cmos monolithic active pixel sensors for high...

23
1 Wojciech Dulinski [email protected] Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba CMOS Monolithic Active Pixel Sensors for high resolution CMOS Monolithic Active Pixel Sensors for high resolution particle tracking and ionizing radiation imaging particle tracking and ionizing radiation imaging Outlook -Principle of CMOS MAPS -Short reminder of measured tracking performance -Readout strategy for future tracking application -Radiation imaging using MAPS -Conclusions Wojciech Dulinski, Daniel Berst, Francesco Cannillo, Gilles Claus, Claude Colledani, Grzegorz Deptuch, Michael Deveaux, Yuri Gornushkin, Abdelkader Himmi, Christine Hu, Jean-Louis Riester, Isabelle Valin and Marc Winter LEPSI and IReS, Strasbourg, France SUCIMA: Silicon Ultra Fast Cameras for Electron and Gamma Sources in Medical Applications, E.C. Contract N. G1RD-CT-2001-00561 (France, Germany, Italy, Switzerland, Poland)

Upload: lecong

Post on 14-Mar-2018

228 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

1

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

CMOS Monolithic Active Pixel Sensors for high resolution CMOS Monolithic Active Pixel Sensors for high resolution particle tracking and ionizing radiation imagingparticle tracking and ionizing radiation imaging

Outlook-Principle of CMOS MAPS

-Short reminder of measured tracking performance

-Readout strategy for future tracking application

-Radiation imaging using MAPS

-Conclusions

Wojciech Dulinski, Daniel Berst, Francesco Cannillo, Gilles Claus, Claude Colledani, Grzegorz Deptuch, Michael Deveaux, Yuri Gornushkin, Abdelkader Himmi, Christine Hu, Jean-Louis Riester, Isabelle Valin and Marc Winter

LEPSI and IReS, Strasbourg, FranceSUCIMA: Silicon Ultra Fast Cameras for Electron and Gamma Sources in Medical Applications,

E.C. Contract N. G1RD-CT-2001-00561 (France, Germany, Italy, Switzerland, Poland)

Page 2: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

2

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

“������������� ���������� ��������� ��� �

CMOS Monolithic Active Pixel Sensors (MAPS) principle CMOS Monolithic Active Pixel Sensors (MAPS) principle

-The active volume (epi-layer, ~10 µm thick) is underneath the readout

electronics, providing 100% fill factor

-The charge generated by ionization is collected by the n-well/p-epi diode

-Charge collection is achieved by the thermal diffusion

The device can be fabricated using a standard, cost effective and easily availabletwin-tub CMOS process on epi substrate. No post-processing (e.g. bump-bonding)!

System-on a chip approach possible

Page 3: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

3

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

Wafer scale MAPS prototype: Mimosa5Wafer scale MAPS prototype: Mimosa5

Reticle stitching is needed, in order to get a larger device

(a ladder, 10x2 cm2)

Maximum allowed size of a circuit in a standard CMOS

process: ~20x20 mm2 (reticle)

MIMOSA5

Each reticle is an independent circuit. Periphery logic and bonding pads layout along one side. Simplified stitching of up to 7 reticles in one direction. Still some problems with a yield (~20-30%) but it can be solved (according to digital light

imager manufacturers).

Page 4: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

4

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

mµ, track - X MIMOSAX-20 -15 -10 -5 0 5 10 15 20

Eve

nts

0

20

40

60

80

100

120

140Chi2 / ndf = 45.65 / 36

5.207 ±Constant = 138.9 0.05131 ±Mean = 0.05864

0.04537 ±Sigma = 1.818

Chi2 / ndf = 45.65 / 36 5.207 ±Constant = 138.9 0.05131 ±Mean = 0.05864

0.04537 ±Sigma = 1.818 CoG with correction

Binary

ENC ~10 electrons: S/N>30Efficiency (5� seed cut): �MIP > 99 %

Spatial resolution: � = 1.4 µm

Demonstrated on several devices in various submicron CMOS processes:

AMS 0.6 µm, 14 µm epiAlcatel 0.35 µm, 4 µm apiAMS 0.35 µm, no(!) epi

…TSMC 0.25 µm, 8 µm epi

(LBL team)

CMOS MAPS particle tracking performance (20 µm pitch)CMOS MAPS particle tracking performance (20 µm pitch)

Page 5: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

5

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

MIMOSAMIMOSA--4 (no4 (no--epi substrate) test results:epi substrate) test results:

0.35 mm AMS process without epitaxial layerbut with low doping (high resistivity) substrate

Observed performances with 120 GeV/c p- at CERN-SPS:•Detection efficiency ~99.7%•S/N ~30 but charge is wider spread•Spatial resolution ~4 �m (20 �m pitch)

����������� ��� ��� ������������ ������������� ������ ������������ ��� ��� ������������ ������������� ������ ��� �������� ��������� �������� �������

Page 6: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

6

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

Be prepared for surprises with some CMOS processes…Be prepared for surprises with some CMOS processes…Mimosa4 caseMimosa4 case

Strong layout dependence!

Standard 3-T Self-biased 2-T

Hint to explain post irradiation performance?

Page 7: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

7

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

Keeping high tracking performance to low momentum particlesKeeping high tracking performance to low momentum particles

m]µDistance between clusters [0 10 20 30 40 50 60 70 80 90

Pro

bab

ility

0

0.2

0.4

0.6

0.8

1

m]µDistance between clusters [0 10 20 30 40 50 60 70 80 90

Pro

bab

ility

0

0.2

0.4

0.6

0.8

1

- Two hit cluster isrecognized as:- one hit

- two hits

1. Thinning the substrate to 50 µm (or less) 2. Low mass (air?) cooling: keeping down

the power dissipation (~100 mW/cm2)

Two-track resolution: 30 µm (simulation on real data)

9

Thinned and polished CMOS wafers (50 µm), a standard industrial process

Page 8: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

8

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

Fast ADC 12 bitsBuffer : 512 words/channel

256 kwords256 kwords

F1F0

� trigger !

The simplest readout electronics: diode + 3 transistors/pixelThe simplest readout electronics: diode + 3 transistors/pixel

1. Reset in order to inverse bias2. Continuous serial addressing and

readout (digitisation) of all pixels3. Keeping two successive frames in

external circular buffer4. Following reset when needed

(removing integrated dark current)5. After trigger (or in a real time)),

simple data processing in order to recognise hits

Page 9: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

9

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

fram e 1) fram e2)

fram e2 – fram e1)

(frame2 - frame1) subtraction

Data processing: (Digital) Correlated Double SamplingData processing: (Digital) Correlated Double Sampling

Pedestal (dark current) subtraction Hit candidates!

Useful signal on top ofFixed Pattern DC level

Fixed Pattern dispersion: ~100 mV

Typical signal amplitude: ~1mV

Page 10: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

10

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

Number of ADC bits0 2 4 6 8 10 12

m]

µR

eso

luti

on

[

1.5

2

2.5

3

3.5

4

4.5

MIMOSA 2

MIMOSA 1

External CDS data processingExternal CDS data processingfor a typical pitch of 20 µm (250 kpixels/cmfor a typical pitch of 20 µm (250 kpixels/cm22))

1. Efficient cancellation of fixed pattern (DC level dispersion between pixels)

2. kTC (reset) noise totally removed (kTC is a dominating noise source)

3. Low power dissipation, dominated by an analog output buffer (~50mW)

1. Slow! (“5 ms/cm2 & 50 MHz”)2. High precision (>10 bits) digitisation

required, NOT really needed for tracking precision (see left)

3. A lot of external, reference memory

Page 11: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

11

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

Future experiments requirementsFuture experiments requirements

STAR �vertex detector

TESLA Vertex Detector*

1. First upgrade (x4 present luminosity, 2006):10 – 20 ms readout (integration) time

2. Second upgrade (x40 present luminosity, 2008):2 – 5 ms readout (integration) time

1. Outer layers readout time: 100 -200 µs2. Innermost layer readout time: 25 -50 µs

*NLC/JLC: t~10 ms

Page 12: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

12

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

Mechanical concepts of Micro vertex upgradeMechanical concepts of Micro vertex upgradeusing ultrausing ultra--thin CMOS MAPS thin CMOS MAPS **

S T A R

Self supporting Venetian blade concept

Tension concept

* Curtsey to Howard Wieman, LBL, STAR group

Page 13: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

13

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

Modified sensing elements: selfModified sensing elements: self--biasing diodebiasing diode

n-well

p-epi

vdd_sf

M2

��

particle track

VbiasM1

Ileak

gnd

��

read_sel

��

DC level stabilization

RESET transistor replaced by a forward-biased diode, equivalent of

a ~TeraOhm resistor for a ~fA (typical) leakage current

Typical RC constant: tens of ms (even after irradiation)

Page 14: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

14

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

New charge sensing elements: PhotoFETNew charge sensing elements: PhotoFET

n-well

p-substrate

vdd_sfM2

������ ��

gnd

vdd_ph

particle track

I_ph M1

Ileak

Charge collected at the N-well affect the threshold voltage of a pMOS transistor and modulates its current: signal amplification

-Charge-to current amplification

-High transconductance = high sensitivity

-Low noise/large collection area

First prototype test results

Sensitivity: 330 pA/electron

ENC: ~5 electrons

Page 15: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

15

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

Possible direction to increase MAPS readout speedPossible direction to increase MAPS readout speed

������������ ������ ����� ������� �� ��

1. Power dissipation too high! A few µA/pixels gives ~10 µW/pixel*, i.e. > 2 W/cm2!2. Limited choice of architecture: NO PMOS transistors allowed (except periphery)3. Limited surface (for a “standard” 20 µm pitch)* Our estimation of a lower limit for any realistic (today!) processing circuit

Full parallel processing: all pixels always active (dissipating power)

1. Power dissipation reasonably low, usually dominated by a processing circuit at the bottom of each column, where both transistor types are allowed

2. Modest processing effective speed (~10 MHz) provides already an interesting speed gain (frame readout in 100 µs, for a column of 1000 pixels)

Column parallel processing: only one row a time active

Page 16: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

16

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

Possible column parallel processing implementationPossible column parallel processing implementation

1. Fixed pattern removal (equalisation of a DC output level for each individual pixel)

2. Signal discrimination or low precision (2-3 bits) digitisation(at the end of each column)

3. Data storage/transmission

Three essential processing steps needed

1. Readout-Reset-Readout

Rather hopeless for tracker, because of dominating kTC

noise* and resetting precision

* kTC noise on 15 fF: 34 electrons

vdd

selectreset

vdd

gnd

output

Page 17: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

17

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

2. Readout-Clamping-Readout CDS

Rather fast (~10 MHz effective), still simple architecture, promising

if signal amplified (x5)?

Simulation, prototype soon(collaboration DAPNIA/IReS-LEPSI)

vdd

select

reset

vdd

gnd

output

vdd

vbias

gnd

To be replaced by an amplifier x5?

Possible column parallel processing implementation (pixel architPossible column parallel processing implementation (pixel architecture)ecture)

Page 18: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

18

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

3. Analog on-pixel CDS

Starts to be complicated.All details count (charge injection,

threshold dispersion, biasing…)

Easier with PhotoFET and current memory?

First (voltage memory) prototype in testing, second (PhotoFET and

current memory) close to submission

gnd

output

vbias

S2

S1

gnd

gnd

select

Possible column parallel processing implementation (pixel architPossible column parallel processing implementation (pixel architecture)ecture)

Page 19: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

19

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

4. Multi-frame on-pixel buffering

To be demonstrated, limit on the number of frames (10?)

implementation may be easier with PhotoFET and current

memory cells

RAL prototype (FAPS) Status???

Possible column parallel processing implementation (pixel architPossible column parallel processing implementation (pixel architecture)ecture)

gnd output

vbias

S2

S1

gnd

gnd

S10

S9

gnd

gnd

reset write

read

���������� � �������� ������������ ������������� ������������� ������

Real stitching is mandatory in this case, but such a technology exists in CMOS imagers industry!

Page 20: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

20

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

MIMOSAMIMOSA--6: first sensor with integrated functionality 6: first sensor with integrated functionality IReSIReS--LEPSI/DAPNIA collaborationLEPSI/DAPNIA collaboration

Pixel layout:28x28 µm2

29 transistorsCharge storagecapacitors

Amplification (x5.5), AC coupling, analog memory (2 cells), on-pixel

CDS, current output buffer, discriminator per column

128 pixels/column, 5MHz effective readout frequency, Power

dissipation ~500 µW/column

First results:

ENC = 15 electronsComparator offset (input referred)

< 1mVPixel-to-pixel output voltage dispersion

too high!

Page 21: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

21

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

MIMOSAMIMOSA--7 (submission in June): PhotoFET based sensor7 (submission in June): PhotoFET based sensor

Amplification, analog current memory (2 cells), current output of

each stored value,Per column: transresistance

difference amplifier (CDS function) and 3 bits Wilkinson ADC

128 pixels/column, 3 MHz effective readout frequency, power

dissipation ~700 µW/column

Pixel layout:26x26 µm2

15 transistors

Page 22: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

22

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

Monolithic CMOS Pixel Detectors for Radiation Imaging?Monolithic CMOS Pixel Detectors for Radiation Imaging?A lot still to be done!A lot still to be done!

18 mm

15 mm

P+ Epitaxy

P++ substrat

Hybrid Photo Diode (HPD) ---> single photon imaging

Back - thinning for low energy electrons imaging

1. Visible light: first and the most important commercial application!

2. X and γ imaging: not very appropriate (except dental imagers using scintillating converter)

3. α and electron (β) imaging dosimetry : see SUCIMA Collaboration contribution

4. Neutron imaging (using Be or Ga converter foils)

Page 23: CMOS Monolithic Active Pixel Sensors for high …epp.fnal.gov/DocDB/0000/000085/001/MIMOSA4_7.pdfCMOS Monolithic Active Pixel Sensors for high resolution particle tracking and

23

Wojciech [email protected]

Frontier Detectors for Frontier Physics 2003, La Biodola, Isola Elba

ConclusionsConclusions

� Excellent tracking performance of CMOS pixels successfully demonstrated with small and large scale prototypes: �~99%, S/N~20-40, �~1.4-2.5 µm @ 20x20 µm2 pitch� Easy access to processes with epitaxial layer (e.g. TSMC 0.25 µm with 8 µm thick epitaxial layer)� Cost effective solution for a complicated, already well performing and promising device (~2-3 k$/ 8’’ wafer � 10-15 $/cm2)� directions to investigate:� readout speed improvement, data processing (sparsification) on-a-chip OR data buffering before slow readout� optimization of the sensitive element - alternative charge sensing structures� yield optimization of a large size chip, thinning to 20-50 µm, on-wafer stitching, mechanical mounting and cooling� radiation hardness understanding/improvement (already OK for STAR and TESLA)�Intensive R&D program at Strasbourg on CMOS MAPS for STAR and TESLA VD, in collaboration with several other centers (Rome, DESY, CERN, BNL, LBL…)�R&D program for radiation imaging application (SUCIMA, Euromedim…)