s l o s s y , h o w e v e r , t h e a t t e n u a t i o n m a y b e a f u n c t i o n o f f r e q u e n c y , w h i c h c o u l d l e a d t o s i g n a l d i s t o r t i o n .N o w c o n s i d e r a n a r r o w b a n d i n p u t s i g n a l o f t h e f o r m

s ( t ) = / ( f ) c o s a v = R e { . / W “ ” ' } ,

w h i c h r e p r e s e n t s a n a m p l i t u d e m o d u l a t e d c a r r i e r w a v e o f f r e q u e n c y c o „ . A s s u m e t h a t t h e h i g h e s t f r e q u e n c y c o m p o n e n t o f / ( ? ) i s c o m , w h e r e c o m < & c o 0 . T h e F o u r i e r t r a n s f o r m , S ( < a ) , o f i ( i ) , i s

w h e r e w e h a v e u s e d t h e c o m p l e x f o r m o f t h e i n p u t s i g n a l a s e x p r e s s e d i n ( 3 . 2 2 4 ) . W e w i l l t h e n n e e d t o t a k e t h e r e a l p a r t o f

t h e o u t p u t i n v e r s e t r a n s f o r m t o o b t a i n t h e t i m e - d o m a i n o u t p u t s i g n a l . T h e s p e c t r u m s o f F ( a > ) a n d S { u > ) a r e d e p i c t e d i n F i g u r e

3 . 3 0 .T h e o u t p u t s i g n a l s p e c t r u m i s

S„(w) = A F(a) — co0)e il>z ,

- / * J -0 ( 3 . 2 2 5

)S ( f t> )

f(t)e- ia> °'e Ja) 'dt = F(cv - OJ0).

Page 136: Consider a Section of Air

136 Chapter 3: Transmission Lines and Waveguides

Page 137: Consider a Section of Air

3.10 Wave Velocities and Dispersion 137a n d i n t h e t i m e d o m a i n ,

I f 0 0 ■ , s0(!) = —Re I S0(co)e}dco ¿■ft J-oo

( 3 . 2 2 7)

Çü>o+ü

J (On— 0J„

AF(w - ( 0o )e Jia "- f i l ) dw. =

2 71 I n g e n e r a l , t h e p r o p a g a t i o n c o n s t a n t fi m a y b e a c o m p l i c a t e d

f u n c t i o n o f a ) . B u t i f F ( a i ) i s n a r r o w b a n d (a>„, < K & > „ ) , t h e n fi c a n b e l i n e a r i z e d b y u s i n g a T a y l o r s e r i e s e x p a n s i o n a b o u t a>0:

dAdo)

( 3 . 2 2 8)

= P{OJ0) + ( < W - C0o) +

R e t a i n i n g t h e f i r s t t w o t e r m s g i v e s

( 3 . 2 2 9)

P(io) ^ + Po(“> ~ “>o),

Po = P(o>o),w h e r e

ff = ^- ° dco

T h e n a f t e r a c h a n g e o f v a r i a b l e s t o y = w - a>„, t h e e x p r e s s i o n f o r s0(t) b e c o m e s f F(y)e J ('~0'° z)y dy J —

U) ms0(t) = - - R e { 2.71

= A R e { / ( r -

= A / ( f - p'cz) c o s ( w „ / - / 3 0 z ) ,

( 3 . 2 3 0)

w h i c h i s a t i m e - s h i f t e d r e p l i c a o f t h e o r i g i n a l m o d u l a t i o n e n v e l o p e , / ( f ) , o f ( 3 . 2 2 4 ) . T h e v e l o c i t y o f t h i s e n v e l o p e i s t h e g r o u p v e l o c i t y , vg:

- i1 _ ( d P\ Vg &o \da>) ( 3 . 2 3 1

)

EXAMPLE 3.9 WAVEGUIDE WAVE VELOCITIES

C a l c u l a t e t h e g r o u p v e l o c i t y f o r a w a v e g u i d e m o d e p r o p a g a t i n g i n a n a i r - f i l l e d g u i d e . C o m p a r e t h i s v e l o c i t y t o t h e p h a s e v e l o c i t y a n d s p e e d o f l i g h t .

SolutionT h e p r o p a g a t i o n c o n s t a n t f o r a m o d e i n a n a i r - f i l l e d w a v e g u i d e i s 6 = Jkl - kj = Juo/c)2 - k}.

Page 138: Consider a Section of Air

3.11

138 Chapter 3: Transmission Lines and Waveguides

T h e p h a s e v e l o c i t y i s v p = w / / 3 = ( k o c ) / p .S i n c e / 3 < f c 0 , w e h a v e t h a t < c < v p , w h i c h i n d i c a t e s t h a t t h e p h a s e

v e l o c i t y o f a w a v e g u i d e m o d e m a y b e g r e a t e r t h a n t h e s p e e d o f l i g h t , b u t t h e g r o u p v e l o c i t y ( t h e v e l o c i t y o f a n a r r o w b a n d s i g n a l ) w i l l b e l e s s t h a n t h e s p e e d o f l i g h t . ■

SUMMARY OF TRANSMISSION LINES AND WAVEGUIDES

I n t h i s c h a p t e r w e h a v e d i s c u s s e d a v a r i e t y o f t r a n s m i s s i o n l i n e s a n d w a v e g u i d e s ; h e r e w e w i l l s u m m a r i z e s o m e o f t h e b a s i c p r o p e r t i e s o f t h e s e t r a n s m i s s i o n m e d i a a n d t h e i r r e l a t i v e a d v a n t a g e s i n a b r o a d e r c o n t e x t .

I n t h e b e g i n n i n g o f t h i s c h a p t e r w e m a d e t h e d i s t i n c t i o n b e t w e e n T E M , T M , a n d T E w a v e s a n d s a w t h a t t r a n s m i s s i o n l i n e s a n d w a v e g u i d e s c a n b e c a t e g o r i z e d a c c o r d i n g t o w h i c h t y p e o f w a v e s t h e y c a n s u p p o r t . W e h a v e s e e n t h a t T E M w a v e s a r e n o n d i s p e r s i v e , w i t h n o c u t o f f f r e q u e n c y , w h e r e a s T M a n d T E w a v e s e x h i b i t d i s p e r s i o n a n d g e n e r a l l y h a v e n o n z e r o c u t o f f f r e q u e n c i e s . O t h e r e l e c t r i c a l c o n s i d e r a t i o n s i n c l u d e b a n d w i d t h , a t t e n u a t i o n , a n d p o w e r h a n d l i n g c a p a c i t y . M e c h a n i c a l f a c t o r s a r e a l s o v e r y i m p o r t a n t , h o w e v e r , a n d i n c l u d e s u c h c o n s i d e r a t i o n s a s p h y s i c a l s i z e ( v o l u m e a n d w e i g h t ) , e a s e o f f a b r i c a t i o n ( c o s t ) , a n d t h e a b i l i t y t o b e i n t e g r a t e d w i t h o t h e r d e v i c e s ( a c t i v e o r p a s s i v e ) . T a b l e 3 . 6 c o m p a r e s s e v e r a l t y p e s o f t r a n s m i s s i o n m e d i a w i t h r e g a r d t o t h e a b o v e c o n s i d e r a t i o n s ; t h i s t a b l e o n l y g i v e s g e n e r a l g u i d e l i n e s , a s s p e c i f i c c a s e s m a y g i v e b e t t e r o r w o r s e r e s u l t s t h a n t h o s e i n d i c a t e d .

Other Types of Lines and Guides

W h i l e w e h a v e d i s c u s s e d t h e m o s t c o m m o n t y p e s o f w a v e g u i d e s a n d t r a n s m i s s i o n l i n e s , t h e r e a r e m a n y o t h e r g u i d e s a n d l i n e s ( a n d v a r i a t i o n s ) t h a t w e h a v e n o t d i s c u s s e d . A f e w o f t h e m o r e p o p u l a r t y p e s a r e b r i e f l y m e n t i o n e d h e r e .

R i d g e w a v e g u i d e . T h e b a n d w i d t h o f a r e c t a n g u l a r w a v e g u i d e i s , f o r p r a c t i c a l p u r p o s e s , l e s s t h a n a n o c t a v e ( a 2 : 1 f r e q u e n c y r a n g e ) . T h i s i s b e c a u s e t h e T E 2 0 m o d e b e g i n s t o p r o p a g a t e a t a f r e q u e n c y e q u a l t o t w i c e t h e c u t o f f f r e q u e n c y o f t h e T E ) 0 m o d e . T h e r i d g e w a v e g u i d e , s h o w n i n F i g u r e 3 . 3 1 , c o n s i s t s o f a r e c t a n g u l a r w a v e g u i d e l o a d e d w i t h c o n d u c t i n g r i d g e s o n

TABLE 3.6 Comparison of Common Transmission Lines and WaveguidesCharacteristic Coax Waveguide Stripline Microstrip

Modes: Preferred TEM TE1P TEM Quasi-TEM

Other TM.TE TM,TE TM,TE Hybrid TM.TE

Dispersion None Medium None Low

Bandwidth High Low High High

Loss Medium Low High High

Power capacity Medium High Low Low

Physical size Large Large Medium Small

Ease of fabrication Medium Medium Easy Easy

Integration with Hard Hard Fair Easy

other components

Page 139: Consider a Section of Air

3.11 Summary of Transmission Lines and Waveguides 139

F I G U R E 3 . 3 1 C r o s s s e c t i o n o f a r i d g e w a v e g u i d e .

t h e t o p a n d / o r b o t t o m w a l l s . T h i s l o a d i n g t e n d s t o l o w e r t h e c u t o f f f r e q u e n c y o f t h e d o m i n a n t m o d e , l e a d i n g t o i n c r e a s e d b a n d w i d t h a n d b e t t e r i m p e d a n c e c h a r a c t e r i s t i c s . S u c h a g u i d e i s o f t e n u s e d f o r i m p e d a n c e m a t c h i n g p u r p o s e s , w h e r e t h e r i d g e m a y b e t a p e r e d a l o n g t h e l e n g t h o f t h e g u i d e . T h e p r e s e n c e o f t h e r i d g e , h o w e v e r , r e d u c e s t h e p o w e r - h a n d l i n g c a p a c i t y o f t h e w a v e g u i d e .

D i e l e c t r i c w a v e g u i d e . A s w e h a v e s e e n f r o m o u r s t u d y o f s u r f a c e w a v e s , m e t a l l i c c o n d u c t o r s a r e n o t n e c e s s a r y t o c o n f i n e a n d s u p p o r t a p r o p a g a t i n g e l e c t r o m a g n e t i c f i e l d . T h e d i e l e c t r i c w a v e g u i d e s h o w n i n F i g u r e 3 . 3 2 i s a n o t h e r e x a m p l e o f s u c h a g u i d e , w h e r e e r 2 , t h e d i e l e c t r i c c o n s t a n t o f t h e r i d g e , i s u s u a l l y g r e a t e r t h a n e r i , t h e d i e l e c t r i c c o n s t a n t o f t h e s u b s t r a t e . T h e f i e l d s a r e t h u s m o s t l y c o n f i n e d t o t h e a r e a a r o u n d t h e d i e l e c t r i c r i d g e . T h i s t y p e o f g u i d e s u p p o r t s T M a n d T E m o d e s , a n d i s c o n v e n i e n t f o r i n t e g r a t i o n w i t h a c t i v e d e v i c e s . I t s s m a l l s i z e m a k e s i t u s e f u l f o r m i l l i m e t e r w a v e t o o p t i c a l f r e q u e n c i e s , a l t h o u g h i t c a n b e v e r y l o s s y a t b e n d s o r j u n c t i o n s i n t h e r i d g e f i n e . M a n y v a r i a t i o n s i n t h i s b a s i c g e o m e t r y a r e p o s s i b l e .

S l o t l i n e . O f t h e m a n y t y p e s o f p l a n a r l i n e s t h a t h a v e b e e n p r o p o s e d , s l o t l i n e p r o b a b l y r a n k s n e x t , b e h i n d m i c r o s t r i p a n d s t r i p l i n e , i n t e r m s o f p o p u l a r i t y . T h e g e o m e t r y o f a s l o t l i n e i s s h o w n i n F i g u r e 3 . 3 3 . I t c o n s i s t s o f a t h i n s l o t i n t h e g r o u n d p l a n e o n o n e s i d e o f a d i e l e c t r i c s u b s t r a t e . T h u s , l i k e m i c r o s t r i p , t h e t w o c o n d u c t o r s o f s l o t l i n e l e a d t o a q u a s i - T E M t y p e o f m o d e . C h a n g i n g t h e w i d t h o f t h e s l o t c h a n g e s t h e c h a r a c t e r i s t i c i m p e d a n c e o f t h e l i n e .

C o p l a n a r w a v e g u i d e . A s t r u c t u r e s i m i l a r t o s l o t l i n e i s c o p l a n a r w a v e g u i d e , s h o w n i n F i g u r e 3 . 3 4 . C o p l a n a r w a v e g u i d e c a n b e t h o u g h t o f a s a s l o t l i n e w i t h a t h i r d c o n d u c t o r c e n t e r e d i n t h e s l o t r e g i o n . B e c a u s e o f t h e p r e s e n c e o f t h i s a d d i t i o n a l c o n d u c t o r , t h i s t y p e o f l i n e c a n s u p p o r t e v e n o r o d d q u a s i -T E M m o d e s , d e p e n d i n g o n w h e t h e r t h e ¿ - f i e l d s i n t h e t w o s l o t s a r e i n t h e o p p o s i t e d i r e c t i o n , o r t h e s a m e d i r e c t i o n . C o p l a n a r w a v e g u i d e i s p a r t i c u l a r l y u s e f u l f o r f a b r i c a t i n g a c t i v e c i r c u i t r y , d u e t o t h e p r e s e n c e o f t h e c e n t e r c o n d u c t o r a n d t h e c l o s e p r o x i m i t y o f t h e g r o u n d p l a n e s .

C o v e r e d m i c r o s t r i p . M a n y v a r i a t i o n s o f t h e b a s i c m i c r o s t r i p g e o m e t r y a r e p o s s i b l e , b u t o n e o f t h e m o r e c o m m o n i s c o v e r e d m i c r o s t r i p , s h o w n i n F i g u r e 3 . 3 5 . T h e m e t a l l i c c o v e r p l a t e i s o f t e n u s e d f o r e l e c t r i c a l s h i e l d i n g a n d p h y s i c a l p r o t e c t i o n o f t h e m i c r o s t r i p c i r c u i t

FIGURE 3.32 Dielectric waveguide geometry.

Page 140: Consider a Section of Air

140 Chapter 3: Transmission Lines and Waveguides

0.025

Vo

a n d i s u s u a l l y s i t u a t e d s e v e r a l s u b s t r a t e t h i c k n e s s e s a w a y f r o m t h e c i r c u i t . I t s p r e s e n c e c a n , h o w e v e r , p e r t u r b t h e o p e r a t i o n o f t h e c i r c u i t e n o u g h s o t h a t

i t s e f f e c t m u s t b e t a k e n i n t o a c c o u n t d u r i n g d e s i g n .

P O I N T O F I N T E R E S T : P o w e r C a p a c i t y o f T r a n s m i s s i o n L i n e s

T h e p o w e r h a n d l i n g c a p a c i t y o f a n a i r - f i l l e d t r a n s m i s s i o n l i n e o r w a v e g u i d e i s l i m i t e d b y v o l t a g e b r e a k d o w n , w h i c h o c c u r s a t a f i e l d

s t r e n g t h o f a b o u t E d = 3 x 1 0 6 V / m f o r r o o m t e m p e r a t u r e a i r a t s e a l e v e l p r e s s u r e .

I n a n a i r - f i l l e d c o a x i a l l i n e , t h e e l e c t r i c f i e l d v a r i e s a s E „ = V 0 / ( p I n b / a ) , w h i c h h a s a m a x i m u m a t p = a . T h u s t h e m a x i m u m v o l t a g e b e f o r e b r e a k d o w n i s

K i m = E j a I n - , ( p e a k - t o - p e a k ) , a

a n d t h e m a x i m u m p o w e r c a p a c i t y i s t h e n

P -Y™ - In -m a X 2 Z 0 n o a '

A s m i g h t b e e x p e c t e d , t h i s r e s u l t s h o w s t h a t p o w e r c a p a c i t y c a n b e i n c r e a s e d b y u s i n g a l a r g e r c o a x i a l c a b l e ( l a r g e r a , b w i t h f i x e d b / a f o r t h e s a m e c h a r a c t e r i s t i c i m p e d a n c e ) . B u t p r o p a g a t i o n o f h i g h e r o r d e r m o d e s l i m i t s t h e m a x i m u m o p e r a t i n g f r e q u e n c y f o r a g i v e n c a b l e s i z e . T h u s , t h e r e i s a n u p p e r l i m i t o n t h e p o w e r c a p a c i t y o f a c o a x i a l l i n e f o r a g i v e n m a x i m u m o p e r a t i n g f r e q u e n c y , w h i c h c a n b e s h o w n t o b e g i v e n b y

( 5 ^ ) ’ = 5 . 8 X 1 0 « ( j i . ) ' .\ Jm&x / \J max/

A s a n e x a m p l e , a t 1 0 G H z t h e m a x i m u m p e a k p o w e r c a p a c i t y o f a n y c o a x i a l l i n e w i t h n o h i g h e r o r d e r m o d e s i s a b o u t 5 2 0 k W .

I n a n a i r - f i l l e d r e c t a n g u l a r w a v e g u i d e , t h e e l e c t r i c f i e l d v a r i e s a s E y

= E 0 s i n ( ? r ; t / a ) , w h i c h h a s a m a x i m u m v a l u e o f E „ a t x = a / 2 . T h u s t h e m a x i m u m p o w e r c a p a c i t y b e f o r e b r e a k d o w n i s

_ a b E I _ a b E j T O X 4 Z w 4 Z „ , ’

w h i c h s h o w s t h a t p o w e r c a p a c i t y i n c r e a s e s w i t h g u i d e s i z e . F o r m o s t w a v e g u i d e s , b ~ 2 a . T o

FIGURE 3.33 Geometry of a printed slotline.

FIGURE 3.34 Coplanar waveguide geometry.

Page 141: Consider a Section of Air

Problems 141

Page 142: Consider a Section of Air

142 Chapter 3: Transmission Lines and Waveguides

FIGURE 335 Covered microstrip line.

avoid propagation of the TEjo mode, we must have a < c//ma,, where /ma* is the maximum operating frequency. Then the maximum power capacity of the guide can be shown to be

A s a n e x a m p l e , a t 1 0 G H z t h e m a x i m u m p e a k p o w e r c a p a c i t y o f a

r e c t a n g u l a r w a v e g u i d e o p e r a t i n g i n t h e T E ) 0 m o d e i s a b o u t 2 3 0 0 k W , w h i c h i s c o n s i d e r a b l y h i g h e r t h a n t h e p o w e r c a p a c i t y o f a c o a x i a l c a b l e a t t h e s a m e f r e q u e n c y .

B e c a u s e a r c i n g a n d v o l t a g e b r e a k d o w n a r e v e r y h i g h - s p e e d e f f e c t s , t h e a b o v e v o l t a g e a n d p o w e r l i m i t s a r e p e a k q u a n t i t i e s . I n a d d i t i o n , i t i s g o o d e n g i n e e r i n g p r a c t i c e t o p r o v i d e a s a f e t y f a c t o r o f a t l e a s t t w o , s o t h e m a x i m u m p o w e r s w h i c h c a n b e s a f e l y t r a n s m i t t e d s h o u l d b e l i m i t e d t o a b o u t h a l f o f t h e a b o v e v a l u e s . I f t h e r e a r e r e f l e c t i o n s o n t h e l i n e o r g u i d e , t h e p o w e r c a p a c i t y i s f u r t h e r r e d u c e d . I n t h e w o r s t c a s e , a r e f l e c t i o n c o e f f i c i e n t m a g n i t u d e o f u n i t y w i l l d o u b l e t h e m a x i m u m v o l t a g e o n t h e l i n e , s o t h e p o w e r c a p a c i t y w i l l b e r e d u c e d b y a f a c t o r o f f o u r .

T h e p o w e r c a p a c i t y o f a l i n e c a n b e i n c r e a s e d b y p r e s s u r i z i n g t h e l i n e w i t h a i r o r a n i n e r t g a s , o r b y u s i n g a d i e l e c t r i c . T h e d i e l e c t r i c s t r e n g t h ( E j ) o f m o s t d i e l e c t r i c s i s g r e a t e r t h a n t h a t o f a i r , b u t t h e p o w e r c a p a c i t y m a y b e p r i m a r i l y l i m i t e d b y t h e h e a t i n g o f t h e d i e l e c t r i c d u e t o o h m i c l o s s .

Reference: P. A Rizzi, Microwave Engineering—Passive Circuits, Prentice-Hall, New Jersey, 1988.

REFERENCES

[1] O . H e a v i s i d e , E l e c t r o m a g n e t i c T h e o r y , v o l . 1 , 1 8 9 3 . R e p r i n t e d b y D o v e r , N e w Y o r k , 1 9 5 0 .

[2] L o r d R a y l e i g h , “ O n t h e P a s s a g e o f E l e c t r i c W a v e s T h r o u g h T u b e s , " P h i l o s . M a g . , \ o l . 4 3 , p p . 1 2 5 - 1 3 2 , 1 8 9 7 . R e p r i n t e d i n C o l l e c t e d P a p e r s , C a m b r i d g e U n i v . P r e s s , 1 9 0 3 .

[ 3 J K . S . P a c k a r d , “ T h e O r i g i n o f W a v e g u i d e s : A C a s e o f M u l t i p l e R e d i s c o v e r y , ” I E E E T r a n s . M i c r o w a v e T h e o r y a n d T e c h n i q u e s , v o l . M T T -3 2 , p p . 9 6 1 - 9 6 9 , S e p t e m b e r 1 9 8 4 .

[ 4 1 R . M . B a r r e t t , “ M i c r o w a v e P r i n t e d C i r c u i t s — A n H i s t o r i c a l P e r s p e c t i v e , ” I E E E T r a n s . M i c r o w a v e T h e o r y a n d T e c h n i q u e s , v o l . M T T -3 2 , p p . 9 8 3 - 9 9 0 , S e p t e m b e r 1 9 8 4 .

[5] D . D . G r i e g a n d H . F . E n g l e m a n n , “ M i c r o s t r i p — A N e w T r a n s m i s s i o n T e c h n i q u e f o r t h e K i l o m e g a - c y c l e R a n g e , ” P r v c . I R E , v o l . 4 0 , p p . 1 6 4 4 -1 6 5 0 , D e c e m b e r 1 9 5 2 .

[6] H . H o w e , J r . , S t r i p l i n g C i r c u i t D e s i g n , A r t e c h H o u s e , D e d h a m , M a s s . , 1 9 7 4 .

[7] I . J . B a h l a n d R . G a r g , “ A D e s i g n e r ’ s G u i d e t o S t r i p l i n e C i r c u i t s , ” M i c r o w a v e s , J a n u a r y 1 9 7 8 , p p . 9 0 9 6 .

[8] I . J . B a h l a n d D . K . T r i v e d i , “ A D e s i g n e r ’ s G u i d e t o M i c r o s t r i p L i n e . ” M i c r o w a v e s . M a y 1 9 7 7 , p p . 1 7 4 - 1 8 2 .

[9] K . C . G u p t a , R . G a r g , a n d I . J . B a h l , M i c r o s t r i p L i n e s a n d S l o t l i n e s , A r t e c h H o u s e , D e d h a m , M a s s . , 1 9 7 9 .

j/-------------------------------.—

Page 143: Consider a Section of Air

Problems 143

PROBLEMS

3.1 D e r i v e E q u a t i o n s ( 3 . 5 a - d ) f r o m e q u a t i o n s ( 3 . 3 ) a n d ( 3 . 4 ) .

3.2 C a l c u l a t e t h e a t t e n u a t i o n d u e t o c o n d u c t o r l o s s f o r t h e T E „ m o d e o f a p a r a l l e l p l a t e w a v e g u i d e .

Page 144: Consider a Section of Air

144 Chapter 3: Transmission Lines and Waveguides

3.3 C o n s i d e r a s e c t i o n o f a i r - f i l l e d A " - b a n d w a v e g u i d e . F r o m t h e d i m e n s i o n s g i v e n i n A p p e n d i x I , d e t e r m i n e t h e c u t o f f f r e q u e n c i e s o f t h e f i r s t t w o p r o p a g a t i n g m o d e s . F r o m t h e r e c o m m e n d e d o p e r a t i n g r a n g e g i v e n i n A p p e n d i x I f o r t h i s g u i d e , d e t e r m i n e t h e p e r c e n t a g e r e d u c t i o n i n b a n d w i d t h t h a t t h i s o p e r a t i n g r a n g e r e p r e s e n t s , r e l a t i v e t o t h e t h e o r e t i c a l b a n d w i d t h f o r a s i n g l e p r o p a g a t i n g m o d e .

3.4 C o m p u t e t h e T E i o m o d e a t t e n u a t i o n , i n d B / m , f o r A " - b a n d w a v e g u i d e o p e r a t i n g a t / = 2 0 G H z . T h e w a v e g u i d e i s m a d e f r o m b r a s s , a n d i s f i l l e d w i t h a d i e l e c t r i c m a t e r i a l h a v i n g € r = 2 . 2 a n d t a n S = 0 . 0 0 2 .

3.5 A n a t t e n u a t o r c a n b e m a d e u s i n g a s e c t i o n o f w a v e g u i d e o p e r a t i n g b e l o w c u t o f f , a s s h o w n b e l o w . I f a = 2 . 2 8 6 c m a n d t h e o p e r a t i n g f r e q u e n c y i s 1 2 G H z , d e t e r m i n e t h e r e q u i r e d l e n g t h o f t h e b e l o w - c u t o f f s e c t i o n o f w a v e g u i d e t o a c h i e v e a n a t t e n u a t i o n o f 1 0 0 d B b e t w e e n t h e i n p u t a n d o u t p u t g u i d e s . I g n o r e t h e e f f e c t o f r e f l e c t i o n s a t t h e s t e p d i s c o n t i n u i t i e s .

3.6 F i n d e x p r e s s i o n s f o r t h e e l e c t r i c s u r f a c e c u r r e n t d e n s i t y o n t h e w a l l s o f a r e c t a n g u l a r w a v e g u i d e f o r a T E i o m o d e . W h y c a n a n a r r o w s l o t b e c u t a l o n g t h e c e n t e r l i n e o f t h e b r o a d w a l l o f a r e c t a n g u l a r w a v e g u i d e w i t h o u t p e r t u r b i n g t h e o p e r a t i o n o f t h e g u i d e ? ( S u c h a s l o t i s o f t e n u s e d i n a s l o t t e d l i n e f o r a p r o b e t o s a m p l e t h e s t a n d i n g w a v e f i e l d i n s i d e t h e g u i d e . )

3.7 D e r i v e t h e e x p r e s s i o n f o r t h e a t t e n u a t i o n o f t h e T M „ m m o d e o f a r e c t a n g u l a r w a v e g u i d e , d u e t o i m p e r f e c t l y c o n d u c t i n g w a l l s .

3.8 F o r t h e p a r t i a l l y l o a d e d r e c t a n g u l a r w a v e g u i d e s h o w n o n t h e n e x t p a g e , s o l v e ( 3 . 1 0 9 ) w i t h / } = 0 t o f i n d t h e c u t o f f f r e q u e n c y o f t h e T E i o m o d e . A s s u m e a = 2 . 2 8 6 c m , t = a / 2 , a n d e , = 2 . 2 5 .

3.9 C o n s i d e r t h e p a r t i a l l y f i l l e d p a r a l l e l p l a t e w a v e g u i d e s h o w n b e l o w . D e r i v e t h e s o l u t i o n ( f i e l d s a n d c u t o f f f r e q u e n c y ) f o r t h e l o w e s t o r d e r T E m o d e o f t h i s s t r u c t u r e . A s s u m e t h e m e t a l p l a t e s a r e i n f i n i t e l y w i d e . C a n a T E M w a v e p r o p a g a t e o n t h i s s t r u c t u r e ?

Page 145: Consider a Section of Air

Problems 145

3.18 Consider the partially filled coaxial line shown below. Can a TEM wave propagate on this line? Derive the solution for the TM,)m (no azimuthal variation) modes of this geometry.

3.10 C o n s i d e r t h e p a r t i a l l y f i l l e d p a r a l l e l p l a t e w a v e g u i d e s h o w n b e l o w . D e r i v e t h e s o l u t i o n ( f i e l d s a n d c u t o f f f r e q u e n c y ) f o r t h e T E m o d e s . C a n a T E M w a v e e x i s t i n t h i s s t r u c t u r e ? I g n o r e f r i n g i n g f i e l d s a t t h e s i d e s , a n d a s s u m e n o x d e p e n d e n c e .

3.11 D e r i v e E q u a t i o n s ( 3 . 1 l O a - d ) f o r t h e t r a n s v e r s e f i e l d c o m p o n e n t s i n t e r m s o f l o n g i t u d i n a l f i e l d s , i n c y l i n d r i c a l c o o r d i n a t e s .

3.12 D e r i v e t h e e x p r e s s i o n f o r t h e a t t e n u a t i o n o f t h e T M „ m m o d e i n a c i r c u l a r w a v e g u i d e w i t h f i n i t e c o n d u c t i v i t y .

3.13 C o n s i d e r a c i r c u l a r w a v e g u i d e w i t h a — 0 . 8 c m , a n d f i l l e d w i t h a d i e l e c t r i c m a t e r i a l h a v i n g t r = 2 . 3 . C o m p u t e t h e c u t o f f f r e q u e n c i e s a n d i d e n t i f y t h e f i r s t f o u r p r o p a g a t i n g m o d e s .

3.14 D e r i v e t h e E a n d H f i e l d s o f a c o a x i a l l i n e f r o m t h e e x p r e s s i o n f o r t h e p o t e n t i a l g i v e n i n ( 3 . 1 5 3 ) . A l s o f i n d e x p r e s s i o n s f o r t h e v o l t a g e a n d c u r r e n t o n t h e l i n e a n d t h e c h a r a c t e r i s t i c i m p e d a n c e .

3.15 D e r i v e a t r a n s c e n d e n t a l e q u a t i o n f o r t h e c u t o f f f r e q u e n c y o f t h e T M m o d e s o f a c o a x i a l w a v e g u i d e . U s i n g t a b l e s , o b t a i n a n a p p r o x i m a t e v a l u e o f k c a f o r t h e T M f , i m o d e , i f b / a = 2 .

3.16 D e r i v e a n e x p r e s s i o n f o r t h e a t t e n u a t i o n o f a T E s u r f a c e w a v e o n a g r o u n d e d d i e l e c t r i c s l a b , w h e n t h e g r o u n d p l a n e h a s f i n i t e c o n d u c t i v i t y .

3.17 C o n s i d e r t h e g r o u n d e d m a g n e t i c s l a b s h o w n b e l o w . D e r i v e a s o l u t i o n f o r t h e T M s u r f a c e w a v e s t h a t c a n p r o p a g a t e o n t h i s s t r u c t u r e .

W»d

Page 146: Consider a Section of Air

146 Chapter 3: Transmission Lines and Waveguides

Page 147: Consider a Section of Air

Problems 147

Vo

3.19 D e s i g n a s t r i p l i n e t r a n s m i s s i o n l i n e f o r a 7 0 £ 2 c h a r a c t e r i s t i c i m p e d a n c e . T h e g r o u n d p l a n e s e p a r a t i o n i s 0 , 3 1 6 c m , a n d t h e d i e l e c t r i c c o n s t a n t o f t h e f i l l i n g m a t e r i a l i s 2 . 2 0 . W h a t i s t h e g u i d e w a v e l e n g t h o n t h i s t r a n s m i s s i o n l i n e i f t h e f r e q u e n c y i s 3 . 0 G H z ?

3.20 D e s i g n a m i c r o s t r i p t r a n s m i s s i o n l i n e f o r a 1 0 0 £ 2 c h a r a c t e r i s t i c i m p e d a n c e . T h e s u b s t r a t e t h i c k n e s s i s 0 . 1 5 8 c m , w i t h ( r = 2 . 2 0 . W h a t i s t h e g u i d e w a v e l e n g t h o n t h i s t r a n s m i s s i o n l i n e i f t h e f r e q u e n c y i s 4 . 0 G H z ?

3.21 A 1 0 0 £ 2 m i c r o s t r i p l i n e i s p r i n t e d o n a s u b s t r a t e o f t h i c k n e s s 0 . 0 7 6 2 c m , w i t h a d i e l e c t r i c c o n s t a n t o f 2 . 2 . I g n o r i n g l o s s e s a n d f r i n g i n g f i e l d s , f i n d t h e s h o r t e s t l e n g t h o f t h i s l i n e t h a t a p p e a r s a t i t s i n p u t a s a c a p a c i t o r o f 5 p F a t 2 . 5 G H z . R e p e a t f o r a n i n d u c t a n c e o f 5 n H . U s i n g a m i c r o w a v e C A D p a c k a g e w i t h a p h y s i c a l m o d e l f o r t h e m i c r o s t r i p l i n e , c o m p u t e t h e a c t u a l i n p u t i m p e d a n c e s e e n w h e n l o s s e s a r e i n c l u d e d ( a s s u m e c o p p e r c o n d u c t o r s a n d t a n S = 0 . 0 0 1 ) .

3.22 A m i c r o w a v e a n t e n n a f e e d n e t w o r k o p e r a t i n g a t 5 G H z r e q u i r e s a 5 0 f 2 p r i n t e d t r a n s m i s s i o n l i n e t h a t i s 1 6 A . l o n g . P o s s i b l e c h o i c e s a r e ( 1 ) c o p p e r m i c r o s t r i p , w i t h d = 0 . 1 6 c m , er = 2 , 2 0 , a n d t a n (5 = 0 . 0 0 1 , o r ( 2 ) c o p p e r s t r i p l i n e , w i t h b = 0 . 3 2 c m , a , = 2 . 2 0 , t = 0 . 0 1 m m , a n d t a n 5 = 0 . 0 0 1 . W h i c h l i n e s h o u l d b e u s e d , i f a t t e n u a t i o n i s t o b e m i n i m i z e d ?

3.23 C o n s i d e r t h e T E m o d e s o f a n a r b i t r a r y u n i f o r m w a v e g u i d i n g s t r u c t u r e , w h e r e t h e t r a n s v e r s e f i e l d s a r e r e l a t e d t o H, a s i n ( 3 . 1 9 ) . I f H, i s o f t h e f o r m H-(>r, y, z) = h :(x, w h e r e hT(x, y) i s a r e a l f u n c t i o n , c o m p u t e t h e P o y n t i n g v e c t o r a n d s h o w t h a t r e a l p o w e r f l o w o c c u r s o n l y i n t h e z d i r e c t i o n . A s s u m e t h a t i s r e a l , c o r r e s p o n d i n g t o a p r o p a g a t i n g m o d e .

3.24 A p i e c e o f r e c t a n g u l a r w a v e g u i d e i s a i r f i l l e d f o r z < 0 a n d d i e l e c t r i c f i l l e d f o r z > 0 . A s s u m e t h a t b o t h r e g i o n s c a n s u p p o r t o n l y t h e d o m i n a n t T E | 0 m o d e , a n d t h a t a T E i o m o d e i s i n c i d e n t o n t h e i n t e r f a c e f r o m z < 0 . U s i n g a f i e l d a n a l y s i s , w r i t e g e n e r a l e x p r e s s i o n s f o r t h e t r a n s v e r s e f i e l d c o m p o n e n t s o f t h e i n c i d e n t , r e f l e c t e d , a n d t r a n s m i t t e d w a v e s i n t h e t w o r e g i o n s , a n d e n f o r c e t h e b o u n d a r y c o n d i t i o n s a t t h e d i e l e c t r i c i n t e r f a c e t o f i n d t h e r e f l e c t i o n a n d t r a n s m i s s i o n c o e f f i c i e n t s . C o m p a r e t h e s e r e s u l t s t o t h o s e o b t a i n e d w i t h a n i m p e d a n c e a p p r o a c h , u s i n g Z t e f o r e a c h r e g i o n .

3.25 U s e t h e t r a n s v e r s e r e s o n a n c e t e c h n i q u e t o d e r i v e a t r a n s c e n d e n t a l e q u a t i o n f o r t h e p r o p a g a t i o n c o n s t a n t o f t h e T M m o d e s o f a r e c t a n g u l a r w a v e g u i d e t h a t i s a i r f i l l e d f o r 0 < x < d a n d d i e l e c t r i c f i l l e d f o rd < x < a.

3.26 A p p l y t h e t r a n s v e r s e r e s o n a n c e t e c h n i q u e t o f i n d t h e p r o p a g a t i o n c o n s t a n t s f o r t h e T E s u r f a c e w a v e s t h a t c a n b e s u p p o r t e d b y t h e s t r u c t u r e o f P r o b l e m 3 . 1 7 .

3.27 A n X - b a n d w a v e g u i d e f i l l e d w i t h T e f l o n i s o p e r a t i n g a t 9 . 5 G H z . C a l c u l a t e t h e s p e e d o f l i g h t i n t h i s m a t e r i a l a n d t h e p h a s e a n d g r o u p v e l o c i t i e s i n t h e w a v e g u i d e .

3.28 A s d i s c u s s e d i n t h e P o i n t o f I n t e r e s t o n t h e p o w e r h a n d l i n g c a p a c i t y o f t r a n s m i s s i o n l i n e s , t h e m a x i m u m p o w e r c a p a c i t y o f a c o a x i a l l i n e i s l i m i t e d b y v o l t a g e b r e a k d o w n , a n d i s g i v e n b y

In -a

w h e r e E j i s t h e f i e l d s t r e n g t h a t b r e a k d o w n . F i n d t h e v a l u e o f b / a t h a t m a x i m i z e s t h e m a x i m u m p o w e r c a p a c i t y a n d s h o w t h a t t h e c o r r e s p o n d i n g c h a r a c t e r i s t i c i m p e d a n c e i s a b o u t 3 0 £ 2 .

e2A -2