cmns nanoscale measurements 20070227

Post on 07-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    1/88

    Jason Chang

    Institute of Physics, Academia [email protected]

    http://http://www.phys.sinica.edu.tw/~nanowww.phys.sinica.edu.tw/~nano//

    Nanoscale measurementsNanoscale measurements

    NanoNanoSciSciLabLab

    http://www.phys.sinica.edu.tw/TIGP-NANO/Course/2007_Spring.htm

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    2/88

    A. Introduction

    B. Operational Principles:a.Electron b.X-ray c.Scanning Probe

    C. From measuring to sensing

    D. From measuring to manipulatingE. From measuring to fabricating

    F. Considerations for making nanoscale

    toolsG. Future development of nanoscale

    measurements

    H. Conclusions

    OutlineOutlineNanoNanoSci

    SciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    3/88

    Optical lithography and planarOptical lithography and planarfabrication of VLICfabrication of VLIC

    Intel Corp.

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    4/88

    Numbers of transistors in an ICNumbers of transistors in an IC

    Intel Corp.

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    5/88

    Evolution of IC industry

    Jean Hoerni

    Nano

    NanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    6/88

    Electronic properties ofElectronic properties ofa carbon nanotubea carbon nanotube

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    7/88

    SingleSingle-- walled CNT transistorwalled CNT transistor

    S.J. Tans et al., Nature393, 49 (1998).

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    8/88

    1 100

    /

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    9/88

    mev

    Compton Scattering

    Photon as a particlePhoton as a particle

    E=h P=h/Einsteins proposal:

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    10/88

    Electron as a waveElectron as a wave

    = h/E= h/Pde Broglies proposal:

    LEED

    e-Gun

    Grids

    Crystal20 200 eV

    For electrons: (nm) = 1.22/E1/2(eV)

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    11/88

    Fundamentals of Quantum MechanicsFundamentals of Quantum Mechanics

    NanoNanoSciSciLabLab

    1. Quantization

    2. Tunneling

    3. Statistics1

    kT

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    12/88

    Size effectSize effect

    Size

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    13/88

    Measurement of electronic statesMeasurement of electronic states

    S. H. Pan et al., Rev. Sci.Instru. 40, 1459 (1999).

    YBCOBaO CuO

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    14/88

    Properties of a nanostructureProperties of a nanostructure

    SizeStructure

    ShapeSymmetryDomainsDefects

    .

    .

    .

    MicroscopicAnalytical

    CompositionStoichiometry

    ElectronicMagneticThermalMechanical

    .

    .

    .

    NanoNanoSciSciLabLab

    photons, electron, ion, neutron, proximal nanoobjects

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    15/88

    Semiconducting quantum dots

    (Reproduced from Quantum Dot Co.)

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    16/88

    Critical lengthsCritical lengths

    C. Joachim et al., Nature408, 541 (2000).

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    17/88

    Characteristics ofCharacteristics ofelectron transportelectron transport

    BallisticW,L < l

    Diffusive

    l< W,L < l

    Classical

    W

    L

    l

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    18/88

    MinituralizationMinituralization of length scaleof length scale

    MacroMacro MicroMicro NanoNano

    continualcontinual discretediscrete

    scalablescalable nonscalablenonscalable

    evolutionaryevolutionary revolutionaryrevolutionary

    classicalclassical quantum mechanicalquantum mechanical

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    19/88

    Simulation ofSimulation of DNA dynamicsDNA dynamics

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    20/88

    Alternating and complementaryAlternating and complementarycontrastcontrast

    3

    1 3

    4

    5

    II6

    5I

    1

    34

    5 6

    W.B. Jian et al. PRL 90, 196603 (2003)

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    21/88

    0 1 2

    L3 Ag / Type I (fcc)

    (dI/dV)/(I/V)

    Sample bias (V)

    A=3.0 nm2

    A=2.5 nm2

    A=1.6 nm2

    A=1.1 nm2

    NanoNanoSciSciLabLab

    SizeSize-- dependent I/V spectra by STSdependent I/V spectra by STS

    5 nm

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    22/88

    NanoNanoSciSciLabLab

    Shapes of Ag nanopucksShapes of Ag nanopucks

    10 nm

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    23/88

    NanoNanoSciSciLabLab

    Triangular : Ag21

    Hexagonal : Ag61

    0 1 2

    Triangular Ag21

    dI/

    dV

    Sample bias (V)0 1 2

    0

    (dI/dV

    )/(I/V)

    Sample bias (V)

    Hexagonal Ag61

    SizeSize-- and shapeand shape-- dependent I/V spectradependent I/V spectra

    10 nm

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    24/88

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    25/88

    Interaction betweenInteraction betweenee-- beam and samplebeam and sample

    Direct beam

    Incident high kV beam

    Visible light

    CharacteristicX-raysAuger

    electrons

    Backscatteredelectrons

    Secondary electrons

    Bremsstrahlung

    X-raysInelastically

    scattered electronsElastically

    scattered electrons

    Specimen

    Electron-hole pairsAbsorbed electrons

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    26/88

    Energy (eV)

    Inte

    nsity

    E0E0-5050

    400 500

    dN/dE

    Secondaryelectrons

    Augerelectrons

    Primaryelectrons

    Plasma

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    27/88

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    28/88

    Cross section view of HRTEMCross section view of HRTEM

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    29/88

    (TEM)(TEM)NanoNanoSci

    SciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    30/88

    TEMTEM NanoNanoSci

    SciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    31/88

    QuickQuickBeamBeam SelectSelect SystemSystem

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    32/88

    Information from TEMInformation from TEM

    Lattice imageLattice image

    GaAs/AlAsGaAs/AlAs CBEDCBED

    Electron DiffractionElectron DiffractionEDSEDS

    EELS or GIFEELS or GIF

    STEM+BF, HAADFSTEM+BF, HAADFMapping and ZMapping and Z--contrast imagecontrast image

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    33/88

    EDS wi t h spat i al r esol ut i onDS wi t h spat i al r esol ut i on

    EDS mapping

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    34/88

    EDS mapping

    STEM

    Ti Al

    Hi h l i EELSHi h l i EELS

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    35/88

    High resolution EELSHigh resolution EELS

    Energy Filtered images of insulating layerEnergy Filtered images of insulating layer

    10nm

    Zero-Loss imageN

    OSi

    Quantitative profiles

    Hi h l i STEM iHi h l ti STEM i

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    36/88

    WW--plug.plug.

    Si

    High resolution STEM imageHigh resolution STEM image

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    37/88

    Semiconducting quantum dotsand carbon nanotubes

    (Reproduced from Quantum Dot Co.)

    Peapod CNT

    NanoNanoSciSciLabLab

    Multiwall CNT

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    38/88

    Scanning electron microscopyScanning electron microscopy(SEM)(SEM)NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    39/88

    SEM contrastSEM contrast

    Scanning e beam

    Secondaryelectrons

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    40/88

    XX--Ray MicroscopyRay MicroscopyNano

    NanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    41/88

    3D X3D X--Ray ImageRay Image

    J. Miao et al., PRL 89, 088303 (2002).

    Nano

    NanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    42/88

    Scanning Tunneling Microscopy (STM)

    --- G. Binnig, H. Rohrer et al, (1982)

    Near-Field Scanning Optical Microscopy (NSOM)

    --- D. W. Pohl (1982)

    Atomic Force Microscopy (AFM)

    --- G. Binnig, C. F. Quate, C. Gerber (1986)

    Scanning Thermal Microscopy (SThM)

    --- C. C. Williams, H. Wickramasinghe (1986))

    Magnetic Force Microscopy (MFM)

    --- Y. Martin, H. K. Wickramasinghe (1987)Friction Force Microscopy (FFM or LFM)

    --- C. M. Mate et al (1987)

    Electrostatic Force Microscopy (EFM)

    --- Y. Martin, D. W. Abraham et al (1988)

    Scanning Capacitance Microscopy (SCM)

    --- C. C. Williams, J. Slinkman et al (1989)

    Force Modulation Microscopy (FMM)

    --- P. Maivald et al (1991)

    HistoricalHistorical

    development ofdevelopment of SPMsSPMs

    Nano

    NanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    43/88

    (Scanning(Scanning

    TunnelingTunneling

    Microscopy)Microscopy)

    Nano

    NanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    44/88

    From one-dimensional tunnelingproblem tunneling current (eV

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    45/88

    UHV STMUHV STM

    Nano

    NanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    46/88

    Empty-state image Filled-state image

    STM Images of Si(111)STM Images of Si(111)--(7(77)7)

    Nano

    NanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    47/88

    SiSiN4

    20100nm

    (DC)(AC)

    (Atomic Force Microscopy, AFM)

    Nano

    NanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    48/88

    CD pits Integrated Circuit

    Bacteria Chromosomes DNA

    DVD pitsAFM imagesAFM images

    Nano

    NanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    49/88

    Probe/sample interactionProbe/sample interactionas function of distanceas function of distance

    Lennard-Jones potential (r) = - A/r6 + B/r12

    1) 2)

    1) 2) 3) 4)

    Nano

    NanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    50/88

    1) Pauli 2)

    Nano

    NanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    51/88

    Nan

    o

    NanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    52/88

    Reaction of probe to the forceReaction of probe to the force

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    53/88

    Detection

    mechanism Display

    Local probe

    X-Y-Z Piezo transducer

    (Fine positioning)

    Sample

    Coarse approach

    and positioning

    Vibration isolation

    Feedback

    mechanism

    Basic configuration of AFMBasic configuration of AFM

    Cantilever

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    54/88

    Tip andcantilever

    Laser

    Detector

    PiezoelectricTube Scanner

    Sample

    Core components of an AFMCore components of an AFMNanoNano

    SciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    55/88

    Probes for the tapping modeProbes for the tapping mode

    Typical Tip Dimension:150m x 30m x 3mfr ~ 100 kHzMaterials: Si

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    56/88

    100 nm(0.2 ~ 0.3 nm)ScanningProbe MicroscopeSPM80

    NanoNanoSciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    57/88

    (OM)

    (SEM)

    (TEM)

    (SPM)

    300 1

    20 10

    1 1 0.1 0.1

    NanoNano

    SciSciLabLab

    Molecular ScaleMolecular Scale NanomechanicsNanomechanics

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    58/88

    Mechanical Sensing in Nature

    Molecular ScaleMolecular Scale NanomechanicsNanomechanics

    Driving Force in BioDriving Force in Bio--systemssystems

    At the fundamentallevel, all interactions

    in biology andchemistry aremechanical innature

    Hair bundle:frogs inner ear

    Micro and Nano cantilever arraysMicro and Nano cantilever arrays --

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    59/88

    Micro and Nano cantilever arraysc o a d a o ca t e e a ays

    Emulating natureEmulating nature

    Ideal displacement sensor

    Sub nm sensitivity Displacement ~ force

    Surface stress, temperature

    Mass loading

    Sesitivity:

    Function of dimensions

    Selectivity:Function of coatings

    Mass production

    Microcantilevers:Microcantilevers:

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    60/88

    Microcantilevers:Microcantilevers:

    Getting the signal outGetting the signal out

    Optical

    Piezoresistivity

    Piezoelectricity

    Capacitance

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    61/88

    Microcantilevers To NanocantileversMicrocantilevers To Nanocantilevers Increased Sensitivity High Resonance

    Frequency Small Spring

    Constants

    Single MoleculeDetection

    Challenges:Signal TransductionMass production

    (Craig Prater, DI)

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    62/88

    NanoelectromechanicalNanoelectromechanicaloscillatoroscillator

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    63/88

    Molecular sensingMolecular sensing

    NanoNano

    SciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    64/88

    S. S. Wong et al., Nature394, 52 (1998).

    ChemicalChemical nanoprobenanoprobeNanoNano

    SciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    65/88

    Manipulation methodManipulation methodNanoNano

    SciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    66/88

    Ultimate goal of nanotechnologyUltimate goal of nanotechnology

    M.F. Crommie et al.,Science262, 218 (1993).

    5 nm

    NanoNano

    SciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    67/88

    Quantum MirageQuantum Mirage

    H. C. Manoharan et al.,Nature403, 512 (2000).

    NanoNanoSci

    SciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    68/88

    Molecular unfoldingMolecular unfoldingNanoNanoS

    ciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    69/88

    TEM

    2.5 mm

    3 mm

    Tip Sample

    Pb/Si(111)

    1200nm

    Tip with a nanotube Mesa structure for holding

    the nano-object

    STM

    UHV HRTEM/STMUHV HRTEM/STMNanoNanoS

    ciSciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    70/88

    Point contact of Au wirePoint contact of Au wire

    H. Ohnishi et al.Nature 395, 780 (1998).

    NanoNanoSci

    SciLabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    71/88

    Periodic nanostructuresPeriodic nanostructuresby eby e-- beam lithographybeam lithography

    ~30 kV

    ~30 kV

    NanoNanoSci

    SciLabLab

    Procedures of eProcedures of e-- beam lithographybeam lithography

    NN

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    72/88

    e-beam(a) (b)

    (c) (d)

    deposition

    After development

    After lift-off

    Procedures of eProcedures of e beam lithographybeam lithographyNanoNanoSci

    SciLabLab

    NN

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    73/88

    NanoNano--Lithography with an AFM tipLithography with an AFM tip

    NanoNanoSci

    SciLabLab

    NaNa

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    74/88

    Electrical LithographyElectrical Lithography

    F.S.-S. Chien et al.APL 75, 2429 (1999)

    NanoNanoSci

    S

    ciLabLab

    NanNano

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    75/88

    C.A. Mirkin et al.Science 288, 1808 (2000)

    NanoplotterNanoplotterNanoNanoS

    ci

    S

    ciLabLab

    NanoNano

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    76/88

    Image of polycarbonate film on silicon surface

    (1.2m 1.2m) (2.5m 2.5m)

    Nanolithography of TappingNanolithography of Tapping--Mode AFMMode AFM

    NanoNanoS

    ci

    SciLabLab

    NanoNanoSS

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    77/88

    NanodriveNanodriveNanoNanoSc

    i

    SciLabLab

    NanoNanoSS

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    78/88

    The Millipede concept: foroperation of the device,

    the storage medium - a thin filmof organic material

    (yellow) deposited on a silicon"table" - is brought intocontact with the array of silicon

    tips (green) andmoved in x- and y-direction forreading and writing.Multiplex drivers (red) allowaddressing of each tip

    individually.

    IBM-Zurich

    MillipedeMillipedeanoanoSc

    i

    SciLabLab

    Cantilever arrayCantilever arrayNanoNanoSS

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    79/88

    Millipede cantilevers and tips: electron microscope views ofthe 3 mm by 3 mm cantilever array (top), of an array sectionof 64 cantilevers (upper center), an individual cantilever

    (lower center), and an individual tip (bottom) positioned at thefree end of the cantilever which is 70 micrometers (thousandsof a millimeter) long, 10 micrometers wide, and 0.5micrometers thick. The tip is less than 2 micrometers highand the radius at its apex smaller than 20 nanometers(millionths of a millimeter).

    14 mm

    7 mm

    yynooSci

    SciLabLab

    Considerations forConsiderations forNanoNanoScSc

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    80/88

    1. Size compatibility2. Force compatibility

    3. Mechanical Properties

    4. Chemical Properties

    5. Precision movement

    6. Integratible coarse movement

    7. Environment interferences

    making nanoscale toolsmaking nanoscale toolsSc

    i

    SciLabLab

    NanoNanoScSc

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    81/88

    Maneuvering toolsManeuvering tools

    250m

    10 mm

    Sci

    SciLabLab

    NanoNanoScSc

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    82/88

    Operation ofOperation of nanonano tweezerstweezers

    P. Kim and C.M. Lieber,Science286, 2148 (1999).

    Sci

    SciLabLab

    NanoNanoScSc

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    83/88

    Nano Lett. 2, 101 (2002)

    Science292, 1897 (2001)

    ZnO Nanobelts

    Science281, 973 (1998)

    GaN NanowireFET

    Science291, 1947 (2001)

    ZnO Nanowires

    SiC/SiO2 Nanocable

    Nano wires and beltsNano wires and beltsci

    ciLabLab

    NanoNanoScSci

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    84/88

    Precision stepperPrecision stepper

    x100 x1000

    10x15x2 mm3

    ci

    ciLabLab

    Considerations forConsiderations forNanoNanoScSci

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    85/88

    environmental factorsenvironmental factors

    EMIshield

    Acoustic

    isolation

    Temp.,humidity &

    ventilation control Dust filtering

    iLabLab

    Vibrationdamping

    NanoNanoSciSci

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    86/88

    Goals for next 5Goals for next 5--10 years10 years

    Instruments for analysis of supramolecules,biomolecules, and polymers.

    3-D structure determination.

    Nanostructure chemical identification.

    In situfunctional measurements.

    Functional parallel probe arrays.

    Standardization and metrology.

    New nano-manipulators.

    LabLab

    NanoNanoSciSci

    L bL b

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    87/88

    LabLab

    NanoNanoSciSci

    LabLab

  • 8/6/2019 CMNS Nanoscale Measurements 20070227

    88/88

    ReferencesReferences

    http://www.di.com/

    http://www.topometric.com/

    1. Scanning Tunneling Microscopy II,

    eds. R. Wiesendanger and H.-J.Guntherodt (Springer-Verlag, Berlin,1992).

    2. M. Stark and R. Guckenberger, Rev.

    Sci. Instru. 70, 3614 (1999).

    LabLab