choice of the objective function in static optimisation

53
Choice of the objective function in static optimisation F. Moissenet 1 , L. Chèze 2,3,4 , R. Dumas 2,3,4 1 CNRFR – Rehazenter, Laboratoire d’Analyse du Mouvement et de la Posture, 1 rue André Vésale, L-2674 Luxembourg, Luxembourg 2 Université de Lyon, F-69622, Lyon, France 3 Université Claude Bernard Lyon 1, F-69622, Villeurbanne, France 4 IFSTTAR, UMR_T9406, LBMC Laboratoire de Biomécanique et de Mécanique des Chocs, F-69675, Bron, France Second BoHNeS Colloquium, February 3-5 2016, Lyon Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal system

Upload: others

Post on 22-Jun-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Choice of the objective function in static optimisation

Choice of the objective function in

static optimisation

F. Moissenet1, L. Chèze2,3,4, R. Dumas2,3,4

1 CNRFR – Rehazenter, Laboratoire d’Analyse du Mouvement et de la

Posture, 1 rue André Vésale, L-2674 Luxembourg, Luxembourg

2 Université de Lyon, F-69622, Lyon, France

3 Université Claude Bernard Lyon 1, F-69622, Villeurbanne, France

4 IFSTTAR, UMR_T9406, LBMC Laboratoire de Biomécanique et de Mécanique des Chocs, F-69675, Bron, France

Second BoHNeS Colloquium, February 3-5 2016, LyonInteruniversity Centre of Bioengineering of the Human Neuromusculoskeletal system

Page 2: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

2F. Moissenet et al.

[ Introduction / Context ]

The use of an optimisation framework is

motivated by the management of the

muscular redundancy [1]

Which muscles participated to the movement

around a degree of freedom and with which

level of contribution ?

[1] Prilutsky & Zatsiorsky, 2002

Page 3: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

3F. Moissenet et al.

[ Introduction / Context ]

The goal of the optimisation will then be to

find the global minimum value of one or

multiple objective functions, if necessary

under constraints

min ( )

subject to:

i

eq eq eq

ineq ineq ineq

J

= + =

= + ≥

X

X

c A X b 0

c A X b 0

Page 4: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

4F. Moissenet et al.

[ Introduction / Context ]

- Identify the potential design variables

- Compare the different types of objective

functions and constraints

- Discuss the mono- vs. multi-optimisation

approaches

min ( )

subject to:

i

eq eq eq

ineq ineq ineq

J

= + =

= + ≥

X

X

c A X b 0

c A X b 0

Objectives of this tutorial:

Page 5: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

5F. Moissenet et al.

[ Identification of the design variables ]

Identification of the

design variables

Page 6: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

6F. Moissenet et al.

Activation

dynamics

Contraction

dynamics

Musculoskeletal model

u a f

q, q, q. ..

[1] Chèze et al., 2015

1- Manage the muscular redundancy

[1]

g

Skeletal

dynamics

[ Identification of the design variables ]

Page 7: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

7F. Moissenet et al.

Activation

dynamics

Contraction

dynamics

Musculoskeletal model

u a f

q, q, q

[1] Chèze et al., 2015

1- Manage the muscular redundancy

g

Skeletal

dynamics

[ Identification of the design variables ]

[1]

. ..

Page 8: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

8F. Moissenet et al.

[1] Chèze et al., 2015

1- Manage the muscular redundancy

Hypotheses [1]:

1- The musculo-tendon forces are the only

forces that produce joint power

2- All the musculo-tendon forces produce

joint power

[ Identification of the design variables ]

1 1 1

1 with f f

m

n p m

f

n m

f

⋅ = < ⋅

M e

L L

M e

⋮ … ⋮

Page 9: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

9F. Moissenet et al.

1- Manage the muscular redundancy

Mi (i.e., net joint moments) calculated with inverse

dynamics analysis (ek : DoF axis)

Lfj (i.e., muscular lever arms) defined by the

muscular geometry

fj (i.e., musculo-tendon forces) are the unknows

of the optimisation (i.e., design variables) Mi

fj

[ Identification of the design variables ]

1 1 1†

1 with f f

m

n mm n p

f

n m

f ×

⋅ = < ⋅

M e

L L

M e

⋮ … ⋮������� Lf

j

Page 10: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

10F. Moissenet et al.

Activation

dynamics

Contraction

dynamics

Musculoskeletal model

u a f

q, q, q

[1] Chèze et al., 2015

1- Manage the muscular redundancy

g

Skeletal

dynamics

[ Identification of the design variables ]

[1]

. ..

Page 11: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

11F. Moissenet et al.

1- Manage the muscular redundancy

Unknowns: a (i.e., muscular activations)

a is linked to the musculo-tendon forces

using a Hill-type based model

Contraction

dynamics

a f

[ Identification of the design variables ]

( )0 ( ) ( ) ( )pl vMM M MM M M M

j j j j j j j j jf f f l f v a f l= ⋅ × × +ɶ ɶ ɶ ɶ ɶɶ

Page 12: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

12F. Moissenet et al.

Activation

dynamics

Contraction

dynamics

Musculoskeletal model

u a f

q, q, q

[1] Chèze et al., 2015

1- Manage the muscular redundancy

g

Skeletal

dynamics

[ Identification of the design variables ]

[1]

. ..

Page 13: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

13F. Moissenet et al.

1- Manage the muscular redundancy

Unknowns: u (i.e., neuromuscular excitations)

u is linked to the muscular activations

using a nonlinear relationship

corresponding to a delay

Activation

dynamics

u a

[ Identification of the design variables ]

( ) ( )1 1jA u A

ja e e×

= − −

Page 14: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

14F. Moissenet et al.

2- Manage other forces

[1] Cleather et al., 2011 | [2] Hu et al., 2013 | [3] Moissenet et al., 2014

Joint reaction forces can be computed

with optimised musculo-tendon forces

(2-step approach) ...

... Or be introduced in the optimisation

process with adapted joint geometries

introducing additional lever arms

(1-step approach) [1-3]

Joint contact forces

Ligament forces

[ Identification of the design variables ]

Page 15: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

15F. Moissenet et al.

2- Manage other forces

[1] Hu et al., 2013

[1]

Musculo-

tendon forces

Joint contact

forces

Ligament

forces

[ Identification of the design variables ]

1 1 1 1 1

1 1 1

c c l l

c l

c l

c l

f f g g g g

m r r

c l

n p m r r

f g g

f g g

⋅ = + + ⋅

M e

L L L L L L

M e

⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮

Page 16: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

16F. Moissenet et al.

2- Manage other forces

Avoid excessive ligament

strains [1]

Interaction between

structures [1-4]

Better joint contact estimations [2]

VALIDATION !

[1] Cleather et al., 2011 | [2] Hu et al., 2013 | [3] Moissenet et al., 2014 | [4] Pandy & Andriacchi, 2010

Estimations

Implant

Minimisation of

joint contact

forces

[3]

[ Identification of the design variables ]

Page 17: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

17F. Moissenet et al.

[ Objective function(s) and constraints ]

Objective function(s)

and constraints

Page 18: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

18F. Moissenet et al.

[ Objective function(s) and constraints ]

: Ensure the moment equipollence

: Muscles can only pull, never push

1- Manage the muscular redundancy

1 1 1

1 with f f

m

n p m

f

n m

f

⋅ = < ⋅

M e

L L

M e

⋮ … ⋮

min ( )

subject to:

i

eq eq eq

ineq ineq ineq

J

= + =

= + ≥

X

X

c A X b 0

c A X b 0

[ ]0, 1 j

f j m≥ ∀ ∈ ⋯

Page 19: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

19F. Moissenet et al.

[ Objective function(s) and constraints ]

a- Polynomial criteria

: Principle of minimal total muscular force [1-4]

: Relative musculo-tendon forces [5,6]

(Physiological meaning)

[1] Seireg & Arvikar, 1975 | [2] Yeo, 1976 | [3] Hardt, 1978 | [4] Patriarco et al., 1981 | [5] Challis, 1997

[6] Pedotti et al., 1978

fj (i.e., musculo-tendon forces) are the unknows of the optimisation

1- Manage the muscular redundancy

( )1

( )

pm

j j

j

J w f=

= ×∑f

1j

w =

0

1j M

j

wf

=

Page 20: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

20F. Moissenet et al.

[ Objective function(s) and constraints ]

a- Polynomial criteria

[1] Crowninshield & Brand, 1981 | [2] Pedersen et al., 1987

(Physiological meaning)

fj (i.e., musculo-tendon forces) are the unknows of the optimisation

1- Manage the muscular redundancy

( )1

( )

pm

j j

j

J w f=

= ×∑f

: Muscle stress [1,2] 1

j

j

wPCSA

=

Page 21: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

21F. Moissenet et al.

[ Objective function(s) and constraints ]

a- Polynomial criteria

[1] Praagman et al., 2006

(Physiological meaning)

fj (i.e., musculo-tendon forces) are the unknows of the optimisation

1- Manage the muscular redundancy

( )1

( )

pm

j j

j

J w f=

= ×∑f

: Minimisation of the

energy-related consumption [1] 0

1 1

2 2

j j

M

j j

f f

PCSA f

× + ×

Page 22: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

22F. Moissenet et al.

[ Objective function(s) and constraints ]

fj (i.e., musculo-tendon forces) are the unknows of the optimisation

a- Polynomial criteria

p = 1

p = 2

p = 3

p = ...

[1] Crowninshield & Brand, 1981 | [2] Challis, 1997 | [3] Rasmussen et al., 2001

(Physiological meaning)

Increase the value of p will involve

muscles with a lower force and thus

increase the number of active muscles [1-3]

1- Manage the muscular redundancy

( )1

( )

pm

j j

j

J w f=

= ×∑f

Page 23: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

23F. Moissenet et al.

[ Objective function(s) and constraints ]

a- Polynomial criteria

[1] Praagman et al., 2006

Need for additional constraints preventing

May be the cause of sudden changes = aphysiological discontinuities

fj (i.e., musculo-tendon forces) are the unknows of the optimisation

1- Manage the muscular redundancy

0M

j jf f≤

Page 24: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

24F. Moissenet et al.

[ Objective function(s) and constraints ]

aj (i.e., muscular activations) are the unknows of the optimisation

a- Polynomial criteria

[1] Kaufman et al., 1991 | [2] Thelen et al., 2003

(Physiological meaning)

Similar criteria with a [1,2]

Need for additional constraints (Hill)

1- Manage the muscular redundancy

( )1

( )

pm

j j

j

J w a=

= ×∑a

1j

w =

Page 25: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

25F. Moissenet et al.

[ Objective function(s) and constraints ]

b- Soft saturation criteria [1]

[1] Siemienski, 1992

Maximisation of a distance from the maximum

load

Ensure distribution of the musculo-tendon forces

No need for additional constraints

fj (i.e., musculo-tendon forces) are the unknows of the optimisation

1- Manage the muscular redundancy

( )2

1

( ) 1m

j j

j

J w f=

= − − ×∑f

0

1j M

j

wf

=

Page 26: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

26F. Moissenet et al.

[ Objective function(s) and constraints ]

c- Min/max criterion [1,2]

[1] Dul et al., 1984 | [2] Rasmussen et al., 2001

Minimise the maximum musculo-tendon force

= Ensure the distribution of musculo-tendon forces

Collaborative criterion

fj (i.e., musculo-tendon forces) are the unknows of the optimisation

1- Manage the muscular redundancy

( )( ) maxj j

J w f= ×f

Page 27: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

27F. Moissenet et al.

[ Objective function(s) and constraints ]

[1] Rasmussen et al., 2001

Influence of the type of criterion & influence of the power p

[1] Rasmussen et al., 2001

Page 28: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

28F. Moissenet et al.

[ Objective function(s) and constraints ]

Influence of the type of criterion

[1] Rasmussen et al., 2001

Min/max criterion

p = 2

Page 29: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

29F. Moissenet et al.

[ Objective function(s) and constraints ]

Influence of the power p

[1] Rasmussen et al., 2001

Min/max criterion

p = 2

Page 30: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

30F. Moissenet et al.

[ Objective function(s) and constraints ]

[1] Rasmussen et al., 2001

Min/max criterion

p = 5

Influence of the power p

Page 31: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

31F. Moissenet et al.

[ Objective function(s) and constraints ]

[1] Rasmussen et al., 2001

Min/max criterion

p = 10

Influence of the power p

Page 32: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

32F. Moissenet et al.

[ Objective function(s) and constraints ]

[1] Rasmussen et al., 2001

Min/max criterion

p = 100

Influence of the power p

Page 33: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

33F. Moissenet et al.

[ Objective function(s) and constraints ]

Influence of the weights wj

[1] Giroux, 2013

[1]

wj fj

fj

fj fj

wj fj 2

wj fj )

The use of weights reduce the difference between criteria ...

and affects the joint contact estimation (better force distribution in this case)

01M

j jw f=

0

1 1

2 2

j j

M

j j

f f

PCSA f× + ×∑

Page 34: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

34F. Moissenet et al.

[ Objective function(s) and constraints ]

2- Manage other forces

[1] Hu et al., 2013

[1]

Musculo-

tendon forces

Joint contact

forces

Ligament

forces

1 1 1 1 1

1 1 1

c c l l

c l

c l

c l

f f g g g g

m r r

c l

n p m r r

f g g

f g g

⋅ = + + ⋅

M e

L L L L L L

M e

⋮ ⋯ ⋮ ⋯ ⋮ ⋯ ⋮

Page 35: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

35F. Moissenet et al.

[ Objective function(s) and constraints ]

2- Manage other forces

[1] Hu et al., 2013 | [2] Moissenet et al., 2014 | [3] Moissenet et al., 2012

Unknows

f, gc

min J(f)

Constraints

moment

equipollence

only

RM

Unknows

f, gc, gl

min J(f)

Constraints

moment

equipollence

only

RML

Unknows

f, gc, gl

min J(f)

Constraints

force & moment

equipollence

only

RFML

Unknows

f, gc, gl

min J(f, )

Constraints

moment

equipollence

& link between

Lagrange multipliers

RML2[1] [1] [1][2]

λ

λ[3]

Page 36: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

36F. Moissenet et al.

[ Objective function(s) and constraints ]

2- Manage other forces

RM RML RFML[1] [1] [1]

Introduce further joint reaction forces as unknows reduces the solution space

Page 37: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

37F. Moissenet et al.

[ Objective function(s) and constraints ]

2- Manage other forces

RML [2]

Introduce joint reaction forces in the minimisation may affects their estimations

RML2 [2]

TFmed

TFlat

Page 38: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

38F. Moissenet et al.

[ Mono- vs. multi-objective approaches ]

Mono- vs. multi-objective

approaches

Page 39: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

39F. Moissenet et al.

[ Mono- vs. multi-objective approaches ]

Hypotheses:

1- The musculo-tendon forces are the only

forces that produce joint power

2- All the musculo-tendon forces produce

joint power

1- The historical choice of the mono-objective approach

Traditional mono-objective

optimisation min J(f)

1 1 1

1 with f f

m

n p m

f

n m

f

⋅ = < ⋅

M e

L L

M e

⋮ … ⋮1 1 1

1 f f

m

n mm n p

f

f ×

⋅ = ⋅

M e

L L

M e

⋮ … ⋮�������

( )1

( )

pm

j j

j

J w f=

= ×∑f

Page 40: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

40F. Moissenet et al.

[ Mono- vs. multi-objective approaches ]

1- The historical choice of the mono-objective approach

[1] Glitsch & Baumann, 1997

[1]

Allows setting different representations of the joint dynamics

wck = 0 : Enforces first the joint contact forces to ensure the moment

equipollence

wck = 105 : Enforces first the musculo-tendon forces to ensure the moment

equipollence

( ) ( )1 1

( )

c ppm rc c

j j k k

j k

J w f w g= =

= × + ×∑ ∑f

Page 41: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

41F. Moissenet et al.

[ Mono- vs. multi-objective approaches ]

1- The historical choice of the mono-objective approach

[1] Cleather & Bull, 2011

[1]

(BW)

The choice of the weights highly affects the outputs

How to set these weights ?

( ) ( ) ( )1 2 3

1 1 1

( )

c lp ppm r rc c l l

j j k k k k

j k k

J k w f k w g k w g= = =

= × + × + ×∑ ∑ ∑f

Page 42: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

42F. Moissenet et al.

[ Mono- vs. multi-objective approaches ]

2- Selection / definition of the weights

[1] Moissenet et al., 2014

RML [1] RML2 [1]

TFmed

TFlat

Learn from measurements(e.g., implant measurements)

An a priori selection of the weights is

possible to reach an objective

Ex: If tibiofemoral contact forces are

overestimated, we can try to

introduce them in the minimisation

process and tune weights !

Subjective methodology !

Page 43: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

43F. Moissenet et al.

[ Mono- vs. multi-objective approaches ]

2- Selection / definition of the weights

[1] Mombaur et al., 2009

Upper level

Lower level

Minimize the root mean square

error of predicted tibiofemoral

contact forces from

measurements

W f

Solve the static optimization

problem using the updated

weight matrix W

Inverse optimal control approach [1]

Find the set of weights allowing to find

the closest estimations to the

measurements

Ex: Estimated tibiofemoral contact forces

vs. implant measurements

Page 44: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

44F. Moissenet et al.

[ Mono- vs. multi-objective approaches ]

2- Selection / definition of the weights

[1] Moissenet et al., unpublished

0

1

2

3

4

5

6

7

8

Subject 1 Subject 2 Subject 3 Subject 4

Cycle 1 Cycle 2 Cycle 3

Cycle 4 Cycle 5

0

2

4

6

8

10

Subject 1 Subject 2 Subject 3 Subject 4

Cycle 1 Cycle 2 Cycle 3

Cycle 4 Cycle 5

w_TBmed w_TBlat

[1]

Page 45: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

45F. Moissenet et al.

[ Mono- vs. multi-objective approaches ]

2- Selection / definition of the weights

[1] Moissenet et al., unpublished

Inverse optimal control approach

- Best solution regarding measurements

- Can only be done a posteriori

- High intra-subject variability

- High inter-subject variability

[1]

Define manually weights without (invasive)

measurements analysis is not feasible (?) !

w_TBmed

Page 46: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

46F. Moissenet et al.

[ Mono- vs. multi-objective approaches ]

3- Need for a multi-objective approach

Few studies

Bottasso et al., 2006

Bensghaier et al., 2012

Chihara et al., 2014

Dumas et al., 2014

Moissenet et al., 2014

[1] Moissenet et al., 2014

Page 47: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

47F. Moissenet et al.

[ Mono- vs. multi-objective approaches ]

3- Need for a multi-objective approach

Objective functions:

( )

( )

( )

( )

2

1

1

2

2

1

2

3

1

2

4

1

1, 43

1, 5

1, 5

1, 2

c

l

b

m

i

j

rc c

ick

rl l

ilk

rb b

ibk

J f mm

J g rr

J g rr

J g rr

=

=

=

=

= =

= =

= =

= =

A priori articulation of preference:

“Weighted sum method”

No articulation of preference:

“Unweighted min-max method”

1 1 2 2 3 3 4 4sU w J w J w J w J= + + +

1 2 3 4max( , , , )mU J J J J=

Optimisation problem:

min

constraint to eq eq

ineq ineq

U

=

x

A x b

A x b

Inequality constraints:

Muscles and

ligaments are in

traction, joint

contacts and bones

are in compression

[1] Moissenet et al., 2014

[1]

Page 48: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

48F. Moissenet et al.

[ Mono- vs. multi-objective approaches ]

3- Need for a multi-objective approach

[1] Moissenet et al., 2014

[1]

Gait cycle (%) Gait cycle (%)

Co

nta

ct f

orc

e (

N)

Co

nta

ct f

orc

e (

N)TBmed TBlat

Implant measurements Weighted sum method Min-max method

Page 49: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

49F. Moissenet et al.

[ Mono- vs. multi-objective approaches ]

3- Need for a multi-objective approach

Weighted sum method and unweighted min-max method provide similar results

Weighted sum method

- Subjective weights

- But allows increase or decrease

the minimisation of a group

of force (e.g., pathology)

Unweighted min-max method

- No arbitrary adjustment of

the weights

Page 50: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

50F. Moissenet et al.

[ Conclusion ]

Conclusion

Page 51: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

51F. Moissenet et al.

[ Conclusion ]

The optimisation problem that we defined is

sensitive to every parameter!

The need for validation tends to suggest using

advanced joint models (e.g., two compartment

tibiofemoral joint model) introducing joint contact

(and ligament) lever arms

The management of the interaction between

the musculoskeletal forces can be done

through the optimisation process

Page 52: Choice of the objective function in static optimisation

Choice of the objective function

in static optimisation

52F. Moissenet et al.

[ Conclusion ]

Need for an efficient multi-objective

optimisation framework !

The management of the interaction between

the musculoskeletal forces can be done

through the optimisation process

Page 53: Choice of the objective function in static optimisation

53

THANK YOU FOR YOUR ATTENTION !

[email protected]@

Choice of the objective function

in static optimisation

F. Moissenet et al.