chalmers forskning kring power-to-xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel inrikes...

15
CHALMERS FORSKNING KRING POWER-TO-X POWER TO X KLIMATETS GLOBALA RÄDDARE? 28 MARS, WORLD TRADE CENTER, STOCKHOLM SELMA BRYNOLF, MECHANICS AND MARITIME SCIENCES

Upload: others

Post on 20-Jan-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

CHALMERS FORSKNING KRINGPOWER-TO-X POWER TO X – KLIMATETS GLOBALA RÄDDARE?

28 MARS, WORLD TRADE CENTER, STOCKHOLM

SELMA BRYNOLF, MECHANICS AND MARITIME SCIENCES

Page 2: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

2019-03-29 Chalmers University of Technology 2

POWER-TO-X PÅ CHALMERS• Vilken roll kan Power-to-X spela i det globala energisystemet?

• Vilka energibärare/tekniker är intressanta för långväga transporter, tex. flyg och sjöfart?

Maria Taljegård, PhD studentChalmers University of TechnologyEmail: [email protected]

Selma Brynolf, ResearcherChalmers University of TechnologyEmail: [email protected]

Julia Hansson, ResearcherChalmers University of Technology & IVLEmail: [email protected]

Maria Grahn, ResearcherChalmers University of TechnologyEmail: [email protected]

Karin Andersson, ProfessorChalmers University of TechnologyEmail: [email protected]

Stefan Heyne, ResearcherCITEmail: [email protected]

Elin Malmgren PhD studentChalmers University of TechnologyEmail: [email protected]

Mariliis Lethveer, PostDocChalmers University of TechnologyEmail: [email protected]

Sofia Poulikidou, PostdocChalmers University of Technology & IVLEmail: [email protected]

Page 3: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

VAD KOSTAR DET ATT PRODUCERA

ELEKTROBRÄNSLEN?

Ref: Brynolf S, Taljegård M, Grahn M, Hansson J. (2018). Electrofuels for the transport sector: a review of production costs. Renewable & Sustainable Energy Reviews 81 (2) 1887-1905.

Page 4: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

Insight: Many different approaches among authors.Insight: When data is ”harmonized” between the fuel options (low compared to low etc) the differences between the fueloptions are minor.

Ref: Brynolf S, Taljegård M, Grahn M, Hansson J. (2018). Electrofuels for the transport sector: a review of production costs. Renewable & Sustainable Energy Reviews 81 (2) 1887-1905.

Insight: Costs for electrolyser and electricity dominatesNote. Currently we seea trend towards lowerinvestment cost of electrolyzers (comeswith an increasedmarket). Somescenarios also point outa trend towards lowerelectricity prices in future (if increasedvariable electricityproduction).

Electrolyser

uncertainties installation & indirect costs

Fuel synthesis and CO2 capture

Electricity

Electro-diesel: base case=180, best case=112€/MWh

PRODUKTIONSKOSTANDER 2030

Page 5: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

PRODUKTIONSKOSTNAD BEROR PÅ KAPACITETSFAKTOR

Production costs found in literature

Fossil fuels 40-140

Methane from anaerobic digestion 40-180

Methanol from gasification of

lignocellulose

80-120

Ethanol from maize, sugarcane, wheat

and waste

70-345

FAME from rapeseed, palm, waste oil 50-210

HVO from palm oil 134-185

Insight:. Future production of electrofuels have the potential to be cost-competitive to advanced biofuels.

Ref: Brynolf S, Taljegård M, Grahn M, Hansson J. (2018). Electrofuels for the transport sector: a review of production costs. Renewable & Sustainable Energy Reviews 81 (2) 1887-1905.

Assuming curent cost the production cost of electro-methanol may lie in the order of 200 EUR/MWh (ifrunning the facility morethan 40% of the year).

Insight: Production costs maylie in the order of 100-150 EUR/MWh in future.

Insight: Production cost depends on capacity factor. Below 40% result in much higher costs per produced MWh of fuel.

Page 6: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

FINNS DET TILLRÄKLIGT MYCKET CO2?

Ref: Hansson J, Hackl R, Taljegård M, Brynolf S and Grahn M (2017). The potential for electrofuels production in Sweden utilizing fossil and biogenic CO2 point sources. Frontiers in Energy

Research 5:4. doi: 10.3389/fenrg.2017.00004 http://journal.frontiersin.org/article/10.3389/fenrg.2017.00004/full

Page 7: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

RESULTS ON AVAILABLE CO2 SOURCES IN SWEDEN

Tot 45 Mt CO2

How much fuel can be produced?

- 45 MtCO2/yr (fossil+renewable)

- 30 MtCO2/yr is recoverable from

biogenic sources =>110 TWh/yr

electro-methanol

Ref: Hansson J, Hackl R, Taljegård M, Brynolf S and Grahn M (2017). The potential for electrofuels production in Sweden utilizing fossil and biogenic CO2 point sources. Frontiers in Energy

Research 5:4. doi: 10.3389/fenrg.2017.00004 http://journal.frontiersin.org/article/10.3389/fenrg.2017.00004/full

Insight: The amount of recoverable non-fossil CO2 is not a limiting factor for a large scale production of electrofuels, in Sweden.Note. The revised EU-directive on renewable fuels states that electrofuels is a “renewableliquid and gaseous transport fuels of non-biological origin” if the energy content is renewable (article 2.36). Electrofuels from fossil industrial CO2 is defined as ”recycledcarbon fuels” (article 2.35) and not defined as renewable.

Page 8: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

VILKA OLIKA ALTERNATIV FINNS FÖR

TRANSPORTSEKTORN?

Methane(biogas, SNG, natural gas)

Hydrogen

Rail(train, tram)

Aviation

Shipping (short)

Road (short) (cars, busses,

distribution trucks)

Road (long) (long distance trucks and

busses)

FCV (fuel cell vehicles)

Liquid fuels(petro, methanol, ethanol, biodiesel)

ICEV, HEV (internal combus-tionengine vehicles and

hybrids)

Fossil(oil, natural

gas, coal)

Biomass

Solar, wind etc

Electrolysis

Productionof electro

fuels

CO2Water

ENERGY SOURCES ENERGY CARRIERS VEHICLE TECHNOLOGIES TRANSPORT MODES

Shipping (long)

BEV, PHEV (battery electric

vehicles)

Inductive and conductive

electricElectricity

Page 9: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

Electric road systems

(ERS)

Electric vehicles

(EV)Hydrogen Electro-diesel

(E-diesel)

DIFFERENT WAYS OF USING ELECTRICITY FOR

TRANSPORT

Water (H2O) + electricity

H2

H2 + CO2

e.g. diesel

efficiency = 73% Efficiency = 77% Efficency = 24% Efficiency = 17%

Ref: Grahn M, Taljegard M, Brynolf S (2018). Electricity as an Energy Carrier in Transport: Cost and Efficiency Comparison of Different Pathways. EVS31, Kobe, Japan. 1-3 Oct.

Page 10: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

3/29/2019 Chalmers 11

HUR MYCKET EL KRÄVS FÖR OLIKA

POWER-TO-X ALTERNATIV?grova uppskattningar för Sverige

Energi-

användning

(TWh)

Energibehov

framdrift (TWh)

Elanvändning som krävs för att ställa om

hela transportsektorn till eldrift (TWh)

el vätgas

metan/metan

ol

bensin/die

sel

Inrikes transport 95 33 42 136 170 194

Sjöfart utrikes 23 9 12 33 41 47

Flyg utrikes 10 4 4 14 18 20

Totalt (TWh) 46 57 183 229 261

Andel av dagens el prod. (≈153 TWh) 37% 119% 149% 170%

Andel av dagens förnybara el prod. (≈92

TWh) 62% 199% 248% 284%

Page 11: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

ELEKTROBRÄNSLENS ROLL I ETT FRAMTIDA

ENERGISYSTEM MED LÅGA UTSLÄPP AV CO2 ?

Ref: Lehtveer M., Brynolf S., Grahn. M. (2019). What Future for Electrofuels in Transport? Analysis of Cost Competitiveness in Global Climate Mitigation." Environmental Science &

Technology 53(3): 1690-1697..

Page 12: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

ENERGY-ECONOMY MODEL GLOBAL

ENERGY TRANSITION (GET)Linearly programmed energy systems cost-minimizing model. Generates the fuel and technology mix that meets

the demand (subject to the constraints) at lowest global energy system cost

Ref: Lehtveer M., Brynolf S., Grahn. M. (2019). What Future for Electrofuels in Transport? Analysis of Cost Competitiveness in Global Climate Mitigation." Environmental Science & Technology 53(3):

1690-1697..

Page 13: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

COST-COMPETITIVENESS IN A GLOBAL ENERGYSYSTEMS CONTEXT

Source: Lehtveer M., Brynolf S., Grahn. M. “What future for electrofuels in transport? – analysis of cost-competitiveness in global climate mitigation”. Accepted for publication in Journal Environmental

Science and Technology. 2019.

Insight: The cost-effectiveness of electrofuels in global climate

mitigation will depend strongly on the amount of CO2 that can be

stored away from the atmosphere.

If large carbon storage is an accepted and available technology, the

captured CO2 can contribute to climate mitigation to a lower cost if

stored underground, instead of recycled into electrofuels.

Petro

NG

Elec

Synfuels

Petro NGElec

Synfuels incl

electrofuels

Base Case, 450 ppm

No CCS, 450 ppm

Results for year 2070. Monte Carlo analysis

500 runs, 450 ppm

Page 14: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10

2019-03-29 Chalmers University of Technology 16

VÅRA INSIKTER KRING ELEKTROBRÄNSLEN➢ Costs for electrolyser and electricity are dominating posts of the total electrofuels production cost.

➢ Production cost depends on capacity factor. Below 40% result in much higher costs per produced MWh of fuel. (However, from a global energy system model perspective, electrolysers can be beneficial for the energy system even at low load factors (10–30%))

➢ Production costs may lie in the order of 100-150 EUR/MWh in future.

➢ Future production of electrofuels have the potential to be cost-competitive to advanced biofuels.

➢ The amount of recoverable non-fossil CO2 is not a limiting factor for large scale production of electrofuels, in Sweden.

➢ The cost-effectiveness of electrofuels, in a global climate mitigation context, will depend strongly on the amount of CO2 that can be stored away from the atmosphere.

Page 15: CHALMERS FORSKNING KRING POWER-TO-Xfossilfritt-sverige.se/wp-content/uploads/2019/03/...sel Inrikes transport 95 33 42 136 170 194 Sjöfart utrikes 23 9 12 33 41 47 Flyg utrikes 10