cein protocol zebrafish screening final ss 030812€¦ ·  · 2012-09-136/8 2)...

8
1/8 Protocol Project Title: Toxicity screening of nanoparticles in zebrafish embryos CEIN Principal Investigator: Dr. Andre Nel Theme# 22 Molecular, Cellular and Organism High Throughput Screening for Hazard Assessment Version Number: 1.0 Production Start Date: 07/13/2011 Version 1.0 Date: 07/13/2011 Authors: Sijie Lin Institution: University of California, Los Angeles Department: UC CEIN Contact Phone #’s: 3109833359 Email: [email protected] Reviewed/Revised by: Ellie Fairbairn, Carol Vines This protocol has been published in whole or in part in the following journal articles: 1) T. Xia, Y. Zhao, T. Sager, S. George, S. Pokhrel, N. Li, D. Schoenfeld, H. Meng, S. Lin, X. Wang, M. Wang, Z. Ji, J. I. Zink, L. Madler, V. Castranova, S. Lin, A. Nel. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos. ACS Nano, 2011, 5, 12231235. 2) S. George, T. Xia, R. Rallo, Y. Zhao, Z. Ji, S. Lin, X. Wang, H. Zhang, B. France, D. Schoenfeld, R. Damoiseaux, R. Liu, S. Lin, K. A. Bradley, Y. Cohen, A. Nel. Use of a HighThroughput Screening Approach Coupled with In Vivo Zebrafish Embryo Screening To Develop Hazard Ranking for Engineered Nanomaterials. ACS Nano, 2011, 5, 18051817. 3) S. Lin, Y. Zhao, T. Xia, H. Meng, Z. Ji, R. Liu, S. George, S. Xiong, X. Wang, H. Zhang, S. Pokhrel, L. Madler, R. Damoiseaux, S. Lin, A. Nel. High Content Screening in Zebrafish Speeds up Hazard Ranking of Transition Metal Oxide Nanoparticles. ACS Nano, 2011, 5, 72847295. Summary This protocol describes the method for toxicity screening of nanoparticles using wildtype zebrafish embryos. This screening method focuses on detecting morphological abnormalities, interference of hatching and survival based on brightfield imaging of embryos.

Upload: dotruc

Post on 18-May-2018

214 views

Category:

Documents


1 download

TRANSCRIPT

1/8

Protocol    

Project  Title:   Toxicity  screening  of  nanoparticles  in  zebrafish  embryos  

 CEIN  Principal  Investigator:     Dr.  Andre  Nel          Theme#    2-­‐2  Molecular,  Cellular  and  Organism    

 High  Throughput  Screening  for  Hazard  Assessment    

Version  Number:       1.0    Production  Start  Date:     07/13/2011      Version  1.0  Date:       07/13/2011    Authors:         Sijie  Lin  Institution:         University  of  California,  Los  Angeles    Department:       UC  CEIN  Contact  Phone  #’s:       310-­‐983-­‐3359  Email:           [email protected]    Reviewed/Revised  by:     Ellie  Fairbairn,  Carol  Vines  

 

This  protocol  has  been  published  in  whole  or  in  part  in  the  following  journal  articles:  1) T.  Xia,  Y.  Zhao,  T.  Sager,  S.  George,  S.  Pokhrel,  N.  Li,  D.  Schoenfeld,  H.  Meng,  S.  Lin,  X.  Wang,  

M.  Wang,  Z.  Ji,  J.  I.  Zink,  L.  Madler,  V.  Castranova,  S.  Lin,  A.  Nel.  Decreased  Dissolution  of  ZnO  by   Iron  Doping  Yields  Nanoparticles  with  Reduced  Toxicity   in   the  Rodent  Lung  and  Zebrafish  Embryos.  ACS  Nano,  2011,  5,  1223-­‐1235.    

2) S.  George,  T.  Xia,  R.  Rallo,  Y.  Zhao,  Z.  Ji,  S.  Lin,  X.  Wang,  H.  Zhang,  B.  France,  D.  Schoenfeld,  R.  Damoiseaux,  R.  Liu,  S.  Lin,  K.  A.  Bradley,  Y.  Cohen,  A.  Nel.  Use  of  a  High-­‐Throughput  Screening  Approach   Coupled   with  In   Vivo  Zebrafish   Embryo   Screening   To   Develop   Hazard   Ranking   for  Engineered  Nanomaterials.  ACS  Nano,  2011,  5,  1805-­‐1817.  

3) S.  Lin,  Y.  Zhao,  T.  Xia,  H.  Meng,  Z.  Ji,  R.  Liu,  S.  George,  S.  Xiong,  X.  Wang,  H.  Zhang,  S.  Pokhrel,  L.  Madler,  R.  Damoiseaux,  S.  Lin,  A.  Nel.  High  Content  Screening  in  Zebrafish  Speeds  up  Hazard  Ranking  of  Transition  Metal  Oxide  Nanoparticles.  ACS  Nano,  2011,  5,  7284-­‐7295.  

Summary  

This   protocol   describes   the  method   for   toxicity   screening   of   nanoparticles   using  wild-­‐type   zebrafish  

embryos.   This   screening  method   focuses   on   detecting  morphological   abnormalities,   interference   of  

hatching  and  survival  based  on  bright-­‐field  imaging  of  embryos.  

2/8

Background  and  Project  Goals  

The  zebrafish  serves  as  an  excellent  model  organism  for  toxicity  screening  of  chemicals  and  engineered  

nanomaterials.  This  study  aims  to  use  wild-­‐type  zebrafish  embryos  for  developmental  toxicity  screening  

and  hazard  ranking  of  nanoparticles.  Example  metal  and  metal  oxide  nanoparticles  (listed  in  Table  1)  will  

be   used   for   illustrative   purposes   and   to   demonstrate   how   bright-­‐field   imaging   can   be   used   for   data  

collection  over  a  5  day  observation  period.  The  protocol  describes  the  implementation  of  high  content  

imaging  to  speed  up  the  hazard  ranking  of  engineered  nanomaterials  (ENMs).  

 

Table  1:  Example  ENMs  screened  so  far:  

Nanoparticles   Primary  particle  size  (nm)  

Au  

Ag  

Pt  

Al2O3  

Fe3O4  

SiO2  

CdSe/ZnS  QD  

ZnO  

CuO  

NiO  

Co3O4  

12  

13  

13  

12  

8  

19  

10  

23  

18  

40  

12  

Materials  &  Reagents  

Materials/Reagents/Equipment    Disposables  96-­‐well  transparent  plate  (round  bottom  w/  lid)  15  mL  Falcon  tubes                                                                                              50  mL  Falcon  tubes  1.7  mL  microcentrifuge  tubes  Glass  transfer  pipets  Petri-­‐dishes  

Vendor      Corning  Various  Various  Various  Various  Various  Sigma  

Stock  Number      CLS3603            Z369659  

3/8

Sealing  films    Reagents  Holtfreter’s  medium  Alginic  acid  sodium  salt  Ethyl  3-­‐aminobenzoate  methanesulfonate  salt  (Tricaine)    Equipment  Stereomicroscope  ImageXpress  

   In-­‐house  Sigma  Sigma        Zeiss  Molecular  Devices  

     180947  A5040        Stemi  2000  

Laboratory  Safety  Precautions  

Nanoparticles  (dry  powders)  handling  has  to  be  done  in  chemical  fume  hood  and  with  N95  filter  mask.  Scientists  performing  this  procedure  must  wear  a  lab  coat  and  gloves.  In  situations  where  there  might  be  a  chance  of  an  accidental  splash  to  the  eyes,  safety  glasses  must  be  worn.    Please  refer  to  the  Nanotoolkit  produced  by  the  California  Nanosafety  Consortium  of  Higher  Education  for  recommendations  regarding  safe  handling  and  disposal  of  nanomaterials.    Prior  to  suspension  of  the  nanoparticles,  use  engineering  controls,  work  practices,  and  PPE  as  specified  for  Category  2  (Moderate  Exposure  Potential);  after  suspension,  use  use  engineering  controls,  work  practices,  and  PPE  as  specified  for  Category  1  (Low  Exposure  Potential)  as  specified  in  the  Nanotoolkit.    As  described  in  the  Nanotoolkit,  NIOSH  has  determined  that  workers  may  be  at  risk  of  developing  adverse  respiratory  health  effects  if  exposed  to  certain  nanomaterials  for  a  working  lifetime  at  the  upper  limit  of  quantitation  (LOQ)  using  NIOSH  Method  5040,  which  is  currently  the  recommended  analytical  method  for  measuring  airborne  CNTs.  The  LOQ  for  CNTs  using  NIOSH  Method  5040  is  7  μg/m3.  Animal  data-­‐based  risk  estimates  from  NIOSH  indicate  that  workers  may  have  >10%  excess  risk  of  developing  early  stage  pulmonary  fibrosis  if  exposed  over  a  full  working  lifetime  at  the  upper  LOQ  for  NIOSH  Method  5040.  Until  improved  sampling  and  analytical  methods  can  be  developed,  and  until  data  become  available  to  determine  if  an  alternative  exposure  metric  to  mass  may  be  more  biologically  relevant,  NIOSH  is  recommending  a  REL  of  7  μg/m3  elemental  carbon  (EC)  as  an  8-­‐hr  TWA  respirable  mass  airborne  concentration.a    Likewise,  NIOSH  recommends  airborne  exposure  limits  of  2.4  mg/m3  for  fine  TiO2  and  0.3  mg/m3  for  ultrafine  (including  engineered  nanoscale)  TiO2,  as  time-­‐weighted  average  (TWA)  concentrations  for  up  to  10  hr/day  during  a  40-­‐hour  work  week.  These  recommendations  represent  levels  that  over  a  working  lifetime  are  estimated  to  reduce  risks  of  lung  cancer  to  below  1  in  1,000.  The  recommendations  are  based  on  using  chronic  inhalation  studies  in  rats  to  predict  lung  tumor  risks  in  humans.b    Citations:  aNIOSH.  (2010).  Occupational  Exposure  to  Carbon  Nanotubes  and  Nanofiber.  Current  Intelligence  Bulletin.  bNIOSH.  (2011).  Occupational  Exposure  to  Titanium  Dioxide.  Current  Intelligence  Bulletin.  

4/8

 

Calibration  Check  

n/a    

Workflow  

1) Establish  spawning  conditions  for  adult  zebrafish;    

2) Collect  embryos  and  pick-­‐and-­‐place  in  multiwall  plates;    

3) Prepare  nanoparticle  suspensions;  

4) Add  nanoparticles  in  incremental  concentrations  to  the  multi-­‐well  plates;  

5) Examine   embryo   development   using   bright-­‐field   microscopy   image   capture   and   scoring   the  

rates  of  morphological  abnormalities,  hatching  interference  and  survival;  

6) Modify  procedure  for  high  content  screening  and  automation.      

Reagent/Stock  Preparation  

1) Holtfreter’s  medium  with  100  mg/L  of  alginic  acid  

(a) Weigh  7.0  g  NaCl,  0.4  g  NaHCO3,  0.1  g  KCl,  and  0.235  g  CaCl2  and  dissolve  in  1900  mL  of  

DI  water;  

(b) Adjust  pH  to  7.0  by  adding  1M  HCl  or  NaOH  

(c) Add  DI  water  until  2000  mL;  

(d) Filter  the  solution  through  0.45  um  filters;  

(e) Weigh  200.0  mg  alginic  acid  sodium  salt  and  dissolve  in  the  filtered  solution.  

2) Tricaine  solution  (1.7  wt%,  for  larvae  anesthetization)    

(a) Weigh  1.6  g  of  tricaine  powder  (Sigma  Cat#  A-­‐5040)  and  dissolve  in  97.9  mL  of  DI  water;  

(b) Add  2.1  mL  of  1M  Tris  buffer  (pH  9.0);  

(c) Adjust  pH  to  7.0  using  1  M  HCl  or  NaOH,  and  store  in  freezer.  

Procedure  

1.  Setup  adult  fish  for  spawning1  

5/8

1) Place  adult  male  and  female  (2  for  each)  zebrafish  in  a  cage  separated  by  a  plastic  divider  (Figure  

1)  one  day  prior  to  the  screening;  

2) Remove  the  divider  the  next  morning  at  9  AM  to  allow  spawning.  This  procedure  is  undertaken  

with  the  necessary  consent  in  the  institutional  zebrafish  core  facility.  

 

 Figure  1.  Setup  of  adult  fish  for  spawning*  

1  Procedure  adapted  from  “M.  Westerfield.  The  Zebrafish  Book.  (2007)  Eugene,  University  of  Oregon  Press”.  

2.  Prepare  nanoparticle  suspensions  with  designated  concentrations  

1) Prepare  nanoparticle  stock  suspensions;  

2) For  nanoparticles  supplied  as  dry  powder,  a  1  mg/  mL  stock  solution  is  prepared  by  adding  the  

nanoparticle  powder  directly  into  DI  water  in  a  36  mL  glass  sample  vial.  For  nanoparticles  that  

are  supplied  in  suspension  form  and  have  concentrations  higher  than  1  mg/  mL,  the  suspensions  

are  diluted  with  DI  water  to  make  a  1  mg/  mL  stock  solution.  All  nanoparticle  suspensions  that  

have  initial  concentrations  lower  than  1  mg/  mL  will  be  used  directly  as  the  stock  solution;  

3) Dilute  nanoparticle  stock  suspension  in  Holtfreter’s  medium  supplemented  with  100  ug/mL  

alginate  to  make  the  desired  series  of  concentrations  (typically,  the  concentrations  of  

nanoparticles  used  for  screening  vary  from  0.1  to  100  mg/  L);  

4) Sonicate  the  nanoparticle  suspensions  for  15  minutes.  

3.  Collect  fertilized  embryos    

1) Collect  embryos  2.5  hours  after  the  initiation  of  spawning.  The  embryos  are  collected  from  the  

bottom  of  the  cage  and  placed  in  petri-­‐dishes;  

Plastic divider

6/8

2) Wash  the  embryos  in  petri-­‐dishes  using  Holtfreter’s  medium  3  times.  

4.  Pick  and  place  embryos  in  96-­‐well  plate,  with  one  embryo  in  each  well  

1) Identify  embryos  at  the  same  developmental  stages  (at  4  hpf)1;    

2) Hand  pick  and  place  one  embryo  in  each  well  of  96-­‐well  plates  using  a  glass  transfer  pipette.  

5.  Add  100  µL  of  Holtfreter’s  medium  or  designated  concentration  of  the  nanoparticle  suspension.  Use  12  replicate  wells  for  each  concentration  

6.  Put  the  96-­‐well  plates  in  an  incubator  (Thermal  Scientific,  Inc.)  and  keep  the  temperature  at  28  °C    

7.  Examine  the  embryos  under  a  dissecting  microscope  (Zeiss  Stemi  2000)  every  24  hour  for  5  days  and  score  the  rates  of  morphological  abnormalities,  hatching  interference,  and  survival  based  on  the  12  replicates  of  each  exposure  group.  (Figure  2  shows  the  typical  phenotype  of  unhatched,  hatched  and  dead  embryos)  

1) The  morphological  abnormalities  and  survival  rates  are  assessed  every  24  hours  for  5  days;  

2) The  hatching  of  zebrafish  embryos  normally  takes  place  at  48~72  hours  post  fertilization.  

Therefore,  the  rate  of  hatching  interference  can  be  assessed  at  72,  96  and  120  hpf.  

     

Figure  2.  Examples  of  A.  unhatched  (alive);  B.  hatched  (normal);  and  C.  dead  embryos  at  72  hpf.  

8.  Streamlining  and  automation  of  Step  7  by  implementing  a  high  content  screening  approach  as  detailed  in  the  next  session.  

High  Content  Screen  &  Automation  Strategy:  

High  content  screening  and  automation  can  be  implemented  by  using  ImageXpress  (Molecular  Probes),  a  microscopy   based   high   content   imaging   device.   At   UCLA   this   procedure   is   carried   out   at  Molecular  Screening  Shared  Resource  (MSSR)  at  UCLA.    

Procedure  of  using  ImageXpress  for  automated  phenotypic  examination:  

1) Remove  the  embryo  containing  96-­‐well  plates  from  the  incubator  at  24  hour  intervals  to  collect  

images  up  to  120  hours2;  

A B C

7/8

2For  embryos  after  hatching  (after  72  hpf),  add  1  uL  of  1.7%  tricaine  solution  to  each  well  of  96-­‐well  plates  

before  imaging  

2) Seal  the  plate  with  a  transparent  sealing  film  (Sigma  Cat#  Z369659)  to  prevent  liquid  spilling  

during  imaging;  

3) Open  up  ImageXpress  software  and  choose  the  imaging  protocol  by  clicking  “2X-­‐TM-­‐96”  for  96-­‐

well  plates;    

4) Load  one  96-­‐well  plate  into  the  imaging  chamber;  

5) Click  the  bottom  of  “acquire”  to  start  acquiring  images.  Figure  3  shows  a  representative  image  

on  a  96-­‐well  plate;  

6) Unload  the  96-­‐well  plate  after  images  have  been  taken;  

7) Repeat  Steps  (4)  to  (6)  for  the  remaining  96-­‐well  plates;  

8) The  images  of  each  well  are  automatically  saved;  

9) Clean  up  working  area  and  shut  down  ImageXpress;  

10) Unseal  the  sealing  films  and  put  the  96-­‐well  plates  back  to  the  incubator  (rinse  out  the  tricaine  

and  replenish  nanoparticle  suspension  in  the  case  of  tricaine  was  used).  

 

 

Figure  3.  Image  example  captured  by  ImageXpress.  Each  treatment  group  contains  12  replicate  wells.  (A.  wild-­‐type  controls;  B.  CuO  at  0.1  ppm;  C.  CuO  at  1  ppm;  D.  CuO  at  0.1  ppm  with  10  uM  DTPA;  E.  CuO  at  1  ppm  with  10  uM  

DTPA;  F.  Co3O4  at  0.1  ppm;  G.  Co3O4  at  1  ppm;  H  Co3O4  at  10  ppm)    

11) Dispose  embryos  with  nanoparticle  suspension  (after  5  days)  as  biohazard  waste.  

1 2 3 4 5 6 7 8 9 10 11 12

A

B

C

D

E

F

G

H

8/8

SOP  Approval  

DEPARTMENT   APPROVED  BY   DATE  Principle  Investigator     Andre  Nel   2-­‐15-­‐12  

MSSR