broughton, john d. (2008) element behaviour in inundated ... · dent, d. (1980) acid sulphate...

70
This file is part of the following reference: Broughton, John D. (2008) Element behaviour in inundated actual acid sulfate soils, East Trinity, Cairns. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/2126

Upload: others

Post on 24-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

This file is part of the following reference:

Broughton, John D. (2008) Element behaviour in inundated actual acid sulfate soils, East Trinity, Cairns.

PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/2126

276

9. REFERENCES

Afonso, M. D. S. & Stumm, W. (1992) Reductive dissolution of iron(III) (hydr)oxides by hydrogen sulfide. Langmuir, 8, 1671-1675.

Ahern, C. R., Ahern, M. R. & Powell, B. (1998) Guidelines for Sampling and Analysis of Lowland Acid Sulfate Soils (ASS) in Queensland., Indooroopilly., QASSIT, Department of Natural Resources, Resource Sciences Centre.

Aoyama, I., Urakami, Y. & Kawara, O. (1982) Local redistribution and partial extraction of heavy metals in bottom sediments of an estuary. Environmental Pollution (series B), 4, 27-43.

Åström, M. (1998) Partitioning of transition metals in oxidised and reduced zones of sulphide-bearing fine-grained sediments. Applied Geochemistry, 13, 607-617.

Åström, M. (2001a) The effect of acid soil leaching on trace element abundance in a medium-sized stream, W. Finland. Applied Geochemistry, 16, 387-396.

Åström, M. (2001b) Effect of widespread severely acidic soils on spatial features and abundance of trace elements in streams. Journal of Geochemical Exploration, 73, 181-191.

Åström, M. & Åström, J. (1997) Geochemistry of stream water in a catchment in Finland affected by sulphidic fine sediments. Applied Geochemistry, 12, 593-605.

Åström, M. & Björklund, A. (1995) Impact of acid sulfate soils on stream water geochemistry in western Finland. Journal of Environmental Monitoring, 55, 163-170.

Åström, M. & Björklund, A. (1997) Geochemistry and acidity of sulphide-bearing postglacial sediments of western Finland. Environmental Geochemistry & Health, 19, 155-164.

Åström, M. & Corin, N. (2000) Abundance, sources and speciation of trace elements in humus-rich streams affected by acid sulphate soils. Aquatic Geochemistry, 12, 367-383.

Australian and New Zealand Environment and Conservation Council (1992) Australian Water Quality Guidelines for Fresh and Marine Waters., Canberra, ANZECC Secretariat.

Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000. Artarmon, NSW, Australia, Australian Water Association.

Australian Government Bureau of Meteorology (2007) Monthly Climate Statistics - Summary Cairns Airport. Australian Government Bureau of Meteorology,.

Australian National Herbarium Centre for Plant Biodiversity Research (2007) PTERIDACEAE. Canberra, Australia, Australian National Herbarium Centre for Plant Biodiversity Research.

Azizian, M. F. & Nelson, P. O. (1998) Lead sorption, chemically enhanced desorption, and equilibrium modelling in an iron-oxide-coated sand and synthetic groundwater system. IN JENNE, E. (Ed.) Adsorption of Metals by Geomedia: Variables, Mechanisms, and Model Applications. San Diego, USA, Academic Press.

Baker, A. J. M. (1981) Accumulators and excluders - strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643-654.

Barry, E. V., Ahern, C. R., Martens, M. A., Hopgood, G. L. & Smith, C. D. (2003) Surface Water Monitoring and Treatment. IN SMITH, C. D., MARTENS, M., AHERN, C. R., ELDERSHAW, V. J., POWELL, B., BARRY, E. V. & HOPGOOD, G. L. (Eds.) Demonstration of Management and Rehabilitation of Acid Sulfate Soils at East Trinity: Technical Report. Indooroopilly, Queensland, Queensland Government Department of Natural Resources and Mines.

Bennett, B. & Dudas, M. J. (2003) Release of arsenic and molybdenum by reductive dissolution of iron oxides in a soil with enriched levels of native arsenic. Journal of Environmental Engineering and Science, 2, 265 - 272.

Berner, R. A. (1964) Iron sulfides formed from aqueous solution at low temperatures and atmospheric pressure. Journal of Geology, 72, 293-306.

Berner, R. A. (1970) Sedimentary pyrite formation. American Journal of Science, 268, 1 - 23. Berner, R. A. (1984) Sedimentary pyrite formation: an update. Geochimica Cosmochimica Acta, 48, 605

- 615. Bethke, C. M. (2006) Act2. 6.05 ed. Urbana, Illinois, Rockware Inc. Bigham, J. M., Schwertmann, U. & Pfab, G. (1996a) Influence of pH on mineral speciation in a

bioreactor simulating acid mine drainage. Applied Geochemistry, 11, 845-849.

277

Bigham, J. M., Schwertmann, U., Traina, S. J., Winland, R. L. & Wolf, M. (1996b) Schwertmannite and the chemical modelling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta, 60, 2111-2121.

Bird, E. C. F. (1970) Coastal evolution in the Cairns district. The Australian Geographer, 11, 327-335. Blake, L., Johnston, A. E. & Goulding, K. W. T. (1994) Mobilization of aluminium in soil by acid

deposition and its uptake by grass cut for hay - a chemical time bomb. Soil Use and Management, 10, 51-55.

Bloomfield, C., Coulter, J. K. & Kanaris-Sotiriou, R. (1968) Oil palms on acid sulphate soil in Malaya. Tropical Agriculture, 45, 289-300.

Blunden, B. & Indraratna, B. (2000) Evaluation of surface and groundwater management strategies for drained sulfidic soil using numerical simulation models. Australian Journal of Soil Research, 38, 569-590.

Blunden, B. & Indraratna, B. (2001) Pyrite oxidation model for assessing ground-water management strategies in acid sulfate soils. Journal of Geotechnical and Geoenvironmental Engineering, 127, 146-157.

Bodle, M. J. & Van, T. K. (1999) Biology of Melaleuca. IN LAROCHE, F. B. (Ed.) Melaleuca Management Plan. Florida Exotic Pest Plant Council.

Borggaard, O. K. (1976) The use of EDTA in soil analysis. Acta Agriculturae Scandinavica, 26, 144-150.

Bowman, G., Hicks, W., Fitzpatrick, R. & Davies, P. (1999) Remediation options for the acid sulfate soil ‘hotspot’ at East Trinity Inlet, Cairns, North Queensland. IN SLAVICH, P. (Ed.) Workshop on Remediation & Assessment of Broadacre acid sulfate soils. Southern Cross University, Lismore, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Australia.

Boyle, R. W. & Jonasson, I. R. (1973) The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. Journal of Geochemical Exploration, 2, 251-296.

Brimhall, G. H., Alpers, C. N. & Cunningham, A. B. (1985) Analysis of supergene ore-forming processes and ground-water solute transport using mass balance principles. Economic Geology, 80, 1227-1256.

Brimhall, G. H. & Dietrich, W. E. (1987) Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochimica et Cosmochimica Acta, 51, 567-587.

Brimhall, G. H., Lewis, C. J., Ague, J. J., Dietrich, W. E., Hampel, J., Teague, T. & Rix, P. (1988) Metal enrichment in bauxites by deposition of chemically mature aeolian dust. Nature, 333, 819-824.

Brimhall, G. H., Lewis, C. J., Ford, C., Bratt, J., Taylor, G. & Warin, O. (1991) Quantitative geochemical approach to pedogenesis: importance of parent material reduction, volumetric expansion, and eolian influx in lateritization. Geoderma, 51, 51-91.

Brinkman, R., Bao Ve, N., Kim, T. T., Phuoc Hau, D. & Van Mensvoort, M. E. F. (1993) Sulfidic materials in the Western Mekong Delta, Vietnam. Catena, 20, 317-331.

Brinkman, W. J. & Xuan, V.-T. (1991) Melaleuca Leucadendron, a useful and versatile tree for acid sulfate soils and some other poor environments. The International Tree Crops Journal, 6, 261-274.

Brookins, D. G. (1988) Eh-pH Diagrams for Geochemistry, Berlin, Springer-Verlag. Bunzl, K., Albers, B. P., Schimmack, W., Belli, M., Ciuffo, L. & Menegon, S. (2000) Examination of

a relationship between 137Cs concentrations in soils and plants from alpine pastures. Journal of Environmental Radioactivity, 48, 145-158.

Burgess, J. (1978) Metals ions in solution, Ellis Horwood, Chichester, England. Bush, R. T., Fyfe, D. & Sullivan, L. A. (2004) Occurrence and abundance of monosulfidic black

ooze in coastal acid sulfate soil landscapes. Australian Journal of Soil Research, 42, 609-616. Bush, R. T., Fyfe, D. M. & Sullivan, L. A. (2002a) Distribution and occurrence of monosulfidic

black ooze (MBO) in coastal acid sulfate soil landscapes. 5th International Acid Sulfate Soils Conference - Sustainable Management of Acid Sulfate Soils. Gold Coast.

Bush, R. T. & Sullivan, L. A. (1997) Morphology and behaviour of greigite from a Holocene sediment in Eastern Australia. Australian Journal of Soil Research, 35, 853 - 861.

278

Bush, R. T., Sullivan, L. A. & Fyfe, D. M. (2002b) Mobility of monosulfidic black oozes (MBO's) in a coastal acid sulfate soil landscape. 5th International Acid Sulfate Soils Conference - Sustainable Management of Acid Sulfate Soils. Gold Coast.

Calmano, W., Förstner, U. & Hong, J. (1994) Chapter 20 Mobilization and scavenging of heavy metals following resuspension of anoxic sediments from the Elbe River. IN ALPERS, C. N. & BLOWES, D. W. (Eds.) Environmental Geochemistry of Sulfide Oxidation. American Chemical Society Symposium Series 550. Washington DC, American Chemical Society.

Calmano, W., Hong, J. & Förstner, U. (1992) Influence of pH value and redox potential on binding and mobilization of heavy metals in contaminated sediments. Vom Wasser, 78, 245-257.

Casas, A. M. & Crecelius, E. A. (1994) Relationship between acid volatile sulfide and the toxicity of zinc, lead and copper in marine sediments. Environmental Toxicology & Chemistry, 13, 529-536.

Cavicchiolo, M. (2001) An investigation into the bioaccumulation of arsenic and zinc in biota downstream of an area affected by acid sulfate soils. Engineering. University of New England, Diploma of Engineering Thesis, Unpublished.

Chao, T. T. (1984) Use of partial dissolution techniques in geochemical exploration. Journal of Geochemical Exploration, 20, 101-135.

Chao, T. T. & Sanzolone, R. F. (1977) Chemical dissolution of sulfide minerals. Journal of Research US Geological Survey, 5, 409-412.

Chappell, J. (1982) Sea levels and sediments: some features of the context of coastal archaeological sites in the tropics. Archaeology in Oceania, 17, 69-78.

Chappell, J. & Thom, B. G. (1986) Coastal morphodynamics in North Australia: review and prospect. Australian Geographic Studies, 24, 110-127.

Chojnacka, K., Chojnacki, A., Górecka, H. & Górecki, H. (2005) Bioavailability of heavy metals from polluted soils to plants. Science of the Total Environment, 337, 175-182.

Chu, C., Lin, C., Wu, Y., Lu, W. & Long, J. (2006) Organic matter increases jarosite dissolution in acid sulfate soils under inundation conditions. Australian Journal of Soil Research, 44, 11-16.

Condie, K. C., Dengate, J. & Cullers, R. L. (1995) Behaviour of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 59, 279-294.

Cook, F. J., Hicks, W., Gardener, E. A., Carlin, G. D. & Froggatt, D. W. (2000) Export of acidity in drainage water from acid sulphate soils. Marine Pollution Bulletin, 41, 319-326.

Craw, D. & Chappell, D. A. (1989) Evolution and sulphide mineral occurrences of an incipient nonmarine sedimentary basin, New Zealand. Sedimentary Geology, 129, 37 - 50.

Crockford, R. H. & Willett, I. R. (1995) Dry and oxidation effects on the magnetic properties of sulfidic material during oxidation. Australian Journal of Soil Research, 33, 19-29.

Cronan, D. S. (1974) Authigenic minerals in deep-sea sediments. IN GOLDBERG, E. D. (Ed.) The Sea - Ideas and observations on progress in the study of the seas, Volume 5, Marine Chemistry. Chichester., Wiley-Interscience.

Danh, N. T. & Tuong, T. P. (1993) Kinetics of soil solution chemistry in different leaching treatments of undisturbed columns of acid sulphates soils from the Plain of Reeds, Vietnam. IN DENT, D. L. & VAN MENSVOORT, M. E. F. (Eds.) Selected Papers of the Ho Chi Minh city Symposium on Acid Sulphate Soils. . Ho Chi Minh City, Vietnam, ILRI Publication 53, Wageningen, The Netherlands.

Davidson, C. M., Hursthouse, A. S., Tognarelli, D. M., Ure, A. M. & Urquhart, G. J. (2004) Should acid ammonium oxalate replace hydroxylammonium chloride in step 2 of the revised BCR sequential extraction protocol for soil and sediment? Analytica Chimica Acta, 508, 193-199.

Dear, S. E., Moore, N. G., Dobos, S. K., Watling, K. M. & Ahern, C. R. (2002) Soil Management Guidelines. Queensland Acid Sulfate Soil Technical Manual. Brisbane, Queensland State Government Department of Natural Resources and Mines.

Deer, W. A., Howie, R. A. & Zussman, J. (1992) An introduction to the rock-forming minerals, Edinburgh Gate, Harlow, Essex, Addison Wesley Longman Limited.

Dennison, W. C., O’neil, J. M., Duffy, E., Oliver, P. & Shaw, G. (1997) Blooms of the alga Lyngbya Majascula in coastal waters of Queensland. IN CHARPY, L. & LARKUM, A. W. D. (Eds.) International Symposium on Marine Cyanobacterium. Monaco, Bulletin de L’Institut Oceanographique.

279

Dent, D. (1980) Acid Sulphate soils: morphology and prediction. Journal of Soil Science, 31, 87-99. Dent, D. (1986) Acid sulphate soils: a baseline for research and development, Wageningen, The Netherlands,

International Institute for Land Reclamation and Improvement, Publication 39. Dent, D. & Pons, L. J. (1993) Acid and muddy thoughts. IN BUSH, R. T. (Ed.) National Conference

on Acid Sulfate Soils. Coolangatta, CSIRO. Dent, D. L. & Raiswell, R. W. (1982) Quantitative models to predict the rate and severity of acid

sulphate development: a case study in The Gambia. IN DOST, H. & VAN BREEMEN, N. (Eds.) Second international symposium on Acid Sulphate Soils. Bangkok, Thailand, 18-24 January, 1981.

Di Stefano, J. & Fisher, R. F. (1983) Invasion potential of Melaleuca Quinquenervia in southern Florida, USA. Forest Ecology and Management, 7, 133-141.

Dyrssen, D. & Kremling, K. (1990) Increasing hydrogen sulfide concentration and trace metal behaviour in the anoxic Baltic waters. Marine Chemistry, 30, 193-204.

Easton, C. (1989) The trouble with the Tweed. Fishing World, March 1989, 58-59. Erdemoğlu, M. & Sarikaya, M. (2006) Effects of heavy metals and oxalate on the zeta potential of

magnetite. Journal of Colloid and Interface Science, 300, 795-804. Evangelou, V. P. (1998) Environmental Soil and Water Chemistry: Principles and Applications, New York,

John Wiley & Sons. Fanning, D. S. (2002) Acid Sulfate Soils. IN LAL, R. (Ed.) Encyclopedia of Soil Science. New York,

Marcel Dekker, Inc. Faure, G. (1998) Principles and applications of geochemistry. A comprehensive textbook for geology students.,

Prentice Hall, Upper Saddle River, New jersey. Ferguson, A. J. P. & Eyre, B. (1999) Behaviour of aluminium and iron in acid runoff from acid

sulfate soils in the lower Richmond River catchment. AGSO Journal of Australian Geology and Geophysics, 17, 193-201.

Ferriter, A. P. (1999) Extent of Melaleuca infestation in Florida. IN LAROCHE, F. B. (Ed.) Melaleuca Management Plan. 3rd ed., Florida exotic pest plant council.

Finlayson, C. M., Storrs, M. J. & Lindner, G. (1997) Degradation and rehabilitation of wetlands in the Alligator Rivers Region of northern Australia. Wetlands Ecology and Management, 5, 19-36.

Finzgar, N., Kos, B. & Lestan, D. (2005) Heap leaching of lead contaminated soil using biodegradable chelator [S,S]-ethylenediaminedisuccinate. Environmental Technology, 26, 553-560.

Fitzpatrick, R., Davies, P. J., Thomas, B. P., Merry, R. H., Fotheringham, W., Hicks, S. & Barnett, E. L. (2002) Properties, distribution and environmental hazards of South Australian coastal acid sulfate soils. 5th International Acid Sulfate Soils Conference - Sustainable Management of Acid Sulfate Soils. Gold Coast, Queensland, Australia.

Fyfe, D. M., Sullivan, L. A. & Bush, R. T. (2002) Non-ferrous metal content in monosulfidic black oozes (MBO's) in the Richmond River catchment. 5th International Acid Sulfate Soils Conference - Sustainable Management of Acid Sulfate Soils. Gold Coast.

Garrels, R. M. & Perry, E. A. (1974) Cycling of carbon, sulfur, and oxygen through geologic time. IN GOLDBERG, E. D. (Ed.) The Sea - Ideas and observations on progress in the study of the seas, Volume 5, Marine Chemistry., Wiley-Interscience.

Goldhaber, M. B. & Kaplan, I. R. (1974) The sulfur cycle. IN GOLDBERG, E. D. (Ed.) The Sea - Ideas and observations on progress in the study of the seas, Volume 5, Marine Chemistry. Chichester, Wiley-Interscience.

Goldhaber, M. B. & Kaplan, I. R. (1975) Controls and consequences of sulfate reduction rates in recent marine sediments. Soil Science, 119, 42-55.

Graham, T. L. & Larsen, R. M. (2000) Coastal geomorphology: Progressing the understanding of acid sulfate soil distribution. IN AHERN, C. R., HEY, K. M., WATLING, K. M. & ELDERSHAW, V. J. (Eds.) Acid Sulfate Soils: Environmental Issues, Assessment & Management, Technical Papers Brisbane, June 2000. Brisbane, Department of Natural Resources, Indooroopilly, Queensland, Australia.

Grant, J. A. (1986) The Isocon Diagram-A Simple Solution to Gresens' Equation for Metasomatic Alteration. Economic Geology, 81, 1976-1982.

Green, D. (1993) Rivers of death. Fishing World, April 1993. Gresens, R. (1967) Composition-volume relationships of metasomatism. Chemical Geology, 2, 47-65.

280

Griscom, S. B., Fisher, N. S. & Luoma, S. N. (2000) Geochemical influences on assimilation of sediment-bound metals in clams and mussels. Environmental Science and Technology, 34, 91-99.

Grogan, K. L. (2002) Mineralogy and geochemistry of iron in acid sulfate soils, Cairns, Far North Queensland. School of Earth Sciences. Cairns, James Cook University.

Grogan, K. L., Gilkes, R. J. & Lottermoser, B. G. (2003) Maghemite formation in burnt plant litter at East Trinity, North Queensland, Australia. Clays and Clay Minerals, 51, 390-396.

Guilherme, L. R. & Anderson, S. J. (1998) Copper sorption kinetics and sorption hysteresis in two oxide-rich soils (oxisols). IN JENNE, E. (Ed.) Adsorption of Metals by Geomedia: Variables, Mechanisms, and Model Applications. San Diego, USA, Academic Press.

Hall, G. E. M. (1998) Analytical perspective on trace element species of interest in exploration. Journal of Geochemical Exploration, 61, 1-19.

Hall, G. E. M., Gauthier, G., Pelchat, J.-C., Pelchat, P. & Vaive, J. E. (1996a) Application of a sequential extraction scheme to ten geological certified reference materials for the determination of 20 elements. Journal of Analytical Atomic Spectrometry, 11, 787-796.

Hall, G. E. M., Vaive, J. E., Beer, R. & Hoashi, M. (1996b) Selective leaches revisited, with emphasis on the amorphous Fe oxyhydroxide phase extraction. Journal of Geochemical Exploration, 56, 59-78.

Hall, T. (2002) Mineralogy, geochemistry, and behaviour of suspended particles in acid waters at East Trinity, Cairns. Earth Sciences. Cairns, James Cook University, honours thesis, unpublished.

Hall, T. L. (2003) Geochemistry of Suspended Particles in Discharge Waters. IN SMITH, C. D., MARTENS, M. A., AHERN, C. R., ELDERSHAW, V. J., POWELL, B., BARRY, E. V. & HOPGOOD, G. L. (Eds.) Demonstration of Management and Rehabilitation of Acid Sulfate Soils at East Trinity: Technical Report. Indooroopilly, Queensland, Australia., Department of Natural Resources and Mines.

Harmsen, K. & Van Breemen, N. (1975) Translocation of iron in acid sulfate soils: production and diffusion of dissolved ferrous iron. Soil Science Society of America Journal, 39, 1148-1153.

Hauser, L., Tandy, S., Schulin, R. & Nowack, B. (2005) Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS. Environmental Science and Technology, 39, 6819-6824.

Heath, L. C., White, I., Hutchinson, M. F. & Stein, J. (2002) Climate factors that lead to fish kills in acid sulfate soils catchments. The 5th International Annual Acid Sulfate Soils Conference.

Hem, J. D. (1985) Study and interpretation of the chemical characteristics of natural waters. 3rd Edition. IN 2254., U. G. S. W.-S. P. (Ed.).

Hey, K. M., Ahern, C. R. & Watling, K. M. (2000) Using chemical field tests to identify acid sulfate soils likelihood. IN AHERN, C. R., HEY, K. M., WATLING, K. M. & ELDERSHAW, V. J. (Eds.) Acid Sulfate Soils: Environmental Issues, Assessment and Management, Technical Papers. Brisbane, Department of Natural Resources, Indooroopilly, Queensland, Australia.

Hicks, W., Fitzpatrick, R. & Bowman, G. (2003) Managing coastal acid sulfate soils: the East Trinity example. IN ROACH, I. C. (Ed.) Advances in Regolith. Canberra, CRC LEME, CSIRO Land and Water.

Hicks, W. S., Bowman, G. M. & Fitzpatrick, R. W. (1999) East Trinity Acid Sulfate Soils. Part 1: Environmental Hazards. CSIRO Land and Water Technical Report 14/99. CSIRO.

Hicks, W. S. & Fitzpatrick, R. W. (2003) Effects of tidal exchange on soil and sediment. IN SMITH, C. D., MARTENS, M. A., AHERN, C. R., ELDERSHAW, V. J., POWELL, B., BARRY, E. V. & HOPGOOD, G. L. (Eds.) Demonstration of Management and Rehabilitation of Acid Sulfate Soils at East Trinity: Technical Report. Indooroopilly, Queensland, Australia, Department of Natural Resources and Mines.

Hooda, P. S., Mcnulty, D., Alloway, B. J. & Aitken, M. N. (1997) Plant availability of heavy metals in soils previously amended with heavy applications of sewage sludge. Journal of the Science of Food and Agriculture, 73, 446-454.

Hossner, L. R. (1996) Chapter 3 Dissolution for total element analysis. IN SPARKS, D. L., PAGE, A. L., HELMKE, P. A., LOEPPERT, R. H., SOLTANPOUR, P. N. T., M A, JOHNSTON, C. T. & SUMNER, M. E. (Eds.) Methods of Soil Analysis Part 3 - Chemical Methods. Madison, Soil Science Society of America, Inc.

281

Howarth, R. W. (1979) Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism. Science, 203, 49-51.

Howarth, R. W. & Giblin, A. (1983) Sulfate reduction in the salt marshes at Sapelo Island, Georgia. Limnology and Oceanography, 28, 70-82.

Hudson-Edwards, K. A. (2003) Sources, mineralogy, chemistry and fate of heavy metal-bearing particles in mining-affected river systems. Mineralogical Magazine, 67, 205-217.

Hudson-Edwards, K. A., Jamieson, H. E., Charnock, J. M. & Macklin, M. G. (2005) Arsenic speciation in waters and sediments of ephemeral floodplain pools, Rios Agrio-Guadiamar, Aznalcollar, Spain. Chemical Geology, 219, 175-192.

Huggins, F. E., Huffman, G. P., Kosmack, D. A. & Lowenhaupt, D. E. (1980) Mössbauer detection of goethite (α-FeOOH) in coal and its potential as an indicator of coal oxidation. International Journal of Coal Geology, 1, 75-81.

Hund-Rinke, K. & Kordel, W. (2003) Underlying issues in bioaccessibility and bioavailability: experimental methods. Ecotoxicology and Environmental Safety, 56, 52-62.

Hussein, A. H. & Rabenhorst, M. C. (1999) Modeling sulfur sequestration in coastal marsh soils. Soil Science Society of America Journal, 63, 1954-1963.

Indraratna, B., Glamore, W. C. & Tularam, G. A. (2002) The effects of tidal buffering on acid sulphate soil environments in coastal areas of New South Wales. Geotechnical and Geological Engineering, 20, 181-199.

Indraratna, B., Golab, A., Glamore, W. & Blunden, B. (2005) Acid sulphate soil remediation techniques on the Shoalhaven River floodplain, Australia. Quarterly Journal of Engineering Geology and Hydrogeology, 38, 129-142.

Intawongse, M. & Dean, J. R. (2006) Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Additives and Contaminants, 23, 36-48.

Johnston, S. G., Slavich, P. G. & Hirst, P. (2002) Deep flooding of sulfidic backswamps and artificial drainage: links to estuarine deoxygenation and scald formation. 5th International Acid Sulfate Soils Conference - Sustainable Management of Acid Sulfate Soils. Gold Coast, Australia.

Johnston, S. G., Slavich, P. G. & Hirst, P. (2003) Alteration of groundwater and sediment geochemistry in a sulfidic backswamp due to Melaleuca quinquenervia encroachment. Australian Journal of Soil Research, 41, 1343-1367.

Jones, M. (1985) Quaternary Geology and Coastline Evolution of Trinity Bay, North Queensland., Brisbane, Queensland, Geological Survey of Queensland Publication No 386.

Joukainen, S. & Yli-Halla, M. (2003) Environmental impacts and acid loads from deep sulfidic layers of two well-drained acid sulfate soils in western Finland. Agriculture, Ecosystems & Environment, 95, 297-309.

Kashem, M. A. & Singh, B. R. (2001a) Metal availability in contaminated soils: I Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutrient Cycling in Agroecosystems, 61, 247-255.

Kashem, M. A. & Singh, B. R. (2001b) Metal availability in contaminated soils: II Uptake of Cd, Ni and Zn in rice plants grown under flooded culture with organic matter addition. Nutrient Cycling in Agroecosystems, 61, 257-266.

Kelly, D. P. & Wood, A. P. (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. International Journal of Systematic and Evolutionary Microbiology, 50, 489-500.

Kersten, M. & Förstner, U. (1987) Effect of sample pretreatment on the reliability of solid speciation data of heavy metals - implications for the study of early diagenetic processes. Marine Chemistry, 22.

Kheboian, C. & Bauer, C. F. (1987) Accuracy of selective extraction procedures for metal speciation in model aquatic sediments. Analytical Chemistry, 59, 1417-1423.

Kos, B. & Lestan, D. (2003) Influence of a biodegradable ([S,S]-EDDS) and nondegradable (EDTA) chelate and hydrogel modified soil water sorption capacity on Pb phytoextraction and leaching. Plant and Soil, 253, 403-411.

Kroon, F. J. (2005) Behavioural avoidance of acidified water by juveniles of four commercial fish and prawn species with migratory life stages. Marine Ecology Progress Series, 285, 193-204.

282

La Force, M. J. & Fendorf, S. (2000) Solid-phase iron characterization during common selective sequential extractions. Soil Science Society of America Journal, 64, 1608-1615.

Lambeck, K., Esat, T. & Potter, E.-K. (2002) Links between climate and sea levels for the past three million years. Nature, 419, 199-206.

Langmuir, D. (1997) Aqueous Environmental Geochemistry, Upper Saddle River, New Jersey, Prentice Hall Inc.

Laperche, V. & Traina, S. (1998) Immobilization of Pb by hydroxylapatite. IN JENNE, E. (Ed.) Adsorption of Metals by Geomedia: Variables, Mechanisms, and Model Applications. San Diego, USA, Academic Press.

Lee, G., Bigham, J. M. & Faure, G. (2002) Removal of trace metals by co precipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Applied Geochemistry, 17, 569-581.

Lin, C., Mcconchie, D., Bush, R. T., Sullivan, L. A. & Rosicky, M. (2001) Characteristics of some heavy metals in acid sulfate topsoils, Eastern Australia. Pedosphere, 11, 31-37.

Lin, C. & Melville, M. D. (1993) Control of soil acidification by fluvial sedimentation in an estuarine floodplain, eastern Australia. Sedimentary Geology, 85, 271-284.

Lin, C., Melville, M. D., White, I., Islam, M., Wilson, B. P., Yang, X. & Van Oploo, P. (1998) Chemical controls on acid discharge from acid sulphate soils under sugarcane cropping in an Eastern Australian estuarine Floodplain. Environmental Pollution, 103.

Lin, C., Wood, M., Haskins, P., Ryffel, T. & Lin, J. (2004) Controls on water acidification and de-oxygenation in an estuarine waterway, eastern Australia. Estuarine Coastal and Shelf Science, 61, 55-63.

Lin, S. & Morse, J. W. (1991) Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments. American Journal of Science, 291, 55 - 89.

Lockhart, C. S., Austin, D. F. & Aumen, N. G. (1999) Water level effects on growth of melaleuca seedlings from Lake Okeechobee (Florida, USA) littoral zone. Environmental Management, 23, 507-518.

Loring, D. H. & Rantala, R. T. T. (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32, 235-283.

Lowson, R. (1982) Aqueous oxidation of pyrite by molecular oxygen. Chemical Reviews, 82, 451-497. Luther Iii, G. W., Meyerson, A. L., Krajewski, J. J. & Hires, R. (1980) Metal sulfides in estuarine

sediments. Journal of Sedimentary Petrology, 50, 1117-1120. Luther Iii, G. W., Meyerson, A. L., Rogers, K. & Hall, F. (1982) Tidal and seasonal variations of

sulfate ion in a Jersey marsh system. Estuaries, 5, 189-196. Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y. & Kennelley, E. D. (2001) A fern that

hyperaccumulates arsenic. Nature, 409, 579. Manceau, A., Lanson, B., Schlegel, M. L., Hargé, J. C., Musso, M., Eybert-Bérard, L., Hazemann, J.

L., Chateigner, D. & Lamble, G. M. (2000a) Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. American Journal of Science, 300, 289-343.

Manceau, A., Schlegel, M. L., Musso, M., Sole, V. A., Gauthier, C., Petit, P. E. & Trolard, F. (2000b) Crystal chemistry of trace elements in natural and synthetic goethite. Geochimica et Cosmochimica Acta, 64, 3643-3661.

Martin, J. M., Nirel, P. & Thomas, A. J. (1987) Sequential extraction techniques: promises and problems. Marine Chemistry, 22, 313-341.

Matúš, P., Kubová, J., Bujdoš, M. & Medved', J. (2006) Free aluminium extraction from various reference materials and acid soils with relation to plant availability. Talanta, 70, 996-1005.

Mclaren, R. G., Swift, R. S. & Williams, J. G. (1981) The adsorption of copper by soil materials at low equilibrium solution concentrations. Journal of Soil Science, 32, 247-256.

Meharg, A. A. & Hartley-Whitaker, J. (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist, 154, 29 - 43.

Melville, M. D. & White, I. (2002) Acid sulfate soils, management. IN LAL, R. (Ed.) Encyclopedia of Soil Science. Madison Avenue, New York, Marcel Dekker, Inc.

Miller, L. P. (1950) Formation of metal sulfides through the activities of sulfate-reducing bacteria. Boyce Thompson Institute of Plant Research, 16, 85-89.

Miller, W. P., Martens, D. C. & Zelazny, L. W. (1986) Effects of sequence in extraction of trace metals from soils. Soil Science Society of America Journal, 50, 598-601.

283

Morse, J. W. (1994a) Chapter 20 Release of toxic metals via oxidation of authigenic pyrite in resuspended sediments. IN ALPERS, C. N. & BLOWES, D. W. (Eds.) Environmental Geochemistry of Sulfide Oxidation. American Chemical Society Symposium Series 550. Washington DC, American Chemical Society.

Morse, J. W. (1994b) Interactions of trace metals with authigenic sulfide minerals: implications for their bioavailability. Marine Chemistry, 46.

Morse, J. W., Millero, F. J., Cornwell, J. C. & Richard, D. (1987) The Chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Science Reviews, 24, 1-42.

Müller, R. & Büttner, P. (2003) An introduction to practical biostatistics in medicine and public health. James Cook University.

Munsell Color (2000) Munsell Soil Color Charts, New Windsor, New York State, GretagMacbeth. Murtha, G. G., Cannon, M. G. & Smith, C. D. (1996) 1:50 000 Soils Map of Babinda-Cairns Area,

North Queensland, CSIRO Division of Soils and the Queensland Government Department of Primary Industries.

Nahon, D. & Merino, E. (1996) Pseudomorphic replacement versus dilation in laterites: petrographic evidence, mechanisms, and consequences for modelling. Journal of Geochemical Exploration, 57, 217-225.

National Environmental Protection Council (1999) Schedule B (1) Guideline on the investigation levels for soil and groundwater. National Environmental Protection Council.

National Research Council (1980) Mineral Tolerance of Domestic Animals, Washington D.C., USA, The National Academy of Sciences, USA.

Natural Resources and Mines (2004) Aerial photograph Cairns Q6118/47 (20/6/2004) Datum GDA94/Projection UTM ZONE 55. Coorparoo, Natural Resources and Mines,.

Nhung, M. M. & Ponnamperuma, F. N. (1966) Effects of calcium carbonate, manganese dioxide, ferric hydroxide, and prolonged flooding on chemical and electrochemical changes and the growth of rice in flooded acid sulfate soil. Soil Science, 102.

Nishizono, H., Suzuki, S. & Ishii, F. (1987) Accumulation of heavy metals in the metal-tolerant fern, Athyrium yokoscense, growing on various environments. Plant and Soil, 102, 65-70.

Nordstrom, D. K. (1991) Chemical modelling of acid mine water in the western United Stages. US Geological Survey Water Res. Invest. Report Number 91-4034. US Geological Survey.

Nordstrom, D. K. & Alpers, C. N. (1999) Geochemistry of acid mine waters. IN PLUMLEE, G. S. & LOGSDON, M. J. (Eds.) The environmental geochemistry of mineral deposits. Part A: processes, techniques and health issues. Reviews in Economic Geology, 6A, 133-160.

Nriagu, J. O. (1978) Dissolved silica in pore waters of Lake Ontario, Erie and Superior sediments. Limnology and Oceanography, 23, 53-67.

Patrick, W. H. J. & Delaune, R. D. (1972) Characterization of the oxidized and reduced zones in flooded soil. Soil Science Society of America Proceedings, 36, 573-576.

Peachey, D. & Allen, B. P. (1977) An investigation into the selective dissolution of sulphide phases from stream sediments and soils. Journal of Geochemical Exploration, 8, 571-577.

Pfeiffer, W. C., Fiszman, M., Drude De Lacerda, L., Van Weerelt, M. & Carbonell, N. (1982) Chromium in water, suspended particles, sediments and biota in the Iraja River estuary. Environmental Pollution (Series B), 4, 193-205.

Pons, L. J., Van Breemen, N. & Driessen, P. M. (1982) Physiography of coastal sediments and development of potential soil acidity. IN KITTRICK, J. A., FANNING, D. S. & HOSSNER, L. R. (Eds.) Acid Sulphate Weathering. SSSA Special Publication No. 10. Madison, Soil Science Society of America.

Portnoy, J. W. & Giblin, A. E. (1997a) Biogeochemical effects of seawater restoration to diked salt marshes. Ecological Applications, 7, 1054-1063.

Portnoy, J. W. & Giblin, E. A. (1997b) Effects of historic tidal restrictions on salt marsh sediment chemistry. Biogeochemistry, 36, 275–303.

Powell, B. (1998) Introduction to Acid Sulfate Soils. Understanding and Managing Acid Sulfate Soils in Canelands, Canegrowers Sugar Environment Forum, Workshop 6. Mackay.

Powell, B. & Ahern, C. R. (1999) QASSMAC Acid sulfate soils management strategy for Queensland. Indooroopilly, Queensland, QASSMAC and Queensland Government Department of Natural Resources.

284

Powell, B. & Martens, M. A. (2005) A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity. Marine Pollution Bulletin, 51, 149–164.

Queensland Acid Sulfate Soils Investigation Team (Qassit) (2000) East Trinity property acid sulfate soils remediation action plan: for public consultation. Brisbane, Queensland Government Department of Natural Resources.

Queensland Government (2003) East Trinity Property Land Management and Remediation Newsletter - Number 3, November 2003. Brisbane, Queensland Government.

Queensland Herbarium (2007a) Identification of grass collected from East Trinity. Brisbane. Queensland Herbarium (2007b) Identification of mangrove fern and grass collected from East

Trinity. Brisbane. Rabenhorst, M. C. & Fanning, D. S. (2002) Acid sulfate soils, problems. IN LAL, R. (Ed.)

Encyclopedia of Soil Science. New York, Marcel Dekker, Inc. Rabenhorst, M. C., Fanning, D. S. & Burch, S. N. (2002) Acid sulfate soils, formation. IN LAL, R.

(Ed.) Encyclopedia of Soil Science. New York, Marcel Dekker, Inc. Rauret, G., Lopez-Sanchez, J., Luck, D., Yli-Halla, M., Muntau, H. & Quevauviller, P. (2001) The

certification of the extractable contents (mass fractions) of Cd, Cr, Cu, Ni, Pb and Zn in freshwater sediment following a sequential extraction procedure BCR-701. BCR Information. Brussels, European Commission Standards, Measurements, and Testing Program.

Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A. M., Davidson, C. M., Gomez, A., Luck, D., Bacon, J. R., Yli-Halla, M., Muntau, H. & Quevauviller, P. (2000) Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2, 228-233.

Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A. & Quevauviller, P. (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57-61.

Rayment, G. E. & Higginson, F. R. (1992) Australian Laboratory Handbook of Soil and Water Chemical Methods, North Ryde, Reed International Books Australia Pty Limited trading as Inkata Press, a division of Butterworth-Heinemann.

Reichman, S. M. (2002) The responses of plants to metal toxicity: a review focusing on copper, manganese and zinc, Melbourne, Australia, Australian Minerals & Energy Environment Foundation.

Richards, F. A. (1965) Anoxic basins and fjords. IN RILEY, J. P. & SKIRROW, G. (Eds.) Chemical Oceanography Vol. 1. New York., Academic Press, New York.

Robertson, A. P. & Leckie, J. O. (1998) Acid/base, copper binding, and Cu2+/H+ exchange properties of goethite, an experimental and modeling study. Environmental Science and Technology, 32, 2519-2530.

Rout, G. R., Samantaray, S. & Das, P. (2001) Aluminium toxicity in plants: a review. Agronomie, 21, 3-21.

Royal Australian Survey Corps (1987) Cairns 1:50,000 Topographic Map. Royal Australian Survey Corps.

Russell, D. J. & Helmke, S. A. (2002) Impacts of acid leachate on water quality and fisheries resources of a coastal creek in northern Australia. Marine and Freshwater Research, 53, 19-33.

Sahuquillo, A. & Rauret, G. (2003) Chapter 39 Sequential extraction. IN MESTER & STURGEON (Eds.) Comprehensive Analytical Chemistry XLI.

Sahuquillo, A., Rigol, A. & Rauret, G. (2002) Comparison of leaching tests for the study of trace metals remobilisation in soils and sediments. Journal of Environmental Monitoring, 4, 1003-1009.

Sammut, J., Melville, M. D., Callinan, R. D. & Fraser, G. C. (1995) Estuarine acidification: impacts on aquatic biota of draining acid sulphate soils. Australian Geographical Studies, 33, 89-100.

Sammut, J., White, I. & Melville, M. D. (1994) Stratification in acidified coastal floodplain drains. Wetlands (Australia), 13, 49-64.

Santillan-Medrano, J. & Jurinak, J. J. (1975) The chemistry of lead and cadmium in soil solid phase formation. Soil Science Society of America Journal, 39, 851-856.

285

Shahandeh, H. & Hossner, L. R. (2000) Plant screening for chromium phytoremediation. International Journal of Phytoremediation, 2, 31-51.

Sharp, D. & Simon, D. K. (2002) AusGrass: Grasses of Australia. 1 ed., Australian Biological Resources Study, Canberra, and the Environmental Protection Agency, Queensland.

Sheppard, S. C. & Evenden, W. G. (1988) The assumption of linearity in soil and plant concentrations ratios: an experimental evaluation. Journal of Environmental Radioactivity, 7, 221-247.

Shin, D. & Lee, I. (2002) Carbonate-hosted talc deposits in the contact aureole of an igneous intrusion (Hwanggangri mineralized zone, South Korea): geochemistry, phase relationships, and stable isotope studies. Ore Geology Reviews, 22, 17-39.

Siegel, F. R. (2002) Environmental Geochemistry of Potentially Toxic Metals, Berlin Heidelberg, Springer-Verlag.

Simpson, S. L., Apte, S. C. & Batley, G. E. (1998) Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediments. Environmental Science and Technology, 32, 620-625.

Singer, P. C. & Stumm, W. (1970) Acid mine drainage: the rate determining step. Science, 167, 1121-1123.

Skinner, B. J., Erd, R. C. & Grimaldi, F. S. (1964) Greigite, the thio-spinel of iron: a new mineral. American Mineralogist, 49, 543 - 555.

Smith, C., Eldershaw, V., Barry, E. & Martens, M. (2003a) Background to the Project. IN SMITH, C., MARTENS, M., AHERN, C., ELDERSHAW, V., POWELL, B., BARRY, E. & HOPGOOD, G. (Eds.) Demonstration of Management and Rehabilitation of Acid Sulfate Soils at East Trinity: Technical Report. Indooroopilly, Queensland, Australia, Department of Natural Resources and Mines.

Smith, C. D., Graham, T. L., Barry, E. V., Adams, J. J. & Ahern, C. R. (2003b) Acid Sulfate Soil and Stratigraphic Assessment. IN SMITH, C. D., MARTENS, M. A., AHERN, C. R., ELDERSHAW, V. J., POWELL, B., BARRY, E. V. & HOPGOOD, G. L. (Eds.) Demonstration of Management and Rehabilitation of Acid Sulfate Soils at East Trinity: Technical Report. Indooroopilly, Queensland, Australia, Department of Natural Resources and Mines.

Smith, C. D., Martens, M. A., Ahern, C. R. & Eldershaw, V. J. (2003c) Overview of the East Trinity Project Findings. IN SMITH, C. D., MARTENS, M. A., AHERN, C. R., ELDERSHAW, V. J., POWELL, B., BARRY, E. V. & HOPGOOD, G. L. (Eds.) Demonstration of Management and Rehabilitation of Acid Sulfate Soils at East Trinity: Technical Report. Indooroopilly, Queensland, Australia., Queensland Government Department of Natural Resources and Mines, .

Smith, C. D., Martens, M. A., Ahern, C. R., Eldershaw, V. J., Powell, B., Barry, E. V. & Hopgood, G. L. (2003d) Demonstration of Management and Rehabilitation of Acid Sulfate Soils at East Trinity: Technical Report. Indooroopilly, Queensland, Australia., Department of Natural Resources and Mines, Indooroopilly, Queensland, Australia.

Smith, J. (2004) Chemical changes during oxidation of iron monosulfide-rich sediments. Australian Journal of Soil Research, 42, 659-666.

Smith, J. & Melville, M. D. (2004) Iron monosulfides formation and oxidation in drain-bottom sediments of an acid sulfate soil environment. Applied Geochemistry, 19, 1837-1853.

Smith, J. V. S., Jankowskia, J. & Sammut, J. (2003e) Vertical distribution of As(III) and As(V) in a coastal sandy aquifer: factors controlling the concentration and speciation of arsenic in the Stuarts Point groundwater system, northern New South Wales, Australia. Applied Geochemistry, 18, 1479-1496.

Smith, K. (1999) Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. IN PLUMLEE, G. S. & LOGSDON, M. J. (Eds.) The environmental geochemistry of mineral deposits. Part A: Processes, techniques, and health issues. Reviews in economic geology, 6A, 161-182.

Smith, K. S. & Huyck, H. L. O. (1999) An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. IN PLUMLEE, G. S. & LOGSDON, M. J. (Eds.) The environmental geochemistry of mineral deposits. Part A: Processes, techniques, and health issues. Reviews in economic geology, 6A, 29-64.

286

Soil Survey Staff (1999) Soil Taxonomy, A Basic System of Soil Classification for Making and Interpreting Soil Surveys (Second Edition). Agriculture Handbook (No. 436). United States Department of Agriculture, Natural Resources Conservation Service. Downloaded from: http://soils.usda.gov/technical/classification/taxonomy/ on 16 July 2004.

Standards Australia (1997) AS 4482.1-1997 Guide to the sampling and investigation of potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds, Standards Australia (Standards Association of Australia), Homebush, NSW 2140.

Stanton, P. (2003) Appendix 1 Vegetation of the East Trinity Property. IN SMITH, C., MARTENS, M., AHERN, C., ELDERSHAW, V., POWELL, B., BARRY, E. & HOPGOOD, G. (Eds.) Demonstration of Management and Rehabilitation of Acid Sulfate Soils at East Trinity: Technical Report. Indooroopilly, Queensland, Australia., Department of Natural Resources and Mines.

Sterk, G. (1993) Leaching of acid from the topsoil of raised beds on acid sulphate soils in the Mekong delta, Vietnam. IN DENT, D. L. & VAN MENSVOORT, M. E. F. (Eds.) Selected Papers of the Ho Chi Minh city Symposium on Acid Sulphate Soils (ILRI Publication 53). Ho Chi Minh City Symposium on Acid Sulphate Soils, held March 1992, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands.

Steyrer, H. P. & Sturm, R. (2002) Stability of zircon in a low-grade ultramylonite and its utility for chemical mass balancing: the shear zone at Mie´ville, Switzerland. Chemical Geology, 187, 1-19.

Stoltz, E. & Greger, M. (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47, 271-280.

Stumm, W. & Morgan, J. J. (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley-Interscience.

Sullivan, L. A. & Bush, R. T. (2002) Chemical behaviour of monosulfidic black oozes (MBOs) in water: pH and dissolved oxygen. 5th International Acid Sulfate Soils Conference - Sustainable Management of Acid Sulfate Soils. Gold Coast.

Sundström, R., Åström, M. & Österholm, P. (2002) Comparison of the metal content in acid sulfate soil runoff and industrial effluents in Finland. Environmental Science and Technology, 36, 4269-4272.

Sutherland, R. A. & Tack, F. M. G. (2003) Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Advances in Environmental Research, 8, 37-50.

Syrovetnik, K., Puura, E. & Neretnieks, I. (2004) Accumulation of heavy metals in Oostriku peat bog, Estonia: site description, conceptual modelling and geochemical modelling of the source of the metals. Environmental Geology, 45, 731-740.

Tanaka, A. & Navasero, S. A. (1967) Carbon dioxide and organic acids in relation to the growth of rice. Soil Science and Plant Nutrition (Tokyo), 13, 25-30.

Tandy, S., Bossart, K., Meuller, R., Ritschel, J., Hauser, L., Schulin, R. & Nowack, B. (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environmental Science and Technology, 38, 937-944.

Tandy, S., Schulin, R. & Nowack, B. (2006a) The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere, 62, 1454-1463.

Tandy, S., Schulin, R. & Nowack, B. (2006b) Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environmental Science and Technology, 40, 2753-2758.

Tessier, A., Campbell, P. G. C. & Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844-851.

Thom, B. G. & Chappell, J. (1975) Holocene sea levels relative to Australia. Search, 6, 90-93. Thom, B. G. & Roy, P. S. (1985) Relative sea levels and coastal sedimentation in southeast Australia

in the Holocene. Journal of Sedimentary Petrology, 55, 257-264. Thomson, E. A., Louma, S. N., Cain, D. J. & Johanson, C. (1980) The effect of sample storage on

the extraction of Cu, Zn, Fe, Mn and organic material from oxidized estuarine sediments. Water, Air, and Soil Pollution, 14, 215-233.

287

Tin, N. T. & Wilander, A. (1995) Chemical conditions in acidic waters in the plain of reeds, Viet Nam. Water Research, 20, 1401-1408.

Van Breemen, N. (1973) Soil forming processes in acid sulphate soils. IN DOST, H. (Ed.) Proceedings of the international conference on Acid Sulphate Soils; 1972. Wageningen, The Netherlands, International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands; ILRI No.18/1.

Van Breemen, N. (1976) Genesis and solution chemistry of acid sulphate soils in Thailand., Wageningen, Pudoc.

Van Breemen, N. (1988) Redox processes of iron and sulfur involved in the formation of acid sulfate soils. IN STUCKI, J. W., GOODMAN, B. A. & SCHWERTMANN, U. (Eds.) Iron in Soils and Clay Minerals.

Van Breemen, N. (1993) Environmental aspects of acid sulphate soils. IN DENT, D. L. & VAN MENSVOORT, M. E. F. (Eds.) Ho Chi Minh City Symposium on Acid Sulphate Soils. Ho Chi Minh City, Vietnam, International Institute for Land Reclamation and Improvement (ILRI).

Van Der Moezel, P. G., Pearce-Pinto, G. V. N. & Bell, D. T. (1991) Screening for salt and waterlogging tolerance in Eucalyptus and Melaleuca species. Forest Ecology and Management, 40, 27-37.

Vandecasteele, B., De Vos, B. & Tack, F. M. G. (2002) Cadmium and Zinc uptake by volunteer willow species and elder rooting in polluted dredge sediment disposal sites. Science of the Total Environment, 299, 191-205.

Vandecasteele, B., Quataert, P. & Tack, F. M. G. (2005) The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea. Environmental Pollution, 135.

Vandecasteele, B., Quataert, P. & Tack, F. M. G. (2007) Uptake of Cd, Zn and Mn by willow increases during terrestrialisation of initially ponded polluted sediments. Science of the Total Environment, 380, 133-143.

Vandevivere, P., Hammes, F., Verstraete, W., Feijtel, T. & Schowanek, D. (2001) Metal decontamination of soil, sediment, and sewage sludge by means of transition metal chelant [S,S]-EDDS. Journal of Environmental Engineering, 802-811.

Virgona, J. L. (1992) Environmental factors influencing the prevalence of a cutaneous ulcerative disease (red spot) in the sea mullet, Mugil cephalus L., in the Clarence River, New South Wales, Australia. Journal of Fish Diseases, 15, 363-378.

Ward, N. J., Sullivan, L. A., Fyfe, D. M., Bush, R. T. & Ferguson, A. J. P. (2004) The process of sulfide oxidation in some acid sulfate soil materials. Australian Journal of Soil Research, 42, 449-458.

Watkinson, A. J., Dennison, W. C., O’neil, J. M. & Hewson, I. (2000) Blooms of the Marine Cyanobacterium Lyngbya majuscula in Deception Bay: Potential Implications of Hydric Soil Disturbance. IN AHERN, C. R., HEY, K. M., WATLING, K. M. & ELDERSHAW, V. J. (Eds.) Acid Sulfate Soils: Environmental Issues, Assessment and Management, Technical Papers. Brisbane, 20–22 June, 2000., Department of Natural Resources, Indooroopilly, Queensland, Australia.

Wendelaar Bonga, S. E. & Van Dederen, L. W. (1986) Effects of acidified water on fish. Endeavour (New Series), 10, 198-202.

Whitbread, M. A. & Moore, C. L. (2004) Two lithogeochemical approaches to the identification of alteration patterns at the Elura Zn-Pb-Ag deposit, Cobar, New South Wales, Australia: use of Pearce Element Ratio analysis and Isocon analysis. Geochemistry: Exploration, Environment, Analysis, 4, 129-141.

White, I., Melville, M. D., Wilson, B. P. & Sammut, J. (1997) Reducing acidic discharges from coastal wetlands in eastern Australia. Wetlands Ecology and Management, 5, 55-72.

White, I., Wilson, P. B., Melville, M. D., Sammut, J. & Lin, C. (1996) Hydrology and drainage of acid sulfate soils. IN SMITH, R. J. & SMITH, H. J. (Eds.) Proceedings of the 2nd National Conference on Acid Sulfate Soils. 2nd National Conference of Acid Sulfate Soils. Coffs Harbour, held 5 - 6 September 1996, Robert J Smith and Associates and Acid Sulfate Soils Management Advisory Committee (ASSMAC).

Wieder, R. K., Yavitt, J. B. & Lang, G. E. (1990) Methane production and sulfate reduction in two Appalachian peatlands. Biogeochemistry, 10, 81-104.

288

Willett, I. R., Crockford, R. H. & Milnes, A. R. (1992) Transformation of iron, manganese and aluminium during oxidation of a sulphidic material from an acid sulphate soil. IN SKINNER, H. C. W. & FITZPATRICK, R. W. (Eds.) Biomineralization Processes of Iron and Manganese-Modern and Ancient Environments. Cremlingen-Destedt, Germany, Catena Verlag.

Williams, T. P., Bubb, J. M. & Lester, J. N. (1994) Metal accumulation within salt marsh environments: a review. Marine Pollution Bulletin, 28, 277-290.

Willmott, W. F. & Stephenson, P. J. (1989) Rocks and landscapes of the Cairns district. Queensland Department of Mines, Brisbane, Brisbane, Queensland Department of Mines.

Wilson, B. P., White, I. & Melville, M. D. (1999) Floodplain hydrology, acid discharge and change in water quality associated with a drained acid sulfate soil. Marine and Freshwater Research, 50, 149-157.

Yaman, M. & Akdeniz, I. (2006) Fractionation of aluminium in soil and relation to its concentration in fruits. Environmental Monitoring and Assessment, 115, 279-289.

Yigit, O. & Hofstra, A. H. (2003) Lithogeochemistry of Carlin-type gold mineralization in the Gold Bar district, Battle Mountain-Eureka Trend, Nevada. Ore Geology Reviews, 22, 201-224.

289

APPENDIX A. PROJECT SAMPLE CATALOGUE

Table A.1. Acid Sulfate Soil sample locations (AGD84 zone 55) and notes.

Location Significant Inundation

Easting Northing Notes

Dry ASS Profile (DP)

No 372510 8126650 Surface dry, core mostly dry/slightly moist.

Live Melaleuca leucadendra.

Wet ASS Profile (WP)

Yes 372450 8126600 Surface approximately 0.4 m lower than DP.

Surrounded by dead Melaleuca leucadendra. Surface wet, core saturated.

Table A.2. Acid Sulfate Soil samples and notes.

Sample ID Profile Core Collected Depth m bgl Notes/Analyses DP0-1 Dry 0 November 2004 0.0 - 0.3 XRD DP0-2 Dry 0 November 2004 0.3 - 0.5 XRD DP0-3 Dry 0 November 2004 0.5 - 0.7 XRD DP0-4 Dry 0 November 2004 0.7 - 0.9 XRD DP0-5 Dry 0 November 2004 0.9 - 1.1 XRD

DP1-01 Dry 1 June 2005 0.0 - 0.1 XRF, Isocon Analysis DP1-02 Dry 1 June 2005 0.1 - 0.2 XRF, Isocon Analysis DP1-03 Dry 1 June 2005 0.2 - 0.3 XRF, Isocon Analysis DP1-04 Dry 1 June 2005 0.3 - 0.4 XRF, Isocon Analysis DP1-05 Dry 1 June 2005 0.4 - 0.5 XRF, Isocon Analysis DP1-06 Dry 1 June 2005 0.5 - 0.6 XRF, Isocon Analysis DP1-07 Dry 1 June 2005 0.6 - 0.7 XRF, Isocon Analysis DP1-08 Dry 1 June 2005 0.8 - 0.9 XRF, Isocon Analysis DP1-09 Dry 1 June 2005 1.0 - 1.1 XRF, Isocon Analysis DP1-10 Dry 1 June 2005 1.2 - 1.3 XRF

DP2-01 Dry 2 June 2005 0.0 - 0.1 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS

grain-size analysis, soil pH, oxidised soil pH

DP2-02 Dry 2 June 2005 0.1 - 0.2 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS,

soil pH, oxidised soil pH

DP2-03 Dry 2 June 2005 0.2 - 0.3 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS

grain-size analysis, soil pH, oxidised soil pH

DP2-04 Dry 2 June 2005 0.3 - 0.4 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS

grain-size analysis, soil pH, oxidised soil pH

DP2-05 Dry 2 June 2005 0.4 - 0.5 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS

grain-size analysis, soil pH, oxidised soil pH

DP2-06 Dry 2 June 2005 0.5 - 0.6 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS

grain-size analysis, soil pH, oxidised soil pH

DP2-07 Dry 2 June 2005 0.6 - 0.7 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS

grain-size analysis, soil pH, oxidised soil pH

DP2-08 Dry 2 June 2005 0.7 - 0.8 GSC-SEP, MBCR-SEP, grain-size analysis, soil

pH, oxidised soil pH

DP2-09 Dry 2 June 2005 0.8 - 0.9 GSC-SEP, MBCR-SEP, grain-size analysis, soil

pH, oxidised soil pH

DP2-10 Dry 2 June 2005 0.9 - 1.0 GSC-SEP, MBCR-SEP, grain-size analysis, soil

pH, oxidised soil pH

DP2-11 Dry 2 June 2005 1.0 - 1.1 Grain-size analysis, soil pH, oxidised soil pH

DP2-12 Dry 2 June 2005 1.1 - 1.2 Grain-size analysis, soil pH, oxidised soil pH

- Table Continued Next Page -

290

Table A.2. (Continued) Acid Sulfate Soil samples and notes.

Sample ID Profile Core Collected Depth m bgl Notes/Analyses

DP2-13 Dry 2 June 2005 1.2 - 1.3 Grain-size analysis, soil pH, oxidised soil pH

DP2-14 Dry 2 June 2005 1.3 - 1.4 Grain-size analysis, soil pH, oxidised soil pH

WP1-01 Wet 1 June 2005 0.0 - 0.15 XRD, XRF, Isocon Analysis WP1-02 Wet 1 June 2005 0.15 - 0.3 XRD, XRF, Isocon Analysis WP1-03 Wet 1 June 2005 0.3 - 0.4 XRD, XRF, Isocon Analysis WP1-04 Wet 1 June 2005 0.4 - 0.5 XRF, Isocon Analysis WP1-05 Wet 1 June 2005 0.5 - 0.6 XRD, XRF, Isocon Analysis WP1-06 Wet 1 June 2005 0.6 - 0.7 XRF, Isocon Analysis WP1-07 Wet 1 June 2005 0.7 - 0.8 XRD, XRF, Isocon Analysis WP1-08 Wet 1 June 2005 0.8 - 0.9 XRD, XRF, Isocon Analysis WP1-09 Wet 1 June 2005 0.9 - 1.0 XRD, XRF, Isocon Analysis WP1-10 Wet 1 June 2005 1.0 - 1.1 XRF WP1-11 Wet 1 June 2005 1.1 - 1.2 XRD, XRF

WP2-01 Wet 2 June 2005 0 - 0.1 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS

grain-size analysis, soil pH, oxidised soil pH

WP2-02 Wet 2 June 2005 0.1 - 0.2 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS

WP2-03 Wet 2 June 2005 0.2 - 0.3 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS

grain-size analysis, soil pH, oxidised soil pH

WP2-04 Wet 2 June 2005 0.3 - 0.4 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS

grain-size analysis, soil pH, oxidised soil pH

WP2-05 Wet 2 June 2005 0.4 - 0.5 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS

grain-size analysis, soil pH, oxidised soil pH

WP2-06 Wet 2 June 2005 0.5 - 0.6 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS

grain-size analysis, soil pH, oxidised soil pH

WP2-07 Wet 2 June 2005 0.6 - 0.7 GSC-SEP, MBCR-SEP, DTPA, EDTA, EDDS

grain-size analysis, soil pH, oxidised soil pH

WP2-08 Wet 2 June 2005 0.7 - 0.8 GSC-SEP, MBCR-SEP, grain-size analysis, soil

pH, oxidised soil pH

WP2-09 Wet 2 June 2005 0.8 - 0.9 GSC-SEP, MBCR-SEP, grain-size analysis, soil

pH, oxidised soil pH

WP2-10 Wet 2 June 2005 0.9 - 1.0 GSC-SEP, MBCR-SEP, grain-size analysis, soil

pH, oxidised soil pH

WP2-11 Wet 2 June 2005 1.0 - 1.1 Grain-size analysis, soil pH, oxidised soil pH

WP2-12 Wet 2 June 2005 1.1 - 1.2 Grain-size analysis, soil pH, oxidised soil pH

WP2-13 Wet 2 June 2005 1.2 - 1.3 Grain-size analysis, soil pH, oxidised soil pH

WP2-14 Wet 2 June 2005 1.3 - 1.4 Grain-size analysis, soil pH, oxidised soil pH

291

Table A.3. Firewood Creek drain sediment sample locations (AGD84 zone 55) and notes.

Twelve Orange Flocculant (OF) and five Black Ooze (BO) samples were collected.

Sample ID Type Easting Northing Notes

FDS01 OF 0372480 8126500 Upstream from DP ASS location (OF)

XRD, XRF

FDS02 OF 0372480 8126500 Upstream from DP ASS location (OF)

XRD, XRF

FDS03 OF 0372480 8126450 At DP ASS location (OF)

XRF

FDS04 OF 0372480 8126450 At DP ASS location (OF)

XRF

FDS05 OF 0372480 8126400 Downstream from DP ASS location (OF)

XRD, XRF

FDS06 OF 0372480 8126400 Downstream from DP ASS location (OF)

XRD, XRF

FDS07A OF 0372454 8126462 At DP ASS location flood plate (OF)

XRF

FDS07B BO 0372454 8126462 At DP ASS location flood plate (BO)

XRF

FDS08A OF 0372302 8126377 Drain confluence (OF)

XRF, MBCR-SEP

FDS08B BO 0372302 8126377 Drain confluence (BO)

XRF, MBCR-SEP

FDS9A OF 0372372 8126324 Eastern drain (OF)

XRF

FDS9B BO 0372372 8126324 Eastern drain (BO)

XRF

FDS10A OF 0372329 8126388 At WP ASS location (OF)

XRF, MBCR-SEP

FDS10B BO 0372329 8126388 At WP ASS location (BO)

XRF, MBCR-SEP

FDS11A OF 0371432 8126033 Inside bundwall (OF)

XRF, MBCR-SEP

FDS11B BO 0371432 8126033 Inside bundwall (BO)

XRF, MBCR-SEP

FDS12 OF 0372404 8126482 Opposite DP ASS location (OF)

XRF

292

Table A.4. Collection locations (AGD84 zone 55) and notes for mouth sediments from

Firewood and Falls Creeks.

Grid Reference Sample ID Creek Easting Northing Notes

FCT01 Firewood 0371064 8126180 Marine Mud, wet, organic matter. FCT02 Firewood 0370954 8126081 Marine Mud, moist, clayey. FTC03 Firewood 0370930 8126066 Marine Mud, moist, clayey. FCT04 Firewood 0370911 8126114 Marine Mud, gritty - shell fragments. FCT05 Firewood 0370921 8126169 Marine Mud, minor grit. FCT06 Firewood 0370947 8126168 Marine Mud, clayey, no grit. FCT07 Firewood 0370956 8125972 Marine Mud - clay. FCT08 Firewood 0371024 8126199 Marine Mud, wet.

FCT09 Firewood 0371052 8126206 Marine Mud, considerable sand and shell

grit. FCT10 Firewood 0371032 8126126 Marine Mud, wet. FCT11 Firewood 0370924 8125913 Marine Mud FCT12 Firewood 0370924 8125913 Marine Mud, wet, organic matter (leaves). FCT13 Firewood 0370812 8126109 Marine Mud.

B01 Falls 0371490 8123131 See Hall (2002). B02 Falls 0371439 8123044 “ ” B03 Falls 0371566 8123044 “ ” B04 Falls 0371647 8123105 “ ” B05 Falls 0371730 8123053 “ ” B06 Falls 0371772 8123112 “ ” B07 Falls 0371848 8123235 “ ” B08 Falls 0371776 8123350 “ ” B09 Falls 0371844 8123405 “ ” B10 Falls 0371993 8123417 “ ” B11 Falls 0371976 8123305 “ ” B12 Falls 0372174 8123199 “ ” B13 Falls 0372342 8123163 “ ” B14 Falls 0372355 8123209 “ ”

293

Table A.5. Plant and associated soil sample details. Two types of plants were collected: the

grass Paspalum vaginatum; and the mangrove fern Acrostichum speciosum. Each plant

sample was processed to provide a stem (above ground tissue) and root (below

ground tissue) sample. Soil from the roots of each plant sample was also collected.

Hence, each plant sample has a corresponding soil sample.

Location* ID Species East North Date Notes

37+ 812+

MF1 Acrostichum speciosum 2319 5586 Apr 2007 Collected from inside bundwall. Plant soil extracted with EDTA.

MF2 Acrostichum speciosum 2107 5608 Apr 2007 Collected from inside bundwall. Plant soil extracted with EDTA.

MF3 Acrostichum speciosum 1844 5770 Apr 2007 Collected from inside bundwall. Plant soil.

MF4 Acrostichum speciosum 0745 6711 Apr 2007 Collected from outside bundwall. Background sample. Plant soil extracted with EDTA.

MF5 Acrostichum speciosum 1630 6764 Apr 2007 Mangrove Fern, Magazine Creek flocculant pan. Plant soil extracted with EDTA.

MF6 Acrostichum speciosum 2419 6487 Apr 2007 Collected from dry ASS profile location. Plant soil extracted with EDTA.

MF7 Acrostichum speciosum 2394 6406 Apr 2007 Collected from wet ASS profile location. Plant soil extracted with EDTA.

MF8 Acrostichum speciosum 0890 6325 Dec 2007 Collected from outside bundwall. Background sample.

MF9 Acrostichum speciosum 2679 9578 Dec 2007 Collected from outside bundwall. Background sample.

MF10 Acrostichum speciosum 0990 8161 Dec 2007 Collected from outside bundwall. Background sample.

MF11 Acrostichum speciosum 2025 9067 Dec 2007 Collected from outside bundwall. Background sample.

MF12 Acrostichum speciosum 2025 9067 Dec 2007 Collected from outside bundwall. Background sample.

MF13 Acrostichum speciosum 2212 9266 Dec 2007 Collected from outside bundwall. Background sample.

MF14 Acrostichum speciosum 2212 9266 Dec 2007 Collected from outside bundwall. Background sample.

MF15 Acrostichum speciosum 1577 6684 Dec 2007 Collected from IAASS. Soil wet when sampled.

MF16 Acrostichum speciosum 1791 5738 Dec 2007 Collected from IAASS. Soil wet when sampled.

PV1 Paspalum vaginatum 2394 6406 Mar 2007 Collected from wet ASS profile location. Covered by ~3 cm of salt water when sampled. Plant soil extracted with EDTA.

PV2 Paspalum vaginatum 2412 6483 Mar 2007 Collected from dry ASS profile location. Covered by ~20 cm of salt water when sampled. Plant soil extracted with EDTA.

PV3 Paspalum vaginatum 2594 5898 Mar 2007 Collected from the top of Firewood Creek (TFW) Background sample. Plant soil extracted with EDTA.

- Table Continued Next Page -

294

Table A.5. (Continued) Plant and associated soil sample details. Two types of plants were

collected: the grass Paspalum vaginatum; and the mangrove fern Acrostichum speciosum.

Each plant sample was processed to provide a stem (above ground tissue) and root

(below ground tissue) sample. Soil from the roots of each plant sample was also

collected. Hence, each plant sample has a corresponding soil sample.

Location* ID Species East North Date Notes

37+ 812+

PV4 Paspalum vaginatum 2102 5624 Apr 2007 Collected from inside bundwall. Plant soil extracted with EDTA.

PV5 Paspalum vaginatum 1636 26760 Apr 2007 Collected from inside bundwall. Plant soil extracted with EDTA.

PV6 Paspalum vaginatum 2420 6489 Apr 2007 Collected from dry ASS profile location. Covered by ~3 cm of salt water when sampled. Plant soil extracted with EDTA.

PV7 Paspalum vaginatum 2394 6406 Apr 2007 Collected from wet ASS profile location. Covered by ~20 cm of salt water when sampled. Plant soil extracted with EDTA.

PV8 Paspalum vaginatum 0773 7266 Dec 2007 Collected from outside bundwall. Background sample.

PV9 Paspalum vaginatum 0779 7313 Dec 2007 Collected from outside bundwall. Background sample.

PV10 Paspalum vaginatum 0779 7313 Dec 2007 Collected from outside bundwall. Background sample.

PV11 Paspalum vaginatum 0872 7687 Dec 2007 Collected from outside bundwall. Background sample.

PV12 Paspalum vaginatum 0872 7687 Dec 2007 Collected from outside bundwall. Background sample.

PV13 Paspalum vaginatum 0885 7743 Dec 2007 Collected from outside bundwall. Background sample.

PV14 Paspalum vaginatum 0885 7743 Dec 2007 Collected from outside bundwall. Background sample.

PV15 Paspalum vaginatum 2102 5615 Dec 2007 Collected from IAASS. Soil wet when sampled.

PV16 Paspalum vaginatum 1573 6687 Dec 2007 Collected from IAASS. Soil wet when sampled.

* Co-ordinates are for AMG 55K CB.

295

APPENDIX B. QUALITY ASSURANCE OF ANALYTICAL DATA

B.1 Data Quality of ASS and Drain Sediment XRF Element Determination

Table B.1. XRF data accuracy assessment. Two samples of the TILL 1 SRM were analysed

using XRF. Assessment for valid reproducibility was a percentage difference from

the standard value (%∆SRM) less than 30 where the value was five times greater than

the detection limit and 50 for values less than five times the lower detection limit.

Elements in bold exceeded the threshold and were removed from the dataset.

TILL-1 Analysis Analysis Largest Smallest Accuracy Element Unit LLD Std Values Values 1 Values 2 %∆SRM %∆SRM Assessment

Al % - 7.25 7.30 7.31 1 1 OK As ppm 10 18 23 21 28 17 OK Ba ppm 10 702 682 670 5 3 OK Ca % - 1.94 1.89 1.90 3 2 OK Co ppm 2 18 15 15 17 17 OK Cr ppm 3 65 70 53 18 8 OK Cu ppm 3 47 45 42 11 4 OK Fe % - 4.81 4.82 4.86 1 0 OK Ga ppm 3 NV 17 18 NV NV Tentative OK1 K % - 1.84 1.74 1.74 5 5 OK

LOI % - NV 7.424 7.55 NV NV Tentative OK1 Mg % - 1.30 1.32 1.32 2 2 OK Mn % - 0.14 0.14 0.16 14 0 OK Mn ppm 4 1420 1607 1636 15 13 OK Na % - 2.01 2.24 2.17 11 8 OK Nb ppm 2 10 8 8 20 20 OK Ni ppm 3 24 28 27 17 13 OK P % - 0.096 0.094 0.095 2 1 OK

Pb ppm 10 22 21 26 18 5 OK Rb ppm 2 44 47 47 7 7 OK S % - >0.05 0.009 BD NV NV Tentative OK1 Sc ppm 3 13 15 15 15 15 OK Si % - 28.47 28.66 28.44 1 0 OK Sr ppm 2 291 305 303 5 4 OK Ti % - 0.588 0.582 0.574 2 1 OK Ti ppm 5 5990 7012 6836 17 14 OK V ppm 4 99 99 99 0 0 OK Y ppm 2 38 34 34 11 11 OK

Zn ppm 3 98 102 100 4 2 OK Zr ppm 3 502 471 462 8 6 OK

1 Tentative approval given due to a standard value not being provided by the for SRM.

BD = below detection limit.

NV = no value.

296

Table B.2. XRF data reproducibility assessment. Three sets of replicate samples were

analysed. Assessment for valid reproducibility was a R%D less than 30 where the

value was five times greater than the detection limit and 50 for values less than five

times the lower detection limit. Elements in bold (i.e. S) exceeded the threshold

and were removed from the dataset. Replicate 1 was ETA82S-1, Replicate 2 was

ETA143-3 and Replicate 3 was ETA143-3.

Replicate 1 Replicate 2 Replicate 3 Element Unit LDL 1st 2nd R%D 1st 2nd R%D 1st 2nd R%D Assessment

Al % - 8.09 8.03 1 8.55 8.58 0 8.59 8.46 2 OK As ppm 10 56 57 2 28 29 4 24 24 0 OK Ba ppm 10 210 188 11 265 269 1 257 255 1 OK Ca % - 0.33 0.33 0 0.26 0.26 0 0.25 0.24 3 OK Co ppm 2 2 2 0 3 2 40 5 7 33 OK Cr ppm 3 94 73 25 106 107 1 83 88 6 OK Cu ppm 3 15 15 0 11 11 0 7 8 13 OK Fe % - 4.13 4.11 0 3.92 3.95 1 3.91 3.83 2 OK Ga ppm 3 20 21 5 22 22 0 19 20 5 OK K % - 2.08 2.07 0 1.91 1.97 3 2.02 1.98 2 OK

LOI % - 21.2 21.1 0 17.7 17.5 1 18.8 18.8 0 OK Mg % - 0.50 0.49 2 0.36 0.35 1 0.31 0.31 0 OK Mn % - BD BD NV BD BD NV 0.015 0.015 0 OK Mn ppm 4 127 107 17 156 151 3 135 136 1 OK Na % - 1.64 1.55 6 0.97 0.93 4 0.96 0.96 1 OK Nb ppm 2 12 11 9 17 18 6 23 24 4 OK Ni ppm 3 15 15 0 17 15 13 21 22 5 OK P % - 0.061 0.060 1 0.025 0.026 3 0.026 0.026 0 OK

Pb ppm 10 28 28 0 24 24 0 21 25 17 OK Rb ppm 2 170 168 1 153 152 1 137 141 3 OK S % - 0.046 0.046 1 0.005 0.014 98 0.008 0.008 0 Tentative OK1

Sc ppm 3 15 11 31 16 16 0 12 11 9 OK Si % - 24.08 24.09 0 25.88 25.97 0 25.57 25.23 1 OK Sr ppm 2 85 85 0 75 76 1 70 73 4 OK Ti % - 0.403 0.405 0 0.515 0.520 1 0.534 0.540 1 OK Ti ppm 5 4819 5290 9 5641 5613 0 5502 5491 0 OK V ppm 4 91 90 1 70 65 7 72 73 1 OK Y ppm 2 27 27 0 24 25 4 22 24 9 OK

Zn ppm 3 50 50 0 49 49 0 42 44 5 OK Zr ppm 3 202 209 3 203 203 0 185 192 4 OK

1 Tentative approval given due acceptable accuracy in two other replicates and very low concentrations in

failed samples.

BD = below detection limit.

NV = no value.

297

B.3 Data Quality of SEP Bulk and Residual Sample Element Determination

Table B.3. Accuracy data for SEP solid samples analysed using the HClO4+HCl+HF+HNO3

digest and ICP-MS analysis (ALS). The SRM used was TILL-1. Assessment for

valid reproducibility was a percentage difference from the standard value (%∆SRM)

less than 30 where the value was five times greater than the detection limit and 50

for values less than five times the lower detection limit. Elements in bold (i.e. Cr

and Zr) exceeded the threshold and were removed from the datasets.

Element Units LDL TILL1 Std

Values Analysis Values %∆SRM

Accuracy Assessment

Al % 0.01 7.25 7.01 3 OK As ppm 0.2 18 21.4 19 OK Ba ppm 10 702 620 12 OK Co ppm 0.1 18 15.3 15 OK

Cr ppm 1 65 107 65 Fail

Cu ppm 0.2 47 40 15 OK Fe % 0.01 4.81 5.82 21 OK Ga ppm NV NV NV Tentative OK1

Mn ppm 5 1420 1230 13 OK Na % 0.01 2.01 1.94 4 OK Nb ppm 0.1 10 8.8 12 OK Ni ppm 0.2 24 25.8 8 OK

Pb ppm 0.5 22 20.3 8 OK Sc ppm 0.1 13 13 0 OK Ti % 0.005 0.60 0.47 22 OK V ppm 1 99 95 4 OK

Zn ppm 2 98 89 9 OK Zr ppm 0.5 502 172.5 66 Fail

1 Approval given due to a standard value not being provided for the SRM.

BD = below detection limit.

NV = no value.

298

Table B.4. Reproducibility of SEP solid samples analysed using the

HClO4+HF+HNO3+HCl digest and ICP-MS analysis (ALS). Assessment for

valid reproducibility was a R%D less than 30 where the value was five times

greater than the detection limit and 50 for values less than five times the lower

detection limit. Elements in bold (i.e. Cr) exceeded the threshold and were

removed from the dataset.

Element Units LDL WP2-10 Replicate R%D Assessment

Al % 0.01 8.09 7.43 9 OK

As ppm 0.2 26.7 24.8 7 OK Ba ppm 10 220 200 10 OK Co ppm 0.1 15.7 15.5 1 OK

Cr ppm 1 83 218 90 Fail

Cu ppm 0.2 13.9 14.9 7 OK Fe % 0.01 4.11 3.83 7 OK Ga ppm 21.1 19.4 8 OK

Mn ppm 5 474 423 11 OK Na % 0.01 1.02 0.96 6 OK Nb ppm 0.1 14.4 13.2 9 OK Ni ppm 0.2 33.7 38.5 13 OK

Pb ppm 0.5 27.7 25.4 9 OK Sc ppm 0.1 13.3 12.4 7 OK Ti % 0.005 0.452 0.41 10 OK V ppm 1 72 76 5 OK

Zn ppm 2 85 76 11 OK Zr ppm 0.5 115 106.5 8 OK

BD = below detection.

NV = no value.

299

B.4 Data Quality of the SEP, DTPA, EDDS and EDTA Solution Analysis

Table B.5. Accuracy data and assessment for SEP, DTPA, EDDS and EDTA solutions

analysed using ICP-MS/OES by the AAC. The SRM was SLRS-4. Assessment

for valid reproducibility was a percentage difference from the standard value

(%∆SRM) less than 30 where the value was five times greater than the detection limit

and 50 for values less than five times the lower detection limit. Elements in bold

exceeded the threshold and were removed from the dataset. See Section 5.2 for

discussion of the accuracy assessment in the SEP solutions.

SLRS-4 Element Unit LDL Std Values Analysis Value %∆SRM Assessment

Al µg/L 0.45 54.0 49.6 8 OK As µg/L 0.4 0.680 0.639 6 OK Ba µg/L 0.06 12.2 12.6 3 OK Co µg/L 0.01 0.033 0.0344 0 OK Cr µg/L 0.01 0.30 9.54 3049 Fail

Cu µg/L 0.1 1.81 0.54 70 Tentative OK2 Fe µg/L 10 103 97.7 5 OK Ga µg/L 0.05 NV <= 0.05 NV Tentative OK1

Mn µg/L 0.01 3.37 3.04 10 OK Na mg/L 200 2.40 1.80 25 OK Nb µg/L 0.05 NV <= 0.05 NV Tentative OK1 Ni µg/L 0.01 0.670 0.574 14 OK Pb µg/L 0.005 0.086 0.0378 56 Tentative OK2 Sc µg/L 0.5 NV <= 0.5 NV Tentative OK1 Ti µg/L 0.1 NV 3.55 NV Tentative OK1 V µg/L 0.01 0.32 3.68 1050 Fail

Zn µg/L 0.3 0.93 1.37 47 Tentative OK2 Zr µg/L 0.01 NV 0.120 NV Tentative OK1

1 Tentative approval given due to a standard value not being provided by the for SRM.

2 Element assessed to have been determined accurately because of the very low concentrations in SRM and

the significant matrix differences between the SRM and SEP solutions (see Section 5.2.3 for details).

NV = no value.

300

Table B.6. Reproducibility data and assessment for SEP solutions analysed at the AAC,

Townsville. Two sets of replicate samples were analysed. Assessment for valid

reproducibility was a R%D less than 30 where the value was five times greater

than the detection limit and 50 for values less than five times the lower detection

limit. Elements in bold (i.e. As, Cr and Zr) exceeded the threshold and were

removed from the dataset. Replicate 1: BCR-82S-9/3 Ex / JBR1, Replicate 2 GSC-82S-

8/3 AmFeOx / JBR2.

Element Unit LDL Replicate 1 R%D Replicate 2 R%D Assessment

Al µg/L 0.45 412 547 28 34800 35200 1 OK As µg/L 0.4 19.9 20.5 3 38.3 58.0 41 Fail

Ba µg/L 0.06 2.78 2.73 2 76.9 72.7 6 OK

Co µg/L 0.01 64.3 66.9 4 19.8 16.4 19 OK Cr µg/L 0.01 6.02 3.56 51 40.7 49.2 19 Fail

Cu µg/L 0.1 0.985 0.966 2 44.6 40.8 9 OK Fe µg/L 10 3130 3840 20 36300 47900 28 OK

Ga µg/L 0.05 0.0657 0.0662 1 11.0 9.29 17 OK Mn µg/L 0.01 173 163 6 364 425 15 OK Na µg/L 200 14200 17200 19 42800 53200 22 OK Nb µg/L 0.05 <= 0.05 <= 0.05 NV 0.372 0.349 6 Tentative OK1

Ni µg/L 0.01 55.4 56.3 2 45.1 36.3 22 OK Pb µg/L 0.005 1.68 1.66 1 118 94.9 22 OK Sc µg/L 0.5 2.14 2.13 0 8.10 7.09 13 OK Ti µg/L 0.1 3.67 3.70 1 251 253 1 OK

V µg/L 0.01 102 106 4 172 180 5 OK Zn µg/L 0.3 83.2 85.9 3 113 94.4 18 OK Zr µg/L 0.01 0.156 0.194 22 0.926 1.29 33 Fail

1 Tentative approval given due to a lack of data.

BD = below detection limit.

NV = no value.

301

B.2 Data Quality of Mouth Sediment Element Determination

The analytical quality data for the HClO4+HF+HNO3+HCl digest with ICP-MS analysis

conducted by ALS and presented in Tables B.7 and B.8 applies to the mouth sediment elemental

composition data (Chapter 6).

Table B.7. Accuracy data for the mouth sediment element determination using

HClO4+HF+HNO3+HCl digest and ICP-MS analysis conducted be ALS. The

SRM used was GXR-3. Assessment for valid reproducibility was a percentage

difference from the standard value (%∆SRM) less than 30 where the value was five

times greater than the detection limit and 50 for values less than five times the

lower detection limit. Elements in bold (i.e. Al, Cu and Sc) exceeded the threshold

and were removed from the dataset.

Element Unit LDL Certified Value

Mean1 Analysis Values %∆SRM

Accuracy Assessment

Al % 0.01 6.40 4.25 34 Fail

As ppm 0.2 3970 4610 16 OK

Ba ppm 10 5000 5200 4 OK

Ca % 0.01 13.59 13 4 OK

Co ppm 0.1 45 37.3 16 OK

Cu ppm 0.2 15 9.1 39 Fail

Fe % 0.01 19.31 18.2 6 OK

K % 0.01 0.73 0.81 11 OK

Li ppm 0.2 114 85.3 25 OK

Mg % 0.01 0.81 0.82 1 OK

Mn ppm 5 22300 >10000 NV Tentative OK2

Na % 0.01 0.84 0.82 2 OK

Nb ppm 0.1 NV NV NV Tentative OK2

Ni ppm 0.2 60 44.7 26 OK

P % 10 0.11 0.114 4 OK

Pb ppm 0.5 15 13.7 9 OK

S ppm 2320 2800 21 OK

Sc ppm 0.1 16.80 41.5 147 Fail

Ti % 0.005 0.10 0.091 11 OK

V ppm 1 42 38 10 OK

Y ppm 0.1 15 12 20 OK

Zn ppm 2 207 213 3 OK

Zr ppm 0.5 63 57.4 9 OK 1 Mean of the “certified” values reported by Potts et al. (1992) and Govindaraju (1989) for the GXR-3 SRM.

2 Tentative approval given due to a certified value not being provided for SRM.

302

Table B.8. Reproducibility data for HClO4+HF+HNO3+HCl digest and ICP-MS analysis

conducted by ALS. Two replicate samples were analysed. Assessment for valid

reproducibility was a R%D less than 30 where the value was five times greater

than the detection limit and 50 for values less than five times the lower detection

limit. Elements in bold exceeded the threshold and were removed from the

dataset.

FCT7 HCT12 Element Unit R1 R2 R3 R%D R1 R2 R%D Assessment

Al % 8.08 7.74 7.98 4 8.26 8.33 1 OK As ppm 32.8 33.2 32.3 3 25.1 25.8 3 OK Ba ppm 230 220 230 4 250 260 4 OK Ca % 1.22 1.2 0.9 29 2.85 2.92 2 OK Co ppm 13.8 14.1 15 8 13.7 13.6 1 OK Cr ppm 73 69 72 6 74 75 1 OK Cu ppm 24.8 24.8 25.1 1 20.7 20.1 3 OK Fe % 4.98 4.88 4.97 2 4.3 4.4 2 OK Ga ppm 16.95 16.1 16.65 5 19.3 18.95 2 OK K % 1.67 1.61 1.67 4 1.67 1.7 2 OK Li ppm 59.4 59.5 65.3 10 58.9 58 2 OK Mg % 0.83 0.81 0.85 5 1.06 1.07 1 OK Mn ppm 388 383 378 3 655 704 7 OK Na % 1.46 1.39 1.62 15 1.34 1.37 2 OK Nb ppm 15.3 14.4 15.1 6 17.2 17 1 OK Ni ppm 30.9 31 32.7 6 33.4 32.8 2 OK P ppm 710 660 640 10 590 590 0 OK

Pb ppm 29.1 27.1 28.4 7 29 26.4 9 OK Rb ppm 122.5 116.5 118.5 5 108.5 94.3 14 OK S % 1.44 1.38 1.42 4 0.51 0.52 2 OK Ti % 0.448 0.437 0.455 4 0.507 0.512 1 OK V ppm 78 75 80 6 83 85 2 OK Y ppm 30 28.4 30.5 7 23.8 22.5 6 OK

Zn ppm 95 93 95 2 89 89 0 OK Zr ppm 100 95 101.5 7 111.5 110.5 1 OK

BD = below detection limit.

NV = no value.

303

B.6 Data Quality of the Plant Analyses

Table B.9 provides reproducibility data for the digest and analysis of the plant samples. The

elemental concentration of the plant samples is reported in Chapter 7. There is no accuracy data

for the plant samples because a suitable SRM was not available.

Table B.9. Reproducibility data for the plant digest (HNO3+H2O2) and analysis (ICP-MS)

conducted by the AAC on plant samples MF1 - MF7 and PV1 - PV7. Assessment

for valid reproducibility was a R%D less than 30 where the value was five times

greater than the detection limit and 50 for values less than five times the lower

detection limit. Elements in bold (i.e. Ni) exceeded the threshold and were

removed from the related dataset.

Stem Replicate Root Replicate Element Units 8766-007 8766-015 R%D Assessment 8766-014 8766-016 R%D Assessment

Al ppm 1140 1220 7 OK 426 502 16 OK As ppm 1.48 1.60 8 OK 9.51 11.1 15 OK Co ppm 0.632 0.691 9 OK 0.773 0.835 8 OK Cr ppm 0.980 0.969 1 OK 1.86 2.21 17 OK Cu ppm 1.81 1.74 4 OK 1.74 1.89 8 OK Ni ppm 1.28 0.789 47 Fail 1.34 1.21 10 OK Pb ppm 0.353 0.371 5 OK 0.631 0.674 7 OK Zn ppm 16.5 15.1 9 OK 11.2 11.7 4 OK

BD = below detection; NV = no value.

Table B.10. Reproducibility data for the plant digest (HNO3+H2O2) and analysis (ICP-MS)

conducted by the AAC on plant samples MF8 - MF16 and PV8 - PV16.

Assessment for valid reproducibility was a R%D less than 30 where the value was

five times greater than the detection limit and 50 for values less than five times the

lower detection limit. Elements in bold exceeded the threshold and were removed

from the related dataset.

Element Units Method 9047-037 9047-038 R%D Assessment Al ppm ICP-AES 1260 1330 -5 OK As ppm ICP-MS 5.81 6.48 -11 OK Co ppm ICP-MS 3.72 4.09 -9 OK Cr ppm ICP-MS 19.5 21.8 -11 OK Cu ppm ICP-MS 43.7 48.5 -10 OK Ni ppm ICP-MS 35.9 39.1 -9 OK Pb ppm ICP-MS 56.1 61.4 -9 OK Zn ppm ICP-MS 279 304 -9 OK

304

B.5 Data Quality of Plant Soil EDTA Extractions

Table B.10. Accuracy data for the bioavailability extractions. Assessment for valid accuracy

was a percentage difference from the standard value (%∆SRM) less than 30 where

the value was five times greater than the detection limit and 50 for values less than

five times the lower detection limit. Elements in bold exceeded the threshold and

were removed from the dataset.

SLRS-4 Accuracy Element Unit Certified Analysis Values %∆SRM Assessment

Al µg/L 54 58.3 -7 OK As µg/L 0.68 0.6912 -2 OK Co µg/L 0.033 0.0433 -24 OK Cr µg/L 0.33 0.515 -36 Fail

Cu µg/L 1.81 2.03 -11 OK Ni µg/L 0.67 0.752 -11 OK Pb µg/L 0.086 0.063 37 Fail

Zn µg/L 0.93 0.9665 -4 OK

305

Table B.11. Reproducibility data for the plant soil EDTA extractions. Assessment for valid

reproducibility was a R%D less than 30 where the value was five times greater

than the detection limit and 50 for values less than five times the lower detection

limit. The reproducibility of the elements in bold was not acceptable.

Reproducibility Element Units Replicate R%D Assessment

Al µg/L 16800 19200 13 OK

As µg/L 166 141 16 OK Co µg/L 24.7 23.9 3 OK Cr µg/L 400 392 2 OK Cu µg/L 147 138 6 OK

Ni µg/L 53.9 49.7 8 OK Pb µg/L 69.8 73.8 6 OK Zn µg/L 145 132 9 OK

306

APPENDIX C. ASS SAMPLE DATA

Table C.1. Grain-size data for samples from the dry and wet ASS profiles. Values are percentage of

sample volume passing the size class. The grain-size data are graphed in Figures C.1 and

C.2 for the dry and wet ASS profiles, respectively.

Passing Size % Clay 3.6 µm

% Silt 63 µm

Very Fine Sand 126 µm

Fine Sand 252 µm

Medium Sand 502 µm

Coarse Sand

1002 µm

Very Coarse Sand

2000 µm DP2-01 11 55 61 71 86 98 100 DP2-02 18 55 57 68 89 99 100 DP2-03 13 48 52 66 90 100 100 DP2-04 12 48 54 69 90 99 100 DP2-05 12 58 67 81 93 99 100 DP2-06 14 72 81 91 98 100 100 DP2-07 11 60 69 84 96 100 100 DP2-08 12 61 70 87 97 100 100 DP2-09 8 35 44 76 99 100 100 DP2-10 9 43 53 79 96 100 100 DP2-11 11 58 68 85 95 99 100 DP2-12 10 47 61 79 92 98 100 DP2-13 11 57 68 81 92 100 100 DP2-14 11 60 69 81 92 99 100 WP2-01 15 75 83 90 96 99 100 WP2-03 16 80 86 92 97 99 100 WP2-04 18 81 87 93 98 100 100 WP2-05 15 75 83 90 94 98 100 WP2-06 14 69 80 88 93 98 100 WP2-07 13 69 79 88 95 99 100 WP2-08 16 72 81 91 97 99 100 WP2-09 13 66 78 93 99 100 100 WP2-10 14 65 77 88 94 98 100 WP2-11 15 71 82 91 97 100 100 WP2-12 15 75 85 91 95 99 100 WP2-13 15 73 83 91 95 99 100 WP2-14 18 79 87 93 97 100 100

307

Figure C.1. Grainsize distribution for samples from the dry ASS profile.

308

Figure C.2. Grainsize distribution for samples from the wet ASS profile.

309

Table C.2. XRF data for the dry ASS profile samples DP1-1 to DP1-10 (n = 10). Data are presented

as reported.

UDL LDL DP1-01 DP1-02 DP1-03 DP1-04 DP1-05 DP1-06 DP1-07 DP1-08 DP1-09 DP1-10 Depth (m bgl)

- - 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7 0.8 - 0.9 1.0 - 1.1 1.2 - 1.3

SiO2 % - - 62.27 68.27 67.30 64.13 60.51 59.79 62.33 63.37 59.83 48.85 TiO2 % - - 0.46 0.49 0.67 0.77 0.88 0.79 0.71 0.63 0.61 0.81 Al2O3 % - - 10.46 10.37 12.66 14.49 16.07 15.29 15.19 14.45 13.51 17.39 Fe2O3T

% - - 7.04 5.28 3.82 3.98 4.05 5.33 5.09 4.67 4.60 6.04

MnO% - - 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.07 0.06 MgO% - - 0.32 0.32 0.39 0.52 0.67 0.71 0.76 0.89 0.86 1.33 CaO% - - 0.26 0.26 0.34 0.40 0.45 0.42 0.41 0.49 3.90 0.61 Na2O% - - 0.98 0.88 1.06 1.14 1.31 1.23 1.25 1.13 1.22 1.37 K2O% - - 3.05 3.15 3.09 3.01 2.61 2.58 3.16 3.33 2.90 2.12 P2O5% - - 0.11 0.07 0.05 0.05 0.05 0.06 0.06 0.05 0.06 0.05 SO3 % - - 0.03 0.01 0.01 0.01 0.02 0.03 0.04 0.06 1.13 0.14 LOI% - - 15.23 11.15 10.38 11.60 13.00 13.67 11.18 10.04 11.29 20.61 SUM% - - 100.20 100.24 99.77 100.10 99.61 99.90 100.24 99.17 99.98 99.38 As ppm 330 10 31 36 21 21 22 33 23 18 20 23 Ba ppm 4000 10 175 190 233 246 252 216 224 215 196 205 Co ppm 210 2 BD BD 3 5 5 20 19 13 10 13 Cr ppm 4000 3 105 119 118 116 114 109 108 102 110 93 Cu ppm 2360 3 9 7 6 7 12 13 15 11 12 16 Ga ppm 40 3 15 15 18 18 21 19 19 18 17 20 Mn ppm 2500 4 95 93 97 120 138 277 376 444 591 369 Nb ppm 268 2 9 10 14 15 17 14 13 13 11 15 Ni ppm 2360 3 11 11 16 17 19 30 29 25 22 33 Pb ppm 133 10 26 22 22 18 19 26 27 27 28 26 Rb ppm 1300 2 169 180 178 172 154 159 190 206 174 140 Sc ppm 55 3 10 11 12 13 17 15 14 14 16 15 Sr ppm 700 2 70 61 67 74 82 74 68 69 213 85 Ti ppm 22600 5 4570 4487 5698 6090 6345 5997 5559 5288 5484 6049 V ppm 526 4 49 48 58 64 70 75 77 65 73 83 Y ppm 720 2 18 20 21 23 25 24 25 30 28 30

Zn ppm 290 3 35 35 37 45 50 59 83 64 58 75 Zr ppm 490 3 165 170 207 241 234 233 217 200 213 167

UDL = Upper Detection Limit.

LDL = Lower Detection Limit.

NA = Not Analysed.

BD = Below Detection Limit.

310

Table C.3. XRF data for the wet ASS profile samples WP1-1 to WP1-11 (n = 11). Data are

presented as reported.

UDL LDL WP1-01 WP1-02 WP1-03 WP1-04 WP1-05 WP1-06 WP1-07 WP1-08 WP1-09 WP1-10 WP1-11 Depth (m bgl)

- - 0.0-0.15 0.15-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 1.0-1.1 1.1-1.2

SiO2% - - 51.52 57.93 60.57 57.10 52.82 53.69 55.02 57.09 57.97 55.24 54.75 TiO2% - - 0.67 0.67 0.73 0.80 0.75 0.73 0.78 0.76 0.72 0.84 0.76 Al2O3% - - 15.29 14.43 15.10 15.14 14.62 14.04 15.45 15.86 14.96 15.86 15.85 Fe2O3T

% - - 5.91 2.80 2.44 2.22 2.30 1.99 4.33 4.93 6.00 5.80 5.86

MnO% - - BD BD BD 0.02 BD 0.01 BD 0.06 0.07 0.07 0.06 MgO% - - 0.83 0.69 0.72 0.65 0.82 0.63 0.84 0.93 1.04 1.08 1.07 CaO% - - 0.47 0.45 0.43 0.42 0.45 0.37 0.42 0.46 0.54 0.58 0.56 Na2O% - - 2.21 1.85 2.10 2.15 2.37 2.14 2.06 1.90 1.50 1.64 1.79 K2O% - - 2.50 2.71 2.81 2.53 2.24 2.37 2.41 2.57 2.55 2.48 2.59 P2O5% - - 0.14 0.09 0.07 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06 SO3 % - - 0.12 0.08 0.07 0.11 0.11 0.13 0.15 0.16 0.10 0.25 0.12 LOI% - - 21.19 18.00 15.71 18.69 24.16 23.97 19.00 14.96 15.22 16.14 17.41 SUM% - - 100.84 99.70 100.73 99.89 100.71 100.13 100.53 99.72 100.71 100.03 100.87 As ppm 330 10 56 31 20 15 32 35 39 28 32 24 25 Ba ppm 4000 10 210 181 241 196 213 207 223 187 204 224 218 Co ppm 210 2 2 5 6 4 5 BD 16 17 13 20 13 Cr ppm 4000 3 94 91 128 129 95 136 93 97 93 124 87 Cu ppm 2360 3 15 7 8 10 16 10 14 9 15 12 14 Ga ppm 40 3 20 18 19 17 19 15 20 18 19 16 19 Mn ppm 2500 4 127 101 123 80 89 81 192 346 438 686 360 Nb ppm 268 2 12 10 13 18 7 18 12 14 13 22 13 Ni ppm 2360 3 15 11 14 18 14 17 25 26 29 38 29 Pb ppm 133 10 28 16 14 19 13 23 23 37 27 32 27 Rb ppm 1300 2 170 167 170 136 136 127 149 168 163 144 167 Sc ppm 55 3 15 13 17 7 16 8 15 13 16 11 13 Sr ppm 700 2 85 71 67 70 73 63 72 72 74 78 76 Ti ppm 22600 5 4819 4298 4744 3319 5313 3939 5757 4606 5673 4635 5546 V ppm 526 4 91 67 77 52 98 65 86 65 69 74 74 Y ppm 720 2 27 29 30 25 24 22 25 29 31 31 40

Zn ppm 290 3 50 42 46 38 43 35 56 61 70 76 81 Zr ppm 490 3 202 217 239 204 190 177 202 238 200 220 212

UDL = Upper Detection Limit.

LDL = Lower Detection Limit.

NA = Not Analysed.

BD = Below Detection Limit.

311

APPENDIX D. ISOCON DIAGRAMS

Figure D.1. Isocon diagrams for the dry ASS profile samples DP1 and DP2. All major elements

except P are given as percentages. The concentrations of all other elements are in ppm.

Isocon analysis used DP1-9 as the original sample.

312

Figure D.2. Isocon diagrams for the dry ASS profile samples DP1-3 and DP1-4. All major elements

except P are given as percentages. The concentrations of all other elements are in ppm.

Isocon analysis used DP1-9 as the original sample.

313

Figure D.3. Isocon diagrams for the dry ASS profile samples DP1-5 and DP1-6. All major elements

except P are given as percentages. The concentrations of all other elements are in ppm.

Isocon analysis used DP1-9 as the original sample.

314

Figure D.4. Isocon diagrams for the dry ASS profile samples DP1-7 and DP1-8. All major elements

except P are given as percentages. The concentrations of all other elements are in ppm.

Isocon analysis used DP1-9 as the original sample.

315

Figure D.5. Isocon diagrams for the wet ASS profile samples WP1-1 and WP1-2. All major elements

except P are given as percentages. The concentrations of all other elements are in ppm.

Isocon analysis used WP1-9 as the original sample.

316

Figure D.6. Isocon diagrams for the wet ASS profile samples WP1-3 and WP1-4. All major elements

except P are given as percentages. The concentrations of all other elements are in ppm.

Isocon analysis used WP1-9 as the original sample.

317

Figure D.7. Isocon diagrams for the wet ASS profile samples WP1-5 and WP1-6. All major elements

except P are given as percentages. The concentrations of all other elements are in ppm.

Isocon analysis used WP1-9 as the original sample.

318

Figure D.8. Isocon diagrams for the wet ASS profile samples WP1-7 and WP1-8. All major elements

except P are given as percentages. The concentrations of all other elements are in ppm.

Isocon analysis used WP1-9 as the original sample.

319

AP

PE

ND

IX E

. ASS

CO

RR

EL

AT

ION

MA

TR

IX

Table E

.1.

Spea

rman

’s c

orre

latio

n co

effi

cien

ts f

or A

SS s

ampl

es f

rom

the

dry

and

wet

ASS

pro

file

s. S

igni

fica

nce

valu

es (

for

n =

21)

are

0.5

62 f

or p

= 0

.99

and

0.42

8 fo

r a

= 0

.95.

Dep

th

pH

Ox p

H

Cla

y Silt

V

FS

FS

MS

CS

VC

S

LO

I N

a K

R

b M

g C

a Sr

Ba

Sc

Y

Ti

Ti

Zr

V

Nb

Cr

Mn

Fe

Co

Ni

Cu

Zn

Al

Ga

Pb

Si

P

As

S

Dep

th

1.00

Soil

pH

0.76

1.

00

Ox

pH

-0.1

3 0.

14

1.00

Cla

y -0

.36

0.02

0.

28

1.00

Silt

0.03

0.

41

0.23

0.

69

1.00

VF

S 0.

86

0.64

-0

.07

-0.3

3 0.

09

1.00

FS

0.30

-0

.18

-0.2

8 -0

.74

-0.8

1 0.

22

1.00

MS

-0.2

0 -0

.54

-0.1

8 -0

.60

-0.9

2 -0

.29

0.74

1.

00

CS

-0.3

2 -0

.39

0.16

-0

.25

-0.5

5 -0

.30

0.15

0.

50

1.00

VC

S -0

.10

0.02

0.

19

0.08

0.

11

0.07

-0

.35

-0.2

6 0.

53

1.00

LO

I 0.

10

0.37

0.

35

0.34

0.

62

0.36

-0

.66

-0.7

3 -0

.16

0.41

1.

00

Na

0.11

0.

37

0.24

0.

45

0.76

0.

36

-0.6

2 -0

.83

-0.4

3 0.

25

0.85

1.

00

K

-0.3

3 -0

.45

-0.4

0 -0

.24

-0.4

9 -0

.53

0.47

0.

57

0.11

-0

.33

-0.8

7 -0

.72

1.00

Rb

-0.3

0 -0

.31

-0.3

1 -0

.15

-0.4

0 -0

.50

0.41

0.

52

0.07

-0

.40

-0.7

7 -0

.63

0.88

1.

00

Mg

0.83

0.

82

-0.1

9 -0

.18

0.22

0.

78

0.10

-0

.34

-0.4

8 -0

.18

0.24

0.

28

-0.3

9 -0

.18

1.00

Ca

0.69

0.

80

0.06

-0

.17

0.23

0.

66

0.05

-0

.32

-0.3

2 -0

.03

0.20

0.

26

-0.3

8 -0

.17

0.88

1.

00

Sr

0.40

0.

37

0.13

-0

.23

0.13

0.

47

0.08

-0

.15

-0.0

1 0.

09

0.22

0.

12

-0.4

3 -0

.23

0.58

0.

74

1.00

Ba

0.11

-0

.19

-0.3

3 -0

.07

-0.0

6 0.

02

0.22

0.

11

-0.2

1 -0

.49

-0.2

4 0.

01

0.09

0.

09

0.08

0.

01

0.06

1.

00

Sc

0.16

0.

23

0.20

-0

.07

0.09

0.

19

0.08

-0

.04

-0.0

9 -0

.09

-0.0

3 0.

11

-0.1

5 0.

09

0.39

0.

50

0.49

0.

29

1.00

Y

0.64

0.

82

-0.2

1 0.

03

0.40

0.

52

-0.1

1 -0

.46

-0.5

3 -0

.19

0.14

0.

31

-0.2

3 -0

.06

0.86

0.

85

0.45

0.

11

0.38

1.

00

Ti

0.42

0.

22

0.02

0.

06

0.30

0.

45

-0.1

0 -0

.38

-0.2

8 -0

.11

0.38

0.

42

-0.5

8 -0

.70

0.32

0.

29

0.39

0.

45

0.07

0.

30

1.00

Ti

0.21

-0

.11

-0.0

9 -0

.36

-0.3

5 0.

10

0.44

0.

38

0.21

-0

.20

-0.2

9 -0

.33

-0.0

2 0.

12

0.21

0.

20

0.48

0.

55

0.63

0.

07

0.25

1.

00

Zr

0.01

-0

.07

-0.1

2 0.

12

0.27

-0

.07

0.08

-0

.17

-0.4

2 -0

.47

-0.2

7 0.

04

0.22

0.

15

0.00

0.

09

0.20

0.

66

0.22

0.

22

0.42

0.

25

1.00

V

0.37

0.

41

0.11

0.

08

0.44

0.

49

-0.1

7 -0

.43

-0.4

1 -0

.17

0.46

0.

54

-0.5

2 -0

.24

0.64

0.

53

0.47

0.

33

0.67

0.

46

0.34

0.

35

0.15

1.

00

Nb

0.39

0.

11

-0.2

1 -0

.17

0.00

0.

31

0.18

0.

00

-0.2

6 -0

.36

-0.0

1 0.

11

-0.1

7 -0

.35

0.15

0.

09

0.05

0.

46

-0.3

0 0.

23

0.68

0.

05

0.40

-0

.10

1.00

Cr

-0.2

1 -0

.31

0.13

0.

08

-0.1

4 -0

.24

0.07

0.

21

0.11

-0

.16

-0.2

1 -0

.05

0.15

-0

.09

-0.4

9 -0

.43

-0.4

3 0.

23

-0.4

0 -0

.38

0.14

-0

.33

0.23

-0

.42

0.50

1.

00

Mn

0.71

0.

51

-0.3

9 -0

.40

-0.0

9 0.

59

0.51

0.

07

-0.4

6 -0

.48

-0.3

0 -0

.20

0.10

0.

21

0.78

0.

68

0.49

0.

23

0.33

0.

67

0.17

0.

31

0.30

0.

36

0.24

-0

.29

1.00

Fe

0.22

0.

11

-0.3

7 -0

.24

-0.1

8 0.

21

0.16

0.

23

0.07

-0

.10

-0.1

3 -0

.37

0.04

0.

19

0.41

0.

29

0.43

-0

.22

0.09

0.

26

-0.1

0 0.

23

-0.2

6 0.

14

-0.1

1 -0

.47

0.52

1.

00

Co

0.73

0.

47

-0.3

3 -0

.17

0.17

0.

61

0.28

-0

.20

-0.6

1 -0

.48

-0.0

8 0.

03

-0.1

3 -0

.10

0.73

0.

52

0.37

0.

38

0.32

0.

62

0.50

0.

38

0.42

0.

52

0.33

-0

.30

0.80

0.

29

1.00

Ni

0.84

0.

45

-0.3

5 -0

.33

0.01

0.

74

0.39

-0

.07

-0.4

4 -0

.37

-0.0

4 0.

00

-0.2

3 -0

.24

0.72

0.

50

0.40

0.

29

0.06

0.

54

0.57

0.

31

0.23

0.

34

0.61

-0

.13

0.78

0.

41

0.86

1.

00

Cu

0.55

0.

41

-0.0

2 -0

.18

0.19

0.

69

0.03

-0

.25

-0.1

5 0.

18

0.41

0.

39

-0.5

7 -0

.34

0.70

0.

59

0.57

0.

02

0.51

0.

44

0.30

0.

35

-0.2

1 0.

77

-0.0

5 -0

.52

0.40

0.

40

0.48

0.

51

1.00

Zn

0.76

0.

51

-0.4

1 -0

.29

0.10

0.

65

0.31

-0

.11

-0.4

7 -0

.38

-0.0

9 0.

01

-0.0

9 0.

05

0.84

0.

67

0.50

0.

32

0.35

0.

73

0.36

0.

39

0.27

0.

56

0.31

-0

.41

0.87

0.

53

0.88

0.

86

0.65

1.

00

Al

0.51

0.

34

-0.1

5 0.

00

0.36

0.

53

-0.0

7 -0

.38

-0.4

3 -0

.23

0.36

0.

40

-0.5

1 -0

.46

0.61

0.

53

0.56

0.

44

0.28

0.

56

0.84

0.

35

0.34

0.

62

0.51

-0

.21

0.46

0.

27

0.65

0.

70

0.59

0.

69

1.00

Ga

0.08

0.

10

0.03

0.

05

0.21

0.

08

-0.1

1 -0

.13

-0.0

9 -0

.06

0.17

0.

24

-0.3

0 -0

.03

0.34

0.

34

0.41

0.

40

0.79

0.

34

0.25

0.

71

0.13

0.

70

-0.1

3 -0

.53

0.12

0.

13

0.29

0.

12

0.60

0.

39

0.50

1.

00

Pb

0.53

0.

31

-0.4

1 -0

.36

-0.0

9 0.

52

0.38

0.

11

-0.3

2 -0

.25

-0.1

4 -0

.15

0.06

0.

16

0.58

0.

43

0.34

-0

.11

-0.1

0 0.

39

-0.0

6 -0

.04

-0.0

8 0.

15

0.21

-0

.21

0.76

0.

68

0.44

0.

66

0.39

0.

66

0.28

-0

.16

1.00

Si

-0.4

1 -0

.56

-0.3

0 -0

.16

-0.5

6 -0

.62

0.46

0.

66

0.27

-0

.28

-0.9

1 -0

.78

0.90

0.

74

-0.5

5 -0

.50

-0.4

6 0.

18

-0.1

0 -0

.37

-0.4

5 0.

12

0.24

-0

.61

-0.1

0 0.

34

-0.0

5 -0

.08

-0.1

8 -0

.28

-0.6

4 -0

.24

-0.5

5 -0

.26

-0.1

8 1.

00

P

-0.5

2 -0

.08

0.27

0.

56

0.50

-0

.47

-0.7

5 -0

.37

0.02

0.

33

0.36

0.

27

-0.1

0 0.

00

-0.2

9 -0

.20

-0.1

5 -0

.34

-0.1

3 -0

.16

-0.3

2 -0

.50

-0.1

9 0.

04

-0.5

1 -0

.02

-0.4

9 -0

.06

-0.4

7 -0

.62

-0.1

2 -0

.41

-0.2

6 -0

.08

-0.2

7 -0

.15

1.00

As

-0.1

9 -0

.11

0.24

0.

40

0.23

0.

06

-0.3

4 -0

.15

0.05

0.

27

0.43

0.

21

-0.4

2 -0

.24

-0.0

4 -0

.16

0.05

-0

.28

0.06

-0

.24

-0.1

3 -0

.02

-0.3

9 0.

28

-0.4

0 -0

.35

-0.2

1 0.

31

-0.1

2 -0

.13

0.33

-0

.10

0.00

0.

19

0.06

-0

.39

0.39

1.

00

S 0.

67

0.78

0.

16

0.03

0.

43

0.76

-0

.14

-0.5

8 -0

.42

0.10

0.

59

0.57

-0

.61

-0.5

0 0.

71

0.63

0.

41

-0.2

1 0.

03

0.53

0.

31

-0.2

7 -0

.11

0.49

0.

13

-0.1

6 0.

43

0.09

0.

37

0.47

0.

49

0.40

0.

41

-0.0

9 0.

48

-0.7

6 -0

.02

0.10

1.

00

Dep

th r

efer

s to

dep

th in

the

ASS

pro

file

s; p

H is

soi

l pH

, Ox

pH is

oxi

dise

s so

il pH

; Cy

is v

ol.%

cla

y, S

t is

vol

.% s

ilt, V

FS

is v

ol.%

ver

y fi

ne s

and;

FS

is v

ol.%

fin

e sa

nd; M

S is

vol

.%

med

ium

san

d; C

S is

vol

.% c

oars

e sa

nd; V

CS

is v

ol.%

coa

rse

sand

.

320

APPENDIX F. SEQUENTIAL EXTRACTION DATA FOR ASS SAMPLES

Table F.1. Free water loss (weight percent) from sequential extraction soil samples. Free water is

defined as the water lost from the soil samples after two centrifuge runs of 20 min at

3000 g each.

Sample wt.% water loss after

centrifuging Sample

wt.% water loss after centrifuging

DP2-01 0 WP2-01 13 DP2-02 3 WP2-02 8 DP2-03 6 WP2-03 11 DP2-04 7 WP2-04 10 DP2-05 6 WP2-05 13 DP2-06 7 WP2-06 15 DP2-07 9 WP2-07 12 DP2-08 6 WP2-08 5 DP2-09 9 WP2-09 4 DP2-10 11 WP2-10 6

Table F.2. Total moisture content of soil materials used in sequential extraction procedures.

Sample wt.% total water loss (after

drying) Sample

wt.% water loss (after drying)

DP2-01 22 WP2-01 32 DP2-02 23 WP2-02 31 DP2-03 28 WP2-03 31 DP2-04 27 WP2-04 33 DP2-05 31 WP2-05 36 DP2-06 34 WP2-06 36 DP2-07 30 WP2-07 38 DP2-08 - WP2-08 - DP2-09 - WP2-09 - DP2-10 - WP2-10 -

321

Table F.3

. G

SC-S

EP

ele

men

t da

ta f

or A

SS s

ampl

es. T

he v

olum

es o

f th

e fr

actio

n ex

trac

tions

wer

e: A

dsor

bed,

Exc

hang

eabl

e, C

arbo

nate

bou

nd (

AE

C)

= 4

0

mL

(x2

), am

orph

ous

Fe

oxid

e (A

mF

eOx)

= 4

0 m

L (

x2),

crys

talli

ne F

e ox

ide

(Cry

FeO

x) =

60

mL

(x2

), an

d ox

idis

able

(O

x) =

45

mL

. T

he r

esid

ual

frac

tion

(Res

) of

eac

h sa

mpl

e is

mar

ked

“Res

” if

the

res

idua

l fra

ctio

n w

as d

eter

min

ed d

irec

tly, o

r “B

ulk”

if d

eter

min

ed in

dire

ctly

. A

ll re

sidu

al C

o

valu

es w

ere

dete

rmin

ed in

dire

ctly

.

D

P2-

01

DP

2-02

D

P2-

03

DP

2-04

D

P2-

05

DP

2-06

D

P2-

07

DP

2-08

D

P2-

09

DP

2-10

W

P2-

01

WP

2-02

W

P2-

03

WP

2-04

W

P2-

05

WP

2-06

W

P2-

07

WP

2-08

W

P2-

09

WP

2-10

B

lank

D

ry M

ass

0.84

99

0.83

95

0.78

55

0.80

08

0.75

54

0.72

8 0.

7637

0.

79

0.79

0.

79

0.74

72

0.76

0.

7603

0.

7386

0.

7051

0.

6994

0.

6793

0.

73

0.73

0.

73

- AEC

A

l ppm

8.

74

6.45

5.

59

5.4

1.92

2.

01

2.61

6.

54

2.29

2.

32

5.89

2.

78

3.38

11

.5

14.7

12

.2

15.6

50

.3

2.12

4.

15

<=

0.5

A

s pp

b 2.

99

18.5

9.

87

3.36

<

= 2

<

= 2

<

= 2

25

.9

12.3

12

.5

12.3

21

.2

18

40.8

44

.7

71.9

79

.3

215

28.8

24

.1

<=

2

Ba

ppb

1.83

5.

98

5.18

4.

07

4.56

4.

75

4.75

8.

18

12.1

13

.6

23.3

40

.7

21.1

14

.8

11.5

10

.2

11.5

28

.1

7.57

10

.5

2.1

Co

ppb

4.8

3.56

3.

5 3.

52

2.85

2.

66

32.9

11

3 29

.1

18.4

7.

08

3.18

3.

58

5.47

7.

85

6.9

8.1

48.3

10

7 82

.1

0.68

7 C

r pp

b 33

.3

55.8

58

.8

59.6

42

41

.1

38.8

18

.6

14

13.6

43

.2

51.3

45

.9

65.8

57

.3

52.4

57

67

.8

12.2

13

.5

14

Cu

ppb

13.5

29

.3

36.3

34

.2

36.9

36

.2

28.3

20

.9

64.4

76

.2

28.4

39

.2

28.3

37

.4

44.2

36

.6

38.4

11

0 12

7 11

8 26

.9

Fe

ppm

6.

54

10.1

11

.7

14.5

3.

78

4.79

7.

33

10.8

5.

3 3.

25

11.5

24

.1

12.5

4.

51

4.51

3.

66

4.79

36

6

9.27

0.

144

Ga

ppb

0.76

2 5.

1 5.

41

7.23

2.

76

1.21

1.

15

0.92

3 1.

13

1.07

5.

07

4.42

4.

38

10.9

10

.8

9.74

10

.2

19.7

0.

643

1.22

0.

722

Mn

ppb

202

117

153

93

83.4

88

.1

167

1520

54

7 87

6 10

2 10

2 95

.7

109

107

89.3

95

.2

244

346

363

3.78

N

a pp

m

1040

0 11

500

1100

0 11

700

1140

0 12

200

1110

0 47

20

4700

47

00

1080

0 10

200

9880

96

80

1140

0 92

70

1140

0 47

10

4680

47

10

1010

0 N

b pp

b 0.

142

0.22

3 1.

95

6.17

10

.7

11.4

4.

99

0.13

6 0.

152

0.12

6 2.

45

1.8

1.12

1.

36

1.35

1.

05

0.82

3 0.

158

0.05

54

0.09

9 0.

563

Ni p

pb

11.5

9.

54

14.6

11

.5

9.49

9.

75

23

152

67.6

56

.3

12.4

11

.1

12.3

12

.4

14.9

14

.4

15.4

11

5 16

9 19

2 10

.6

Pb

ppb

2.81

1.

41

2.25

1.

64

4.38

8.

22

14.9

18

.9

7.72

11

.6

36.2

37

.5

29.4

51

.3

39.2

43

.1

48.1

85

.2

31.2

25

.1

0.58

9 Sc

ppb

13

.9

26.1

21

.4

14.3

13

.1

12.7

11

.1

24.1

16

.3

21.9

8.

41

11.1

10

13

.7

13.5

14

.4

15.6

85

.5

31.6

31

.6

9.97

T

i ppb

27

.5

235

232

260

210

55.2

47

.5

120

115

98.2

17

3 17

5 17

4 24

6 21

4 22

9 20

9 22

0 71

.3

122

10.7

V

ppb

1.

3 18

16

.8

23

12.1

13

.2

15.5

12

.2

15.9

19

.8

49.4

44

.3

44.5

11

8 14

1 14

9 17

3 13

9 40

.8

31.6

<

= 0

.5

Zn

ppb

43.7

36

.3

49.6

42

.2

32.4

35

.2

38.9

22

3 56

.7

39.6

48

.6

40.2

40

.3

53.2

49

.2

47.8

52

.7

108

85.3

17

0 28

.4

Zr

ppb

4.91

4.

32

3.89

4.

71

3 1.

41

1.19

2.

1 1.

59

1.83

4.

88

5.25

5.

51

5.31

5.

02

5.33

5.

4 4.

27

1.54

2.

18

0.19

4 AmFeO

x

A

l ppm

11

0 17

.6

27.5

23

37

.1

36

34.5

89

.1

70.4

44

.8

51.8

40

.9

34.8

32

.3

39.6

53

.2

52.6

34

.8

64.3

84

.7

0.15

4 A

s pp

b 16

4 28

3 20

5 17

3 12

1 85

.7

94.3

26

.7

7.96

7.

63

114

248

111

37.9

43

.2

64.9

72

.2

38.3

42

.4

18.2

<

= 0

.5

Ba

ppb

122

95.8

91

.2

93.4

11

3 88

.3

107

63.9

84

.4

85.5

89

.1

155

92.4

26

.9

25.2

26

.2

42.6

76

.9

108

89.8

0.

589

Co

ppb

8.05

2.

34

2.09

2.

63

3.7

4.64

9.

83

81.2

40

.7

38.2

7 7.

92

4.93

5.

02

3.71

4.

58

5.22

6.

74

19.8

36

.8

46.2

<

= 0

.05

Cr

ppb

94.5

73

.9

61.4

54

.6

55.9

52

.8

57.1

77

.2

91.8

93

.7

51.8

71

.3

51

37

31.1

35

.9

39

40.7

72

92

.7

2.44

C

u pp

b 63

.6

43.8

38

.6

33.1

69

.1

74.5

56

50

.5

26.1

27

35

.8

36.3

33

.3

16.9

14

.7

19.1

22

.2

44.6

19

.8

18.5

6.

51

Fe

ppm

36

1 32

3 25

4 19

8.5

289

171

118

170

111

109

167

228

123

23.8

22

.9

26.2

36

36

.3

77.8

12

0 0.

0807

G

a pp

b 12

10

.4

9.6

9.07

9.

95

9.09

8.

82

16

18.9

18

12

.5

14.8

11

.1

6.32

6.

56

6.68

8.

03

11

13.6

16

.2

<=

0.0

5 M

n pp

b 19

8 75

.2

69

86

102

120

275

3150

11

30

1270

13

5 12

2 12

1 51

.8

62.3

71

12

4 36

4 71

6 11

70

0.27

3 N

a pp

m

96.5

73

.8

83.6

76

.9

118

95.7

66

.9

81.7

83

.1

81.2

75

.3

51.5

71

.5

76.9

70

.6

91.9

10

3 42

.8

75.1

83

.6

3.71

- T

able

Con

tinue

d N

ext P

age

-

322

Table F.3

. (C

ontin

ued)

GSC

-SE

P e

lem

ent

data

for

ASS

sam

ples

. The

vol

umes

of

the

frac

tion

extr

actio

ns w

ere:

Ads

orbe

d, E

xcha

ngea

ble,

Car

bona

te b

ound

(AE

C)

= 4

0 m

L (

x2),

amor

phou

s F

e ox

ide

(Am

FeO

x) =

40

mL

(x2

), cr

ysta

lline

Fe

oxid

e (C

ryF

eOx)

= 6

0 m

L (

x2),

and

oxid

isab

le (

Ox)

= 4

5 m

L.

The

res

idua

l fra

ctio

n (R

es)

of e

ach

sam

ple

is m

arke

d “R

es”

if t

he r

esid

ual f

ract

ion

was

det

erm

ined

dir

ectly

, or

“Bul

k” if

det

erm

ined

indi

rect

ly.

All

resi

dual

Co

valu

es w

ere

dete

rmin

ed in

dire

ctly

.

D

P2-

01

DP

2-02

D

P2-

03

DP

2-04

D

P2-

05

DP

2-06

D

P2-

07

DP

2-08

D

P2-

09

DP

2-10

W

P2-

01

WP

2-02

W

P2-

03

WP

2-04

W

P2-

05

WP

2-06

W

P2-

07

WP

2-08

W

P2-

09

WP

2-10

B

lank

N

b pp

b 0.

779

0.73

9 0.

631

0.59

8 0.

589

0.51

4 0.

546

0.52

9 0.

697

0.57

5 0.

543

0.76

4 0.

547

0.27

4 0.

255

0.21

8 0.

253

0.37

2 0.

515

0.42

9 <

= 0

.5

Ni p

pb

24.9

11

.1

10.6

10

.9

11.9

12

.5

18.4

23

0 81

.4

71.7

23

.9

16.6

17

.7

18.1

18

.3

23.4

24

.7

45.1

63

.1

80.7

4.

94

Pb

ppb

138

150

126

157

221

172

189

56.4

46

.1

60.8

15

3 19

0 15

2 12

8 92

.2

138

131

118

79.7

74

.7

0.93

4 Sc

ppb

7.

36

9.24

7.

87

8.53

16

.7

11.9

11

.6

47.4

41

.8

30.1

<

= 2

5.

32

3.57

2.

14

2.05

2.

55

2.94

8.

1 19

.7

17.4

<

= 0

.5

Ti p

pb

161

218

187

192

178

176

203

236

284

244

156

201

155

147

164

194

223

251

202

198

3.92

V

ppb

26

4 22

3 19

5 19

1 21

2 22

9 37

3 32

4 28

6 29

2 39

4 43

2 30

0 14

9 15

9 31

7 35

0 17

2 34

4 41

3 5.

49

Zn

ppb

64

28

26.7

26

.2

33.7

40

.1

56.2

39

2.5

375

311

52.5

42

.5

43.3

32

.7

28.6

36

.2

43

113

298

547

4.15

Z

r pp

b 9.

77

4.95

2.

83

2.11

1.

59

1.29

1.

16

1.09

0.

52

0.57

9 3.

64

4.25

2.

55

1.36

1.

11

1.18

1.

16

0.92

6 0.

63

0.64

1 <

= 0

.1

CryFeO

x

A

l ppm

35

.2

22.6

18

.2

24

39.5

39

47

.3

40.7

31

.6

31.2

32

.8

37.2

34

.4

31.3

29

.7

28.4

40

.6

24.2

43

42

0.

278

As

ppb

125

121

97.8

12

5 64

.7

82.4

78

.1

28

8.42

8.

27

77.4

82

.6

52.8

40

.3

59.6

83

.2

96

77.3

42

32

.9

<=

0.5

B

a pp

b 19

.7

40.6

40

.1

45.1

28

22

.4

23.9

21

.8

18.7

20

.1

16.8

20

.5

18.1

11

.3

12.4

12

.3

18.6

19

.7

23.3

22

0.

924

Co

ppb

4 1.

94

1.84

2.

68

2.82

3.

43

3.84

8.

08

5.24

5.

88

2.52

2.

97

2.67

1.

57

1.81

1.

88

2.71

5.

32

8.05

7.

63

0.03

16

Cr

ppb

92.2

10

3 10

2 10

7 11

8 13

3 13

5 57

.4

53

55.2

93

.1

89.6

90

.4

109

106

106

112

56

72

60.4

30

.6

Cu

ppb

37.3

27

.9

26.3

26

.4

27.4

29

.4

22.7

19

.9

18.1

20

.5

31.1

32

.9

32.8

24

.7

22.7

23

.4

24.1

28

.5

15.6

14

.9

22.1

F

e pp

m

145

121

166

143

107

61

91

68.2

41

.3

39.9

70

.4

81

45.7

21

.7

24.1

25

39

.5

22.8

45

.9

55.9

0.

0396

G

a pp

b 6.

19

5.54

5.

04

5.38

6.

03

6.22

5.

82

5.34

5.

52

5.86

6.

21

6.64

6.

28

4.99

4.

75

4.23

5.

12

5.65

6.

98

6.41

0.

0836

M

n pp

b 10

2 42

.4

45.5

11

2 85

.4

104

137

423

343

322

89.5

10

4 89

.4

26.5

32

.7

34.2

94

.2

184

364

398

0.61

4 N

a pp

m

2.64

6.

75

4.31

3.

66

3.26

2.

12

1.28

5.

81

6.83

6.

06

1.01

1.

33

1.21

1.

31

1.32

1.

31

1.36

5.

91

5.21

4.

75

1.49

N

b pp

b 3.

42

3.29

3.

06

3.75

4.

14

4.22

4.

38

9.46

8.

84

8.81

3.

52

4.47

3.

94

3.07

3.

08

2.85

3.

55

9.12

9.

64

9.44

<

= 0

.05

Ni p

pb

23.5

18

.9

18.3

20

.1

20.7

22

.3

23.2

43

.6

35.2

38

19

.7

20.5

19

.7

18.4

18

.7

19.1

20

.9

34.5

40

.4

41.2

15

.3

Pb

ppb

7.91

40

.8

29.3

44

.8

19.6

9.

58

7.26

6.

4 6.

82

7.3

6.91

6.

39

8.74

12

.9

14.9

19

.1

21

10.5

8.

47

7.89

1.

11

Sc p

pb

8.42

6.

54

6.13

8.

33

11.8

14

.1

14.5

20

.6

21.4

23

.7

6.87

7.

07

6.77

5.

89

5.82

6.

05

6.83

15

.7

26.3

24

.6

3.68

T

i ppb

11

4 15

3 14

5 15

8 13

8 12

3 12

6 27

2 30

5 32

9 98

.7

115

96.2

90

.1

114

110

110

351

335

348

22.6

V

ppb

63

.3

141

124

112

75.6

73

.1

85.8

39

.1

28.5

29

.9

58.1

80

.8

65.4

56

.5

73.7

68

.7

70.4

32

.6

40.6

36

.5

50.7

Z

n pp

b 94

.9

26.7

27

.1

32.5

75

.7

36.3

41

.2

93.1

71

.8

76.3

31

.1

34.2

32

20

.6

21.9

22

.2

29.8

66

.6

87.7

86

.3

9.08

Z

r pp

b 2

12.1

12

.2

8.94

13

.7

13.2

14

31

32

.3

31.8

4.

04

3.65

3.

18

2.67

4.

48

4.62

3.

09

15.3

30

.5

25.1

0.

519

Ox

A

l ppm

19

.2

18.7

18

.7

20.8

45

.1

42.3

36

.2

23.5

22

.8

21.7

27

.5

39.2

45

.6

37.1

38

.2

35.7

33

.6

22.5

33

40

.4

0.19

9 A

s pp

b 41

.3

42.9

34

.2

39.6

34

.7

41.8

12

9 62

3 78

6 87

1 10

6 27

.6

85.4

77

.8

91.8

13

0 15

8 37

8 87

9 10

00

3.32

B

a pp

b 15

.3

16.6

16

.3

20.5

22

.1

23.4

21

.7

26.9

29

.5

30.4

17

.8

22.5

20

.9

19

19

18.1

20

.9

20.3

25

.3

27.5

2.

28

- T

able

Con

tinue

d N

ext P

age

-

323

Table F.3

. (C

ontin

ued)

GSC

-SE

P e

lem

ent

data

for

ASS

sam

ples

. The

vol

umes

of

the

frac

tion

extr

actio

ns w

ere:

Ads

orbe

d, E

xcha

ngea

ble,

Car

bona

te b

ound

(AE

C)

= 4

0 m

L (

x2),

amor

phou

s F

e ox

ide

(Am

FeO

x) =

40

mL

(x2

), cr

ysta

lline

Fe

oxid

e (C

ryF

eOx)

= 6

0 m

L (

x2),

and

oxid

isab

le (

Ox)

= 4

5 m

L.

The

res

idua

l fra

ctio

n (R

es)

of e

ach

sam

ple

is m

arke

d “R

es”

if t

he r

esid

ual f

ract

ion

was

det

erm

ined

dir

ectly

, or

“Bul

k” if

det

erm

ined

indi

rect

ly.

All

resi

dual

Co

valu

es w

ere

dete

rmin

ed in

dire

ctly

.

D

P2-

01

DP

2-02

D

P2-

03

DP

2-04

D

P2-

05

DP

2-06

D

P2-

07

DP

2-08

D

P2-

09

DP

2-10

W

P2-

01

WP

2-02

W

P2-

03

WP

2-04

W

P2-

05

WP

2-06

W

P2-

07

WP

2-08

W

P2-

09

WP

2-10

B

lank

C

o pp

b 3.

06

2.73

2.

88

4.21

5.

72

6.37

24

.4

95.4

12

2 13

6 4.

19

4.31

4.

44

4.51

4.

32

4.76

4.

86

37.8

13

3 14

5 0.

0595

C

r pp

b 16

1 16

7 16

7 14

8 17

4 20

0 19

7 10

5 12

9 14

1 16

4 13

4 16

4 27

9 21

7 31

5 27

1 17

2 16

0 16

2 38

.9

Cu

ppb

45.3

31

.7

34.8

37

.1

43.3

58

.8

88.2

16

0 19

9 22

0 79

.8

51.2

86

.7

184

233

208

189

177

252

260

13.4

F

e pp

m

11.4

10

.9

12.1

14

.7

30.5

30

.4

95.2

17

4 16

9 18

1 40

.3

20.5

36

.8

64.1

71

.5

48.4

50

.3

69

249

305

<=

0.0

5 G

a pp

b 15

.4

16.9

16

.5

18.5

27

.5

28.6

24

.2

18

21.3

23

.9

24.6

26

.5

27.5

25

22

.7

22.7

22

.3

16.1

24

.9

25.4

5.

43

Mn

ppb

44.1

44

.3

48.5

84

10

3 11

1 12

10

2920

32

70

2890

56

.6

77.3

65

.3

43.9

52

.1

55.8

87

92

3 43

40

5150

2.

88

Na

ppm

0.

577

0.74

4 0.

773

0.74

5 1.

27

1.13

0.

79

2.01

1.

25

0.98

3 0.

744

1.05

1.

35

1.47

1.

53

1.45

1.

34

0.85

6 1.

33

1.59

0.

578

Nb

ppb

1.16

0.

821

0.80

3 1.

09

1.3

1.41

1.

7 1.

65

1.41

1.

77

2.86

2.

56

2.93

3.

02

2.41

4.

07

3.41

2.

31

2.11

3.

55

<=

0.0

5 N

i ppb

14

15

.5

15.5

22

.6

28.9

32

.1

48.7

13

0 15

9 17

1 17

.8

18.5

17

.9

19.3

19

.7

22.4

24

.2

64.9

16

5 19

0 4.

82

Pb

ppb

7.35

8.

07

7.44

7.

83

8.66

9.

29

32

107

133

126

9.3

9.66

11

.4

11.5

12

.6

20.1

23

.1

31.9

11

1 11

9 2.

87

Sc p

pb

40.4

39

.7

40.4

35

39

.5

48.4

45

42

39

.9

53.1

57

56

.6

64.9

86

.5

66.8

76

.1

73.4

65

.5

62

74

3.81

T

i ppb

10

50

1320

14

50

1960

24

10

2440

23

60

2240

25

80

2710

16

90

1930

17

30

1730

17

80

2010

21

60

2740

30

10

3230

28

.2

V p

pb

34.2

36

.9

47.3

57

.3

79.8

97

.2

78.7

70

57

.3

59.9

67

.4

68.4

85

95

.9

92.4

89

.9

76.1

47

.4

59.5

59

.2

<=

0.5

Z

n pp

b 84

.8

74.1

91

.4

78.2

88

.9

92.3

10

8 18

5 20

7 21

9 92

.1

76

48.3

56

.2

57.5

47

.3

67.3

14

3 22

0 23

1 60

.2

Zr

ppb

3.45

4.

04

5.04

10

.3

22.4

29

.5

38.8

51

.6

53.8

58

.9

8.08

6.

54

7.61

12

.2

10.2

25

.4

19.9

41

.3

66.1

83

.7

0.55

7 Res

Res

Bulk

Res

Res

Res

Res

Res

Bulk

Bulk

Bulk

Res

Bulk

Res

Res

Res

Res

Res

Bulk

Bulk

Bulk

- A

l %

5.82

6.

23

6.26

7.

61

8.62

8.

6 8.

1 7.

91

7.56

7.

19

8.06

7.

43

7.75

2.

6 8.

5 8.

23

7.85

8.

41

8.21

8.

09

- B

a pp

m

170

210

220

260

260

250

230

200

220

200

230

210

260

80

280

270

250

230

220

220

- C

o pp

m

3.7

2.7

3 3.

7 5

4.5

7.3

15.7

10

.4

10

4.2

4.7

3.7

4 4.

5 4.

3 10

8.

5 15

15

.7

- C

u pp

m

7.6

9.3

9.8

9.4

9.3

7.9

6.9

15.4

11

.4

12.2

12

11

.4

9 3

8 8

8 15

.3

14.5

13

.9

- F

e %

0.

91

4.23

1.

41

1.31

1.

65

1.67

1.

51

4.27

3.

68

3.46

1.

24

3.26

1.

17

0.37

1.

26

1.24

1.

14

2.66

3.

66

4.11

-

Ga

ppm

13

.15

17.2

5 14

.05

16.6

5 18

.8

18.8

17

.8

18.9

5 18

.9

18.4

20

.9

21.4

21

.9

23.1

24

21

.4

21.8

22

.8

21.1

21

.1

- M

n pp

m

93

133

141

176

175

170

163

575

440

450

152

202

154

47

152

133

122

243

441

474

- N

a %

0.

5 0.

84

0.59

0.

77

0.79

0.

74

0.69

0.

83

0.77

0.

76

0.58

1

0.58

0.

21

0.68

0.

66

0.59

1.

22

1.1

1.02

-

Nb

ppm

9.

1 11

.8

11.1

15

.3

16.4

16

.4

14.7

13

.1

13.1

12

.3

14.2

14

.7

15.3

16

16

.4

14.8

15

.3

16.1

14

.5

14.4

-

Ni p

pm

43.5

14

.6

22.4

32

.4

24.1

17

29

.5

33.2

30

.3

23

13

20.5

41

9

12

16

13

25.5

30

.8

33.7

-

Pb

ppm

15

.4

27.1

25

17

.4

14.8

13

.8

14.6

27

.6

28.4

26

.6

26

29.8

21

7

19

17

19

29.9

28

.1

27.7

-

Sc p

pm

6.4

8.8

6.2

8.2

9.9

10.4

9.

3 12

.3

10.6

10

.7

11

10.8

11

.5

14.4

14

.7

14.1

14

.8

14.1

13

.3

13.3

-

Ti %

0.

293

0.36

2 0.

365

0.49

8 0.

555

0.55

5 0.

489

0.42

6 0.

403

0.38

3 0.

44

0.42

0.

42

0.15

0.

55

0.53

0.

47

0.48

0.

457

0.45

2 -

Zn

ppm

43

27

56

51

49

74

47

89

61

62

49

41

43

15

49

41

36

48

64

85

-

324

Table F.4

. A

ugm

ente

d M

BC

R-S

EP

ele

men

t da

ta f

or A

SS s

ampl

es.

The

vol

umes

of

the

frac

tion

extr

actio

ns w

ere:

wat

er-s

olub

le (

WS)

= 4

0 m

L,

Aci

d

Ext

ract

able

(A

E)

= 4

0 m

L,

redu

cibl

e (R

ed)

= 4

0 m

L,

and

oxid

isab

le (

Ox)

=

50

mL

. A

ll M

BC

R-S

EP

res

idua

l fr

actio

ns (

Res

) w

ere

dete

rmin

ed

dire

ctly

. D

ry m

ass

is in

gra

ms.

D

P2-

01

DP

2-02

D

P2-

03

DP

2-04

D

P2-

05

DP

2-06

D

P2-

07

DP

2-08

D

P2-

09

DP

2-10

W

P2-

01

WP

2-02

W

P2-

03

WP

2-04

W

P2-

05

WP

2-06

W

P2-

07

WP

2-08

W

P2-

09

WP

2-10

B

lank

Dry M

ass

0.84

99

0.83

95

0.78

55

0.80

08

0.75

54

0.72

8 0.

7637

0.

79

0.79

0.

79

0.74

72

0.76

0.

7603

0.

7386

0.

7051

0.

6994

0.

6793

0.

73

0.73

0.

73

WS

Al p

pm

2.64

1.

66

2.04

1.

23

3.69

2.

98

0.29

2 2.

07

10.4

1.

98

12

8.6

10.5

23

.8

25.6

22

.6

28.4

31

.5

9.49

3.

93

0.11

3 A

s pp

b <

= 0

.5

3.32

2.

58

1.84

2.

7 2.

93

4.55

1.

3 0.

89

0.85

5 10

.4

15.5

19

.5

31.6

34

.6

50.6

52

.5

50.1

11

.4

3.65

0.

863

Ba

ppb

0.24

6 1.

08

1.15

0.

832

1.28

1.

2 0.

439

1.29

5.

61

1.32

11

.2

18.6

19

.8

6.98

5.

35

4.55

7.

64

29.1

7.

63

2.03

0.

493

Co

ppb

4.08

0.

913

0.82

4 0.

272

0.50

5 0.

327

4.87

51

.8

5.62

0.

653

1.03

0.

515

2.52

1.

7 2.

3 1.

95

2.63

13

.8

9.29

4.

56

0.00

66

Cr

ppb

5.96

6.

73

5.78

0.

636

2.76

<

= 0

.5

<=

0.5

1.

22

29.5

5.

8 5.

98

9.37

29

.3

9.87

9.

46

8.67

10

.4

60.3

31

.9

8.44

<

= 0

.5

Cu

ppb

2.45

3.

44

3.22

1.

47

4.43

2.

4 0.

896

1.55

2.

82

1.41

3.

08

4.25

5.

55

2.16

2.

3 2.

86

3.74

10

.3

2.59

1.

57

5.01

F

e pp

m

0.11

8 2.

86

2.6

1.93

3.

57

2.51

0.

937

0.36

3 9.

7 1.

47

14.5

29

13

.4

10.1

10

.1

9.53

12

.4

18.1

7.

05

2.95

<

= 0

.05

Ga

ppb

0.96

1 1.

14

1.05

0.

163

0.42

9 0.

213

<=

0.0

5 0.

0813

1.

95

0.68

4 0.

996

0.90

2 4.

47

0.96

7 0.

927

0.77

8 <

= 0

.05

2.08

1.

45

0.8

<=

0.0

5 M

n pp

b 27

4 68

.2

61.3

17

16

.6

14.1

28

.7

1500

14

7 38

.2

13.4

13

.1

33.4

21

.1

20.6

17

.7

27.9

10

4 48

.9

30.5

<

= 0

.5

Na

ppm

22

3 91

10

5 12

5 13

2 13

9 12

0 61

.8

50.7

55

.2

253

211

114

215

242

245

238

120

109

97.9

1.

35

Nb

ppb

<=

0.0

5 0.

0251

0.

0329

<

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 0.

104

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

0.14

7 0.

118

0.12

0.

119

0.09

09

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

Ni p

pb

7.57

1.

44

1.69

0.

67

0.82

1 0.

582

2.06

66

.2

9.19

1.

36

1.95

1.

33

7.14

3.

36

3.79

3.

49

4.28

20

8.

5 4.

65

<=

0.5

P

b pp

b 0.

371

0.46

0.

313

0.23

2 0.

931

1.12

0.

146

0.22

4 1.

83

0.64

8.

39

13.5

13

.3

11.9

8.

24

7.85

9.

91

21.3

2.

6 0.

748

0.24

Sc

ppb

1.

39

1.52

1.

68

0.21

9 1.

38

0.64

<

= 0

.5

1.47

11

.4

2.77

1.

1 2.

06

9.31

1.

96

1.98

2.

02

2.47

18

.7

8.22

3.

59

<=

0.5

T

i ppb

<

= 0

.1

3.98

15

.2

2.35

8

4.38

1.

12

4.49

7.

25

9.25

4.

4 5.

63

166

7.07

19

.8

7.72

7.

75

8.51

4.

75

5.7

<=

0.1

V

ppb

4.

29

7.67

5.

79

<=

0.5

10

.2

<=

0.5

<

= 0

.5

0.46

5 30

11

.3

17.5

18

.5

59

65.3

84

.9

170

195

196

54.5

17

.9

<=

0.5

Z

n pp

b 31

9.

91

9.34

5.

37

5.43

6.

25

5.01

27

22

.5

3.33

7.

51

6.73

21

.4

12.9

14

.4

11.1

14

61

.8

19.4

8.

61

5.68

Z

r pp

b 0.

297

0.13

1 0.

164

0.14

2 0.

375

0.24

5 <

= 0

.1

0.12

2 <

= 0

.1

0.22

3 0.

862

1.13

5.

85

1.36

1.

38

1.49

1.

2 0.

403

<=

0.1

1.

11

<=

0.1

AE

0.

04

Al p

pm

14.6

0.

853

0.82

6 0.

981

1.24

0.

392

0.55

2 4.

07

0.94

6 1.

18

3.15

2.

06

1.73

1.

8 1.

96

2.08

1.

58

1.31

0.

412

2.02

0.

108

As

ppb

1.32

1.

26

1.23

1.

28

1.72

3.

47

5.52

2.

96

3.77

3.

53

35.2

37

.6

39.2

31

33

.8

49.3

44

.5

54.6

19

.9

14.9

<

= 0

.5

Ba

ppb

0.26

9 0.

371

0.50

8 0.

525

0.77

1 1.

1 1.

32

1.88

4.

4 5.

46

9.49

21

.6

7.44

4.

32

3.24

3.

07

2.9

4.87

2.

78

3.05

0.

535

Co

ppb

1.15

0.

649

0.52

0.

266

0.27

1 0.

303

12.5

66

.7

16

15.9

5.

05

0.85

9 1.

05

1.87

3.

27

3.92

2.

39

23.3

64

.3

95.8

<

= 0

.1

Cr

ppb

<=

0.5

<

= 0

.5

<=

0.5

<

= 0

.5

<=

0.5

<

= 0

.1

<=

0.1

6.

58

5.81

5.

45

<=

0.5

<

= 0

.5

<=

0.5

<

= 0

.5

<=

0.5

<

= 0

.5

<=

0.5

8.

48

6.02

7.

26

<=

0.5

C

u pp

b 4.

62

4.32

4.

04

3.16

5.

11

6.83

5.

56

1.1

1.22

1

1.57

2.

98

1.56

1.

05

0.97

3 0.

918

0.98

1 2.

66

0.98

5 1.

12

5.3

Fe

ppm

0.

392

0.67

7 0.

875

1.19

1.

5 2.

09

9.28

27

.1

7.27

4.

87

9.68

22

19

.2

0.65

3 1.

47

2.25

1.

6 2.

21

3.13

6.

4 <

= 0

.05

Ga

ppb

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.5

<=

0.5

0.

295

0.16

0.

0887

<

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

0.31

7 0.

0657

0.

206

<=

0.0

5 M

n pp

b 35

.9

35.8

30

.3

18.8

19

.1

28.1

63

24

00

371

971

65.6

67

.9

56.1

45

34

.3

41.4

32

.1

62.4

17

3 23

9 <

= 0

.1

- T

able

Con

tinue

d N

ext P

age

-

325

Table F.4

. (C

ontin

ued)

Aug

men

ted

MB

CR

-SE

P e

lem

ent

data

for

ASS

sam

ples

. T

he v

olum

es o

f th

e fr

actio

n ex

trac

tions

wer

e: w

ater

-sol

uble

(W

S) =

40

mL

,

Aci

d E

xtra

ctab

le (

AE

) =

40

mL

, red

ucib

le (R

ed)

= 4

0 m

L, a

nd o

xidi

sabl

e (O

x) =

50

mL

. A

ll M

BC

R-S

EP

res

idua

l fra

ctio

ns (R

es)

wer

e de

term

ined

dire

ctly

. D

ry m

ass

is in

gra

ms.

D

P2-

01

DP

2-02

D

P2-

03

DP

2-04

D

P2-

05

DP

2-06

D

P2-

07

DP

2-08

D

P2-

09

DP

2-10

W

P2-

01

WP

2-02

W

P2-

03

WP

2-04

W

P2-

05

WP

2-06

W

P2-

07

WP

2-08

W

P2-

09

WP

2-10

B

lank

N

a pp

m

11.2

6.

62

7.92

12

.7

17.3

18

.3

12.6

2.

99

5 4.

79

34.5

33

33

.3

37.1

39

.1

51.2

42

.9

15.4

14

.2

12.2

0.

169

Nb

ppb

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.5

<=

0.5

<

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 N

i ppb

4.

03

1.32

1.

32

0.78

3 0.

62

0.87

3 6.

81

70.8

26

.9

13.6

6.

38

3.39

3.

83

2.32

3.

25

3.75

2.

75

16.8

55

.4

120

<=

0.1

P

b pp

b <

= 0

.05

<=

0.0

5 0.

207

0.11

9 0.

328

0.50

4 1.

26

2.48

1.

24

1.18

2.

64

3.34

2.

02

3.84

2.

72

2.88

2.

98

6.27

1.

68

2.39

0.

152

Sc p

pb

<=

0.5

<

= 0

.5

<=

0.5

<

= 0

.5

<=

0.5

<

= 0

.5

<=

0.5

2.

32

2.12

2.

38

<=

0.5

<

= 0

.5

0.16

9 0.

103

<=

0.5

<

= 0

.5

<=

0.5

2.

4 2.

14

2.49

<

= 0

.5

Ti p

pb

1.81

3.

06

9.34

2.

1 39

.8

<=

0.5

<

= 0

.5

1.64

9.

36

2.99

3.

08

2.05

2.

11

3.37

4.

27

3.93

3.

66

12.9

3.

67

7.5

<=

0.5

V

ppb

<

= 0

.5

<=

0.5

<

= 0

.5

<=

0.5

<

= 0

.5

<=

0.5

25

.2

30.1

65

.8

35.3

<

= 0

.5

<=

0.5

<

= 0

.5

<=

0.5

<

= 0

.5

<=

0.5

<

= 0

.5

39.8

10

2 12

7 <

= 0

.5

Zn

ppb

13.5

7.

56

7.47

6.

27

5.05

32

.8

38.3

38

3 67

.1

50.5

21

.9

15.1

14

.8

14.3

14

.4

16.1

12

.6

30

83.2

31

3 5.

43

Zr

ppb

0.61

8 <

= 0

.1

<=

0.1

<

= 0

1 <

= 0

.1

<=

0.5

<

= 0

.5

<=

0.1

<

= 0

.1

<=

0.1

0.

377

0.35

9 0.

306

0.60

9 0.

604

1.14

1.

09

0.59

5 0.

156

<=

0.1

<

= 0

.1

Red

0.

04

Al p

pm

63.7

22

.6

10.8

7.

09

14.9

17

.7

20.6

55

.1

12

14.1

25

.3

18

13.8

22

.4

16.8

31

.4

27.9

15

.6

12.1

32

.8

0.12

7 A

s pp

b 10

.5

20

15.4

10

.3

10.7

12

.4

23.4

11

.9

4.98

10

65

.3

121

84.2

16

.4

20

27.8

24

44

64

.8

39

1.5

Ba

ppb

22.7

12

.7

10.4

8

17.6

25

.6

30.6

12

.8

17.3

20

37

.1

86.3

44

.4

13.1

8.

74

9.55

9.

82

17.8

34

.8

16.1

0.

767

Co

ppb

1.18

0.

624

0.58

8 0.

55

0.60

6 0.

551

11.2

35

.6

18.6

13

.4

2.68

0.

515

1.35

1.

62

2.49

3.

94

2.26

19

.3

62.8

52

.9

<=

0.1

C

r pp

b 27

.1

23.3

20

.3

17.8

14

.6

14.9

14

.9

47.1

40

.3

39.4

18

.1

35.1

39

.3

10.6

9.

73

11.3

10

.6

22.3

27

.1

36.5

3.

44

Cu

ppb

18.9

19

.8

18.4

16

34

.8

34.3

22

.8

9.26

4.

43

6.02

7.

36

7.01

10

.3

2.67

1.

98

2.16

2.

12

8.56

2.

2 1.

43

4.55

F

e pp

m

142

81.9

70

.3

62.3

25

.7

24.2

29

.9

50.5

29

.3

33.5

12

7 17

4 12

1 16

.4

7.03

12

.4

11.3

10

21

19

.1

<=

0.0

5 G

a pp

b 3.

04

2.7

2.78

2.

62

2 1.

74

1.75

3.

08

5.04

5.

51

3.27

4.

49

4.22

1.

3 1.

26

1.52

1.

4 2.

03

3.35

5.

91

<=

0.5

M

n pp

b 19

.7

20.8

23

.8

31.7

34

.8

36.5

55

.8

524

366

486

21.2

20

.2

35.5

16

.7

13.9

18

16

.5

38.2

18

7 21

6 <

= 0

.1

Na

ppm

1.

93

0.62

2 0.

409

0.54

8 0.

585

0.32

9 0.

218

0.39

3 0.

253

0.32

3 0.

414

0.16

7 0.

33

0.50

3 0.

393

0.39

7 0.

566

0.20

7 0.

377

0.39

<

= 0

.5

Nb

ppb

0.18

3 0.

26

0.22

8 0.

234

0.20

3 0.

156

0.17

2 0.

265

0.41

1 0.

339

0.20

1 0.

388

0.42

3 0.

0912

0.

0792

0.

0739

0.

0581

0.

124

0.21

0.

258

<=

0.0

5 N

i ppb

16

.2

12.9

12

.6

12.6

12

.2

12.1

18

60

49

.9

33

17.8

12

.6

25

15.2

16

.6

20.5

17

.3

43.5

83

.7

97.6

10

.4

Pb

ppb

42.7

21

.7

16.1

17

.8

66.8

89

.5

126

68.5

37

.3

55.2

16

0 19

8 13

9 14

9 11

3 15

9 15

6 17

1 86

.2

85.3

0.

932

Sc p

pb

1.28

0.

909

0.67

2 0.

567

1.3

0.78

3 0.

655

7.42

4.

89

4.27

1.

18

2.33

3.

22

<=

0.5

<

= 0

.5

<=

0.5

<

= 0

.5

1.5

2.7

3.97

<

= 0

.5

Ti p

pb

62.1

14

0 11

3 11

8 14

5 10

6 98

.6

78.4

14

6 15

2 85

.5

156

101

88.9

90

.6

102

99

76.3

10

4 12

2 <

= 0

.5

V p

pb

67.5

32

.2

28.6

23

.6

57.5

91

16

8 33

4 25

7 35

7 39

0 42

0 27

9 88

10

6 24

6 20

8 24

4 36

6 60

0 4.

22

Zn

ppb

17.7

14

.5

15.4

16

.2

16.8

19

.5

20.9

38

7 18

7 14

2 21

.3

14.4

31

.7

18.9

19

.5

23.8

19

.3

45.1

20

1 54

4 6.

14

Zr

ppb

3.58

3.

18

1.65

1.

11

0.37

0.

257

0.15

1 0.

418

0.23

0.

251

2.49

3.

65

2.73

0.

185

<=

0.1

0.

145

<=

0.1

0.

314

0.27

5 0.

375

<=

0.1

Ox

Al p

pm

46

24.5

22

.5

34.7

38

.5

39.8

63

.6

131

70.7

83

.8

41

28.9

29

.6

37.2

29

.3

38.2

45

.9

48.3

75

.9

95.4

0.

238

As

ppb

2.19

3.

3 1.

66

2.07

5.

14

2.99

7.

21

0.80

3 1.

37

1.93

11

.9

7.68

32

.5

46.7

23

.9

86.3

73

.7

38.6

58

.4

50.6

<

= 0

.5

- T

able

Con

tinue

d N

ext P

age

-

326

Table F.4

. (C

ontin

ued)

Aug

men

ted

MB

CR

-SE

P e

lem

ent

data

for

ASS

sam

ples

. T

he v

olum

es o

f th

e fr

actio

n ex

trac

tions

wer

e: w

ater

-sol

uble

(W

S) =

40

mL

,

Aci

d E

xtra

ctab

le (

AE

) =

40

mL

, red

ucib

le (R

ed)

= 4

0 m

L, a

nd o

xidi

sabl

e (O

x) =

50

mL

. A

ll M

BC

R-S

EP

res

idua

l fra

ctio

ns (R

es)

wer

e de

term

ined

dire

ctly

. D

ry m

ass

is in

gra

ms.

D

P2-

01

DP

2-02

D

P2-

03

DP

2-04

D

P2-

05

DP

2-06

D

P2-

07

DP

2-08

D

P2-

09

DP

2-10

W

P2-

01

WP

2-02

W

P2-

03

WP

2-04

W

P2-

05

WP

2-06

W

P2-

07

WP

2-08

W

P2-

09

WP

2-10

B

lank

B

a pp

b 1.

23

1.7

1.55

2.

25

2.44

1.

86

4.88

5.

3 7.

89

5.83

26

.7

1.31

4.

11

13.2

10

.4

15.2

19

.1

17.9

7.

95

5.18

0.

824

Co

ppb

1.64

1.

16

1.21

1.

54

1.9

2.48

11

10

1 88

.7

85

2.42

1.

44

3.06

3.

12

3.53

8.

92

5.02

31

.1

102

104

<=

0.1

C

r pp

b 16

9 16

6 15

9 20

7 27

5 29

2 31

2 12

9 10

4 10

3 23

1 17

8 25

4 26

3 24

0 34

2 26

7 14

7 14

0 14

3 3.

3 C

u pp

b 20

.9

22.4

21

.7

18.6

28

.7

29.8

34

.3

82.8

79

78

45

.6

29.4

56

10

1 15

4 16

4 11

3 14

0 97

.1

91.9

8.

72

Fe

ppm

78

.3

28.6

20

.7

31.6

25

.6

14.6

65

.4

202

191

204

65.4

43

32

.8

41.1

29

31

.4

36.3

95

.9

208

250

0.27

G

a pp

b 0.

733

0.84

6 0.

14

0.15

0.

791

0.12

0.

822

1.53

2.

3 2.

17

1.88

1.

05

2.84

3.

55

2.06

5.

86

3.68

3.

23

3.87

3.

83

<=

0.0

5 M

n pp

b 20

.5

11.7

12

.8

17.9

25

.6

39

914

8870

68

80

8180

46

.2

20.4

40

22

.2

27.7

63

87

.1

1720

47

80

5390

1.

47

Na

ppm

7.

74

5.52

5.

37

5.87

5.

67

4.98

3.

3 3.

57

3.23

3.

43

1.95

1.

95

1.53

1.

77

1.71

1.

37

1.71

2.

41

2.32

1.

97

<=

0.5

N

b pp

b 0.

112

0.01

64

<=

0.0

5 <

= 0

.05

<=

0.5

<

= 0

.5

<=

0.0

5 0.

0596

0.

0586

<

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 0.

0529

<

= 0

.05

Ni p

pb

5.14

4.

54

4.51

6.

37

8.5

9.78

20

.5

171

120

114

6.62

4.

13

7.34

10

.4

12.1

22

.3

19.4

46

.4

133

148

1.46

P

b pp

b 0.

949

1.3

1.17

1.

68

2.56

1.

62

5.22

6.

8 5.

53

4.37

3.

56

1.53

3.

76

27.1

25

66

.7

67.6

32

.2

7.41

4.

47

0.69

9 Sc

ppb

24

.5

21.2

23

.4

17.7

30

30

.8

32.8

41

.8

34.1

36

.4

33

25

41.5

70

.2

57.6

65

56

.5

42.8

45

.2

44.6

1.

2 T

i ppb

10

4 84

.9

68.7

55

.1

38.7

31

.6

40.3

32

.7

38.7

34

.3

220

63

78.5

10

3 93

.9

151

112

76

60.2

64

.6

4.53

V

ppb

<

= 0

.5

<=

0.5

<

= 0

.5

<=

0.5

<

= 0

.5

<=

0.5

<

= 0

.5

2.86

4.

83

4.34

9.

4 <

= 0

.5

47.4

60

.6

27.9

14

9 95

42

.4

36

38.7

<

= 0

.5

Zn

ppb

19.5

19

.2

18.8

24

.3

22.6

22

.8

35.5

21

9 16

9 16

0 30

.5

22

43.4

47

.8

40.9

47

.3

55.7

11

0 21

6 23

4 16

.9

Zr

ppb

1.15

<

= 0

.5

<=

0.1

<

= 0

.1

<=

0.1

<

= 0

.1

<=

0.1

1.

03

0.69

4 0.

493

<=

0.1

<

= 0

.1

0.59

0.

604

0.58

2 1.

99

1.41

0.

283

0.36

6 0.

484

0.12

2 Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

Res

A

l %

4.87

5.

42

4.94

6.

28

7.42

7.

01

7.44

7.

69

6.68

6.

8 7.

39

7.01

6.

7 7.

86

7.82

7.

46

7.05

6.

58

7.76

7.

15

- A

s pp

m

19.3

27

.3

23.2

29

.1

18.9

19

.3

13.8

18

.5

16

18.4

19

.4

21.2

9.

9 9.

6 15

.7

17.8

18

.9

18

20

21.8

-

Ba

ppm

16

0 21

0 19

0 22

0 25

0 23

0 25

0 23

0 23

0 21

0 23

0 22

0 20

0 26

0 27

0 25

0 25

0 24

0 24

0 22

0 -

Co

ppm

2.

1 1.

8 1.

8 2.

7 3.

3 3.

1 3.

6 5.

2 3.

2 3.

6 2.

9 2.

7 2.

6 2.

7 3

2.9

3 3.

4 4.

3 4.

4 -

Cr

ppm

24

29

35

36

41

41

41

47

31

33

30

30

29

32

34

32

33

34

38

39

-

Cu

ppm

8.

8 7.

2 6.

6 8.

6 9.

9 10

.5

9.8

11.6

8.

6 9

9.1

10.1

24

10

.7

11.5

12

11

.5

11.8

11

.2

10.5

-

Fe

%

3.5

4.01

3.

38

3.79

2.

86

2.44

2.

42

3.72

2.

29

2.4

1.86

1.

83

1.35

1.

36

1.52

1.

42

1.43

1.

5 2.

41

2.54

-

Ga

ppm

12

.15

13.9

5 12

.65

16.5

19

.6

18.1

5 19

.05

19.6

5 16

.15

17.2

20

.7

19.4

5 18

.35

22.2

21

.6

20.2

18

.85

17.7

2 20

19

-

Mn

ppm

98

10

8 92

13

7 15

1 14

7 16

3 18

5 15

0 15

1 15

1 14

2 12

9 14

4 14

2 13

2 13

5 15

4 17

2 15

8 -

Mo

ppm

8.

48

11.8

9.

72

7.63

7.

29

7.14

10

3.

68

3.46

4.

05

19.5

18

.5

19

32.7

43

41

.6

27.2

13

.56

10.1

12

.1

- N

a %

0.

42

0.56

0.

48

0.61

0.

66

0.59

0.

59

0.53

0.

51

0.51

0.

51

0.5

0.49

0.

59

0.57

0.

55

0.53

0.

54

0.55

0.

49

- N

b pp

m

8.3

9.7

8.6

12.2

15

.2

13.5

13

.8

13.6

10

.8

11.8

15

.5

14.2

13

.4

18.1

17

.5

16.7

16

.4

14.6

14

.7

14.1

-

Ni p

pm

7.9

8.4

11.3

11

.4

13.4

14

.9

14.5

18

.2

12.4

13

.3

11.1

11

.1

11.3

12

.8

13

12.5

13

.2

14.4

15

.5

16.1

-

Pb

ppm

16

.7

22.7

19

.2

25

20.7

16

.8

18.4

19

.6

22.9

21

.7

18.2

17

.6

29.9

17

.1

16.2

14

.2

13.6

15

.6

21.8

19

.9

- Sc

ppm

5.

3 5.

9 5.

5 8.

3 10

.5

9.9

9.9

11.2

7.

3 8.

3 8.

2 7.

9 7.

4 9.

3 9.

7 9.

4 9.

1 8.

8 10

.3

10

-

- T

able

Con

tinue

d N

ext P

age

-

327

Table F.4

. (C

ontin

ued)

Aug

men

ted

MB

CR

-SE

P e

lem

ent

data

for

ASS

sam

ples

. T

he v

olum

es o

f th

e fr

actio

n ex

trac

tions

wer

e: w

ater

-sol

uble

(W

S) =

40

mL

,

Aci

d E

xtra

ctab

le (

AE

) =

40

mL

, red

ucib

le (R

ed)

= 4

0 m

L, a

nd o

xidi

sabl

e (O

x) =

50

mL

. A

ll M

BC

R-S

EP

res

idua

l fra

ctio

ns (R

es)

wer

e de

term

ined

dire

ctly

. D

ry m

ass

is in

gra

ms.

D

P2-

01

DP

2-02

D

P2-

03

DP

2-04

D

P2-

05

DP

2-06

D

P2-

07

DP

2-08

D

P2-

09

DP

2-10

W

P2-

01

WP

2-02

W

P2-

03

WP

2-04

W

P2-

05

WP

2-06

W

P2-

07

WP

2-08

W

P2-

09

WP

2-10

B

lank

T

i %

0.24

8 0.

314

0.27

8 0.

41

0.49

7 0.

47

0.46

3 0.

455

0.34

9 0.

36

0.42

5 0.

409

0.39

0.

502

0.50

8 0.

521

0.48

8 0.

452

0.47

1 0.

436

- V

ppm

33

45

41

55

58

54

55

60

37

38

45

46

39

49

58

50

49

42

51

48

-

Zn

ppm

25

23

23

32

36

36

40

53

35

38

45

32

61

32

34

33

36

46

45

45

-

Zr

ppm

64

75

.6

71.8

10

4.5

122

120

113

110

87.9

95

.9

120

116.

5 10

9.5

134

128

122

117.

5 11

5 11

6.5

114

-

328

AP

PE

ND

IX G

. XR

F A

ND

SE

QU

EN

TIA

L E

XT

RA

CT

ION

DA

TA

FO

R D

RA

IN S

ED

IME

NT

S

Table G

.1.

All

XR

F r

esul

ts f

rom

dra

in s

edim

ent

sam

ples

. D

ata

are

pres

ente

d as

rep

orte

d.

U

DL

L

DL

F

DS0

1 F

DS0

2 F

DS0

3 F

DS0

4 F

DS0

5 F

DS0

6 F

DS0

7A

FD

S07B

FD

S08A

FD

S08B

FD

S9A

F

DS9

B F

DS1

0A F

DS1

0B F

DS1

1A F

DS1

1B

FD

S12

SiO

2%

- -

23.8

0 14

.64

47.3

9 27

.61

63.7

1 15

.68

22.8

5 73

.03

20.3

5 17

.34

25.5

9 39

.36

16.0

1 14

.45

19.6

7 39

.75

54.2

8 T

iO2%

-

- 0.

18

0.15

0.

25

0.34

0.

10

0.16

0.

10

0.25

0.

30

0.25

0.

34

0.52

0.

20

0.21

0.

23

0.56

0.

86

Al 2O

3%

- -

7.29

5.

52

7.88

8.

75

4.86

4.

44

3.48

8.

64

15.5

4 13

.09

16.8

9 18

.05

10.2

3 11

.20

4.72

10

.21

16.0

6 F

e 2O

3T%

-

- 25

.76

38.2

1 15

.83

22.8

6 13

.93

44.3

2 28

.32

4.38

21

.01

27.5

4 17

.68

7.19

26

.48

24.0

2 26

.39

14.6

7 5.

53

MnO

%

- -

BD

B

D

BD

B

D

BD

B

D

BD

0.

01

0.01

0.

01

0.02

0.

01

0.01

B

D

0.05

0.

01

0.02

M

gO%

-

- 0.

29

0.33

0.

37

0.46

0.

25

0.25

1.

05

0.30

0.

85

0.76

0.

70

0.77

1.

15

0.76

1.

81

1.12

0.

53

CaO

%

- -

0.49

0.

45

0.38

0.

51

0.30

0.

38

0.59

0.

19

0.40

0.

41

0.35

0.

39

0.62

0.

41

0.83

0.

68

0.35

N

a 2O

%

- -

0.60

0.

69

1.12

1.

16

0.85

0.

62

3.57

1.

24

3.24

2.

90

2.21

2.

23

4.65

2.

51

4.91

3.

90

1.34

K

2O%

-

- 1.

40

0.88

2.

07

1.31

1.

30

0.73

1.

21

3.54

1.

02

0.76

1.

08

1.87

0.

90

0.73

1.

00

1.64

2.

39

P2O

5%

- -

0.15

0.

17

0.12

0.

17

0.06

0.

07

0.09

0.

06

0.22

0.

22

0.27

0.

38

0.15

0.

22

0.09

0.

14

0.06

L

OI%

-

- 40

.38

38.3

7 24

.27

37.1

1 14

.79

32.9

7 38

.24

8.41

36

.54

36.2

3 34

.88

29.3

6 38

.52

45.3

3 39

.33

26.8

4 18

.18

SO3%

0.

07

0.12

0.

09

0.24

0.

05

0.09

0.

58

0.10

0.

70

0.72

0.

18

0.16

1.

15

0.56

1.

32

0.64

0.

05

SUM

%

- -

100.

41

99.5

3 99

.77

100.

51

100.

19

99.6

9 10

0.09

10

0.15

10

0.17

10

0.22

10

0.18

10

0.29

10

0.06

10

0.40

10

0.33

10

0.17

99

.64

As

ppm

33

0 10

40

33

41

15

31

3

74

15

34

42

38

42

49

35

40

30

31

Ba

ppm

40

00

10

82

95

108

125

69

43

119

127

115

115

97

133

141

112

188

172

268

Co

ppm

21

0 2

9 B

D

BD

14

B

D

BD

B

D

23

18

1 14

15

B

D

2 B

D

14

8 C

r pp

m

4000

3

61

56

84

56

72

36

12

54

47

25

44

44

13

18

14

53

76

Cu

ppm

23

60

3 B

D

BD

14

B

D

10

BD

B

D

3 12

9

11

11

4 12

3

12

75

Ga

ppm

40

3

BD

B

D

11

BD

8

BD

N

A

7 17

N

A

18

18

NA

N

A

NA

12

20

M

n pp

m

2500

4

249

259

65

148

51

203

BD

55

74

B

D

135

71

BD

B

D

164

91

139

Nb

ppm

26

8 2

3 4

4 6

2 2

6 13

12

8

14

19

7 5

7 16

25

N

i ppm

23

60

3 14

16

14

9

11

8 53

6

23

24

18

16

26

43

13

14

10

Pb

ppm

13

3 10

7

12

33

6 25

12

9

24

35

6 37

36

10

1

10

33

29

Rb

ppm

13

00

2 88

61

12

3 77

83

44

69

19

9 67

38

85

12

2 43

8

48

92

144

Sc p

pm

55

3 B

D

BD

7

BD

4

BD

N

A

1 12

N

A

12

8 N

A

NA

N

A

10

12

Sr p

pm

700

2 57

48

98

12

5 45

33

82

37

56

31

51

60

86

7

150

107

75

Ti p

pm

2260

0 5

1704

15

86

3284

26

56

1928

89

8 43

4 11

27

1665

12

63

2046

25

36

953

1107

94

4 29

35

5404

V

ppm

52

6 4

84

69

26

61

15

36

21

25

42

46

46

52

28

40

23

52

71

Y p

pm

720

2 39

21

19

20

20

13

16

21

49

22

36

37

33

7

12

16

25

Zn

ppm

29

0 3

48

35

37

28

37

26

4 9

79

50

81

58

55

5 27

37

58

329

Zr

ppm

49

0 3

73

53

73

76

43

58

27

97

43

16

57

114

14

1 57

14

7 19

5 U

DL

= U

pper

Det

ectio

n L

imit;

LD

L =

Low

er D

etec

tion

Lim

it; N

A =

Not

Ana

lyse

d; B

D =

Bel

ow D

etec

tion

Lim

it.

Table G

.2.

XR

F d

ata

stat

istic

s fo

r dr

ain

sedi

men

ts.

Dra

in s

edim

ents

are

des

crib

ed i

n th

ree

grou

ps: a

ll dr

ain

sedi

men

ts,

the

oran

ge f

locc

ulan

ts (

OF

) an

d th

e

blac

k oo

zes

(BO

).

A

ll D

rain

Sed

imen

ts (

n =

17)

O

rang

e F

locc

ulan

ts (

n =

12)

B

lack

Ooz

es (

n =

5)

Sm

all

25th

%til

e M

edia

n 75

th %

tile

Lar

ge

Smal

l 25

th

Med

ian

75th

L

arge

Sm

all

25th

%til

e M

edia

n 75

th %

tile

Lar

ge

Al %

1.

84

2.92

4.

63

6.93

9.

55

1.84

2.

55

4.01

6.

12

8.94

4.

57

5.40

5.

93

6.93

9.

55

As

ppm

3

31

35

41

74

3 31

36

40

.25

74

15

30

35

42

42

Ba

ppm

43

97

11

5 13

3 26

8 43

91

.75

111.

5 12

9 26

8 11

2 11

5 12

7 13

3 17

2 C

a %

0.

14

0.27

0.

29

0.37

0.

59

0.21

0.

26

0.30

0.

38

0.59

0.

14

0.28

0.

29

0.29

0.

49

Co

ppm

1

1 2

14

23

1 1

1 10

.25

18

1 2

14

15

23

Cu

ppm

1.

5 1.

5 9

12

75

1.5

1.5

3.5

11.2

5 75

3

9 11

12

12

F

e %

3.

06

10.2

6 15

.99

18.5

2 31

.00

3.87

12

.04

17.0

0 18

.84

31.0

0 3.

06

5.03

10

.26

16.8

0 19

.26

Ga

ppm

1.

5 1.

5 9.

5 17

.25

20

1.5

1.5

8 17

20

7

9.5

12

15

18

K %

0.

61

0.75

1.

00

1.36

2.

94

0.61

0.

81

0.95

1.

10

1.98

0.

61

0.63

1.

36

1.55

2.

94

LO

I %

8.

41

26.8

4 36

.23

38.3

7 45

.33

14.7

9 30

.80

36.8

2 38

.41

40.3

8 8.

41

26.8

4 29

.36

36.2

3 45

.33

Mg

%

0.15

0.

20

0.42

0.

51

1.09

0.

15

0.19

0.

30

0.54

1.

09

0.18

0.

46

0.46

0.

46

0.68

M

n pp

m

2 51

74

14

8 25

9 2

61.5

13

7 17

3.75

25

9 2

2 55

71

91

N

a %

0.

45

0.83

1.

64

2.40

3.

64

0.45

0.

60

0.93

2.

46

3.64

0.

92

1.65

1.

86

2.15

2.

89

Nb

ppm

2

4 7

13

25

2 3.

75

6 8.

25

25

5 8

13

16

19

Ni p

pm

6 11

14

23

53

8

10.7

5 14

19

.25

53

6 14

16

24

43

P

%

0.02

0.

04

0.07

0.

10

0.17

0.

02

0.04

0.

06

0.08

0.

12

0.03

0.

06

0.10

0.

10

0.17

P

b pp

m

1 9

12

33

37

6 9.

75

12

30

37

1 6

24

33

36

Rb

ppm

8

48

77

92

199

43

57.7

5 73

85

.75

144

8 38

92

12

2 19

9 S

%

0.05

0.

09

0.18

0.

64

1.32

0.

05

0.08

0.

15

0.61

1.

32

0.10

0.

16

0.56

0.

64

0.72

Sc

ppm

1

1.5

5.5

10.5

12

1.

5 1.

5 4

12

12

1 4.

5 8

9 10

Si

%

6.75

8.

11

11.1

3 18

.58

34.1

4 6.

84

8.77

10

.90

15.2

2 29

.78

6.75

8.

11

18.4

0 18

.58

34.1

4 Sr

ppm

7

45

57

86

150

33

50.2

5 66

89

15

0 7

31

37

60

107

Ti %

0.

06

0.11

0.

15

0.20

0.

52

0.06

0.

09

0.13

0.

19

0.52

0.

13

0.15

0.

15

0.31

0.

34

V p

pm

15

26

42

52

84

15

25.2

5 39

63

84

25

40

46

52

52

Y

ppm

7

16

21

33

49

12

18.2

5 20

.5

33.7

5 49

7

16

21

22

37

Zn

ppm

4

27

37

55

81

4 27

.75

37

55.7

5 81

5

9 37

50

58

Z

r pp

m

1 43

57

76

19

5 14

43

57

73

19

5 1

16

97

114

147

330

331

Table G

.3.

MB

CR

-SE

P d

ata

for

drai

n se

dim

ents

. A

cid

exch

ange

able

(A

E)

and

redu

cibl

e ex

trac

tion

solu

tion

each

had

vol

umes

of

40 m

L.

The

oxi

disa

ble

solu

tion

volu

me

was

50

mL

. A

ll re

sidu

al f

ract

ions

wer

e de

term

ined

dir

ectly

.

Sam

ple

FD

S8A

F

DS8

B

FD

S10A

F

DS1

0B

FD

S11A

F

DS1

1B

Bla

nk

Dry

Mas

s g

0.51

23

0.71

07

0.28

42

0.30

23

0.36

09

0.44

27

- AE

Al p

pm

4.72

11

.2

23.4

24

.1

3.35

2.

29

0.10

8 A

s pp

b 5.

64

3.12

4.

89

13.3

6.

95

4.93

<

= 0

.5

Ba

ppb

16.5

23

.4

20.9

13

.9

27.8

6.

48

0.53

5 C

o pp

b 2.

44

12

16.4

38

.8

11.6

6.

84

<=

0.1

C

r pp

b 4.

02

6.98

3.

58

6.09

5.

98

1.18

<

= 0

.5

Cu

ppb

6.44

7.

15

2.38

1.

91

2.7

2.05

5.

3 F

e pp

m

11.6

42

.8

5.08

3.

62

5.59

9.

53

<=

0.0

5 G

a pp

b <

= 0

.05

0.14

9 <

= 0

.05

0.12

1 <

= 0

.05

<=

0.0

5 <

= 0

.05

Mn

ppb

113

198

251

120

905

101

<=

0.1

N

a pp

m

776

263

562

422

510

567

0.16

9 N

b pp

b <

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

<=

0.0

5 <

= 0

.05

Ni p

pb

9.07

26

.5

33.9

85

.2

15.2

9.

02

<=

0.1

P

b pp

b 0.

729

2.06

0.

374

1.07

0.

0902

0.

205

0.15

2 Sc

ppb

1.

68

3.32

2.

17

2.16

3.

89

2.03

<

= 0

.5

Ti p

pb

1.12

2.

55

1.22

3.

81

3.69

1.

2 <

= 0

.5

V p

pb

4.33

1.

92

2.4

2.13

3.

75

2.11

<

= 0

.5

Zn

ppb

39.3

13

5 10

5 23

8 51

.9

43.1

5.

43

Zr

ppb

0.97

1 0.

689

0.44

1 1.

13

0.40

6 0.

404

<=

0.1

Red

ucible

Al p

pm

9.81

20

12

1 16

8 14

.5

20.7

0.

127

As

ppb

7.59

14

.5

10.2

43

.9

3.04

11

.6

1.5

Ba

ppb

14.9

35

.2

28.2

14

.6

47.9

43

.5

0.76

7 C

o pp

b 1.

37

3.37

13

.8

15.7

10

6.

31

<=

0.1

C

r pp

b 27

.5

32.9

72

.3

71.8

50

.7

36.4

3.

44

Cu

ppb

18.9

22

.3

15.9

11

.2

21.7

15

.4

4.55

-

Tab

le C

ontin

ued

Nex

t Pag

e -

332

Table G

.3.

(Con

tinue

d) M

BC

R-S

EP

dat

a fo

r dr

ain

sedi

men

ts.

Aci

d ex

chan

geab

le (

AE

) an

d re

duci

ble

extr

actio

n so

lutio

n ea

ch h

ad v

olum

es o

f 40

mL

. T

he

oxid

isab

le s

olut

ion

volu

me

was

50

mL

. A

ll re

sidu

al f

ract

ions

wer

e de

term

ined

dir

ectly

.

Sam

ple

FD

S8A

F

DS8

B

FD

S10A

F

DS1

0B

FD

S11A

F

DS1

1B

Bla

nk

Fe

ppm

44

5 18

8 13

60

307

808

541

<=

0.0

5 G

a pp

b 3.

4 6.

78

3.87

4.

75

2.32

4.

71

<=

0.5

M

n pp

b 14

.8

47.2

67

.3

18.3

73

2 69

<

= 0

.1

Na

ppm

2.

11

0.53

1 3.

54

2.34

6.

57

4.27

<

= 0

.5

Nb

ppb

0.10

8 0.

137

<=

0.0

5 0.

0534

0.

0774

0.

0956

<

= 0

.05

Ni p

pb

21.7

27

66

.2

63.3

40

.3

40.3

10

.4

Pb

ppb

61.2

11

0 40

.7

98.7

23

.8

108

0.93

2 Sc

ppb

3.

38

4.31

8.

76

6.11

6.

15

4.34

<

= 0

.5

Ti p

pb

20.3

53

.5

9.14

5.

06

14.5

32

.6

<=

0.5

V

ppb

28

2 37

9 11

0 19

6 65

.4

133

4.22

Z

n pp

b 22

.3

117

182

194

79.3

61

.8

6.14

Z

r pp

b 4.

52

3.3

3.62

1.

43

2.06

2.

17

<=

0.1

Oxidisable

Al p

pm

2.8

8.85

17

.7

35.8

3.

92

7.21

0.

238

As

ppb

<=

0.5

<

= 0

.5

7.18

2.

52

2.05

1.

75

<=

0.5

B

a pp

b 6.

72

14.1

5.

82

7.97

9.

18

2.77

0.

824

Co

ppb

1.07

3.

2 3.

75

26.5

4.

74

4.3

<=

0.1

C

r pp

b 21

.2

60.3

64

.7

149

51.2

17

9 3.

3 C

u pp

b 11

.6

22.8

17

.4

36.4

18

40

.8

8.72

F

e pp

m

38

8.22

55

.2

29.1

50

.7

28.6

0.

27

Ga

ppb

0.51

7 1.

46

1.27

2.

12

0.59

4 1.

87

<=

0.0

5 M

n pp

b 15

.3

46.1

27

.5

44.1

14

5 57

.2

1.47

N

a pp

m

5.05

4.

78

3.5

4.62

5.

48

7.16

<

= 0

.5

Nb

ppb

<=

0.0

5 0.

0585

0.

0686

0.

0668

<

= 0

.05

0.07

9 <

= 0

.05

Ni p

pb

130

195

149

216

162

210

1.46

P

b pp

b 7.

2 3.

28

15.9

17

.8

8.81

1.

49

0.69

9 Sc

ppb

21

.5

29.4

17

.6

36.4

15

.2

35

1.2

Ti p

pb

21.7

17

32

.6

38.6

21

.1

98.6

4.

53

- T

able

Con

tinue

d N

ext P

age

-

333

Table G

.3.

(Con

tinue

d) M

BC

R-S

EP

dat

a fo

r dr

ain

sedi

men

ts.

Aci

d ex

chan

geab

le (

AE

) an

d re

duci

ble

extr

actio

n so

lutio

n ea

ch h

ad v

olum

es o

f 40

mL

. T

he

oxid

isab

le s

olut

ion

volu

me

was

50

mL

. A

ll re

sidu

al f

ract

ions

wer

e de

term

ined

dir

ectly

.

Sam

ple

FD

S8A

F

DS8

B

FD

S10A

F

DS1

0B

FD

S11A

F

DS1

1B

Bla

nk

V p

pb

61.5

6.

81

19.6

27

.5

11.9

15

.3

<=

0.5

Zn

ppb

58.8

66

.9

98.2

82

.1

74.9

10

2 16

.9

Zr

ppb

0.58

8 0.

486

0.37

2 2.

11

0.79

1 2.

13

0.12

2

Residual

Res

Res

Res

Res

Res

Res

-

Al %

4.

66

3.85

9.

38

8.73

3.

07

6.91

-

As

ppm

25

.4

10.7

89

13

0 45

.1

48.1

-

Ba

ppm

12

0 90

10

0 80

80

20

0 -

Co

ppm

2.

9 4.

8 6.

2 9.

7 5.

1 5.

2 -

Cr

ppm

33

11

65

43

49

53

-

Cu

ppm

18

.9

7.6

27

21

8.2

17.6

-

Fe

%

8.24

2.

41

20.9

22

.8

20.6

11

.3

-

Ga

ppm

10

.75

9.14

13

.8

15.1

5 7.

17

16.2

-

Mn

ppm

86

81

19

9 10

6 33

5 14

7 -

Na

%

0.4

0.37

0.

39

0.19

4.

52

0.55

-

Nb

ppm

5.

1 4.

3 5.

9 6.

3 4.

4 11

.7

- N

i ppm

16

.8

2.8

19

14

12.5

11

.8

-

Pb

ppm

17

.5

13.4

51

30

11

.2

18.1

-

Sc p

pm

3.6

3.2

7.1

8.3

5 8.

2 -

Ti %

0.

141

0.12

8 0.

27

0.24

0.

119

0.37

8 -

V p

pm

36

26

59

60

29

59

-

Zn

ppm

38

28

93

67

37

45

-

Zr

ppm

51

.5

39.6

40

.5

43.3

35

.1

78.7

-

334

AP

PE

ND

IX H

. FIR

EW

OO

D C

RE

EK

MO

UT

H S

ED

IME

NT

DA

TA

Table H

.1.

Ele

men

tal

com

posi

tion

of F

irew

ood

Cre

ek m

outh

sed

imen

ts c

olle

cted

Apr

il 20

04.

Ele

men

t co

ncen

trat

ions

wer

e de

term

ined

usi

ng I

CP

-MS-

AE

S

afte

r H

F+

HN

O3+

HC

lO4+

HC

l dig

est.

F

CT

01

FC

T02

F

CT

03

FC

T04

F

CT

05

FC

T06

F

CT

07

FC

T08

F

CT

09

FC

T10

F

CT

11

FC

T12

F

CT

13

Med

ian

As

ppm

33

.7

29.5

30

.1

20.4

28

28

.9

32.8

31

.6

6.3

23.4

26

.9

26.2

24

.6

28

Ba

ppm

21

0 23

0 25

0 23

0 20

0 24

0 23

0 22

0 13

0 24

0 24

0 22

0 25

0 23

0 C

a %

1.

05

0.59

1.

31

6.06

0.

81

1.06

1.

22

1.33

2.

03

1.16

0.

8 1.

22

0.64

1.

16

Co

ppm

13

.5

18.3

14

.5

11

10.1

14

.4

13.8

11

.8

2.4

11.1

14

.6

13.6

13

.4

13.5

F

e %

5.

21

4.44

4.

5 4.

02

3.54

4.

68

4.98

4.

25

0.68

3.

53

4.36

4.

65

4.48

4.

44

Ga

ppm

16

.7

18.6

18

.8

14.4

5 11

.65

18.6

16

.95

14.5

5 5.

5 13

.9

16.4

5 16

.7

18.1

5 16

.7

K %

1.

64

1.69

1.

77

1.58

1.

7 1.

7 1.

67

1.8

2.26

1.

68

1.61

1.

56

1.69

1.

69

Li p

pm

58.6

11

6.5

63

46.4

37

.8

62.6

59

.4

53.8

14

.3

44.9

64

.1

70.4

62

.1

59.4

M

g %

0.

84

0.81

0.

89

0.69

0.

52

0.91

0.

83

0.67

0.

13

0.64

0.

87

0.85

0.

9 0.

83

Mn

ppm

49

5 26

7 56

0 30

9 27

1 39

0 38

8 43

9 12

9 38

5 32

7 28

3 33

3 33

3 N

a %

1.

58

1.29

1.

57

1.38

1.

37

1.43

1.

46

1.41

0.

42

1.42

1.

76

1.54

1.

52

1.43

Nb

ppm

14

.8

15.1

16

.2

13

10.9

16

.4

15.3

14

2.

8 13

.1

15.4

14

.6

16.1

14

.8

Ni p

pm

32.2

37

.5

33.4

26

.2

20.6

32

.5

30.9

23

.7

4.8

23.3

32

31

.3

31.7

31

.3

P p

pm

580

490

350

620

380

610

710

460

180

450

670

640

590

580

Pb

ppm

30

.2

25.6

25

.8

20.4

22

.4

27.1

29

.1

26.1

18

.3

22.6

26

26

.7

27.9

26

Rb

ppm

12

1 12

1 12

3.5

101

109.

5 12

6 12

2.5

127.

5 14

5.5

113

113

113

122.

5 12

1 S

%

1.29

0.

96

2.24

0.

68

1.3

0.94

1.

44

1.49

0.

14

0.6

1.57

1.

34

0.92

1.

29

Sr p

pm

142.

5 90

.3

168

392

113

131

143

152

101.

5 13

4.5

129

133

105.

5 13

3 T

i %

0.41

7 0.

422

0.51

0.

41

0.33

0.

478

0.44

8 0.

394

0.07

2 0.

403

0.47

2 0.

439

0.48

0.

422

V p

pm

76

78

82

63

53

82

78

61

11

59

78

78

84

78

Y p

pm

29.2

35

24

.2

24.8

20

.8

28.6

30

24

.8

4.9

22.3

28

.4

31.9

28

.3

28.3

Z

n pp

m

93

99

78

75

58

97

95

74

18

70

91

99

99

91

Zr

ppm

95

.5

93.1

10

9 92

.2

82.5

10

6.5

100

105.

5 23

.8

93.3

10

4.5

93.6

10

5 95

.5

335

Table H

.2.

Ele

men

tal

com

posi

tion

of F

irew

ood

Cre

ek m

outh

sed

imen

ts c

olle

cted

Sep

tem

ber

2002

. E

lem

ent

conc

entr

atio

ns w

ere

dete

rmin

ed u

sing

IC

P-

MS/

AE

S af

ter

HF

+H

NO

3+H

ClO

4+H

Cl d

iges

t. D

ata

are

from

Hal

l (20

02).

Sam

ple

FC

T01

F

CT

02

FC

T03

F

CT

04

FC

T05

F

CT

06

FC

T07

F

CT

08

FC

T09

F

CT

10

FC

T11

F

CT

12

FC

T13

M

edia

n

Al p

pm

7290

0 45

000

7780

0 68

600

8290

0 91

900

9110

0 77

800

1105

00

9040

0 63

700

2720

0 85

100

7780

0 A

s pp

m

26.2

17

.3

24.7

22

.8

25.2

25

.7

27.9

24

.9

25.3

27

.2

24.5

3.

2 23

.7

24.9

C

u pp

m

21.2

10

.8

21.9

19

21

.1

22.1

22

.1

19.5

21

.3

21.5

19

2.

6 22

.8

21.2

F

e pp

m

3880

0 22

300

3790

0 32

800

3870

0 40

400

4080

0 38

400

3850

0 40

900

3410

0 35

00

3700

0 38

400

Li p

pm

68.2

36

.6

69.7

57

.9

74

79

70

67.1

70

.2

68.2

51

8.

3 61

.4

68.2

M

n pp

m

459

331

625

610

472

520

559

765

644

595

647

72

672

595

Ni p

pm

26.7

15

.4

28.7

25

.9

27.7

28

.4

29

28.4

29

.1

28.3

24

.5

3.4

29.5

28

.3

Pb

ppm

21

.7

16.4

23

20

.8

22.9

22

.3

23.8

21

.9

22.7

23

.1

20.3

14

22

.4

22.3

Zn

ppm

91

47

94

80

95

10

4 96

92

96

93

82

14

94

93

Table H

.3.

Ele

men

tal c

ompo

sitio

n of

Fir

ewoo

d C

reek

mou

th s

edim

ents

col

lect

ed J

uly

2002

. The

Jul

y 20

02 s

edim

ents

fro

m F

irew

ood

Cre

ek a

re a

lso

refe

rred

to a

s th

e ‘b

asel

ine’

sed

imen

ts i

n th

e te

xt.

Ele

men

t co

ncen

trat

ions

wer

e de

term

ined

usi

ng I

CP

-MS/

AE

S af

ter

HF

+H

NO

3+H

ClO

4+H

Cl

dige

st.

Dat

a ar

e fr

om H

all (

2002

).

Sam

ple

FC

T01

F

CT

02

FC

T03

F

CT

04

FC

T05

F

CT

06

FC

T07

F

CT

08

FC

T09

F

CT

10

FC

T11

F

CT

12

FC

T13

M

edia

n

Al p

pm

6730

0 42

100

7830

0 64

300

6510

0 75

700

7100

0 74

600

7490

0 69

700

7830

0 21

200

7370

0 71

000

As

ppm

33

.5

20

24.8

23

21

.9

25.7

26

24

27

.7

24

27.2

3.

4 22

.3

24

Cu

ppm

21

.3

10.8

23

18

.7

17.4

21

.7

22

18.8

22

.8

21.6

22

.3

5.1

21.3

21

.3

Fe

ppm

42

000

2410

0 38

800

3180

0 33

000

4140

0 39

400

3840

0 42

000

3700

0 43

600

4500

35

700

3840

0 L

i ppm

56

29

.9

62.5

46

.2

52

77.2

62

.1

64.4

71

.9

62.4

81

.2

8.8

56.9

62

.1

Mn

ppm

51

3 23

0 43

5 36

2 27

5 32

1 35

4 45

1 37

3 32

5 41

4 55

35

4 35

4 N

i ppm

27

15

29

23

23

30

28

27

30

27

30

3

28

27

Pb

ppm

22

.3

15

22.7

20

.5

19.2

21

.6

22.2

21

.2

23.1

21

.9

22.9

11

.4

20.5

21

.6

Zn

ppm

95

49

98

80

80

10

8 97

90

10

4 93

10

5 8

92

93

336

Table H

.4.

Ele

men

tal c

ompo

sitio

n of

Fal

ls C

reek

mou

th s

edim

ents

col

lect

ed 2

004.

The

Fal

ls C

reek

sed

imen

ts a

re a

lso

refe

rred

as

the

‘bac

kgro

und’

sed

imen

ts

in t

he t

ext.

Ele

men

t con

cent

ratio

ns w

ere

dete

rmin

ed u

sing

IC

P-M

S/A

ES

afte

r H

F+

HN

O3+

HC

lO4+

HC

l dig

est.

Dat

a ar

e fr

om H

all (

2002

).

Sam

ple

B01

B

02

B03

B

04

B05

B

06

B07

B

08

B09

B

10

B11

B

12

B13

B

14

Med

ian

Al p

pm

2350

0 70

100

5170

0 69

900

6320

0 72

700

6590

0 69

800

7070

0 70

100

7610

0 75

900

6790

0 69

100

6985

0 A

s pp

m

0.07

0.

09

0.1

0.09

0.

1 0.

1 0.

09

0.09

0.

1 0.

08

0.09

0.

09

0.11

0.

09

0.09

C

u pp

m

13.6

25

.5

21.9

25

.3

21.4

28

19

.2

20.7

22

.7

22.1

23

.7

23.5

21

.1

22.4

22

.25

Fe

ppm

33

200

3530

0 37

200

3500

0 33

300

3850

0 27

000

3450

0 36

400

3110

0 34

400

3440

0 33

400

3460

0 34

450

Li p

pm

18.1

56

.8

49

50.8

48

.8

54.8

46

49

.9

52.1

52

.3

57.3

55

.3

51.6

54

51

.85

Mn

ppm

18

3 31

6 26

8 36

5 27

2 29

4 20

3 29

1 27

4 22

2 27

4 23

7 24

0 29

5 27

3 N

i ppm

16

29

25

26

25

27

23

25

25

25

26

25

24

25

25

P

b pp

m

12.9

22

.2

21.2

21

.2

20.9

23

.1

18.7

19

.6

21.2

19

.5

21.9

21

.5

20.1

21

.7

21.2

Zn

ppm

61

0.

92

0.94

0.

88

0.88

87

0.

84

0.92

0.

9 0.

88

0.96

0.

95

0.84

0.

91

0.91

5

337

Table H

.5.

Fir

ewoo

d C

reek

mou

th s

edim

ent

tem

pora

l co

mpa

riso

n.

Lith

ium

nor

mal

ised

ele

men

t co

mpa

riso

n of

Fir

ewoo

d C

reek

mou

th s

edim

ents

col

lect

ed

Apr

il 20

04, S

epte

mbe

r 20

02 a

nd J

uly

2002

are

com

pare

d. E

lem

ent

conc

entr

atio

ns w

ere

dete

rmin

ed u

sing

IC

P-M

S af

ter

HF

+H

NO

3+H

ClO

4+H

Cl

acid

dig

est.

Sam

ple

FC

T01

F

CT

02

FC

T03

F

CT

04

FC

T05

F

CT

06

FC

T07

F

CT

08

FC

T09

F

CT

10

FC

T11

F

CT

12

FC

T13

A

s A

pril

2004

0.

575

0.25

3 0.

478

0.44

0 0.

741

0.46

2 0.

552

0.58

7 0.

441

0.52

1 0.

420

0.37

2 0.

396

As

Sept

200

2 0.

384

0.47

3 0.

354

0.39

4 0.

341

0.32

5 0.

399

0.37

1 0.

360

0.39

9 0.

480

0.38

6 0.

386

As

July

200

2 0.

598

0.66

9 0.

397

0.49

8 0.

421

0.33

3 0.

419

0.37

3 0.

385

0.38

5 0.

335

0.38

6 0.

392

Fe

Apr

il 20

04

889

381

714

866

937

748

838

790

476

786

680

661

721

Fe

Sept

200

2 56

9 60

9 54

4 56

6 52

3 51

1 58

3 57

2 54

8 60

0 66

9 42

2 60

3 F

e Ju

ly 2

002

750

806

621

688

635

536

634

596

584

593

537

511

627

Li A

pril

2004

1.

000

1.00

0 1.

000

1.00

0 1.

000

1.00

0 1.

000

1.00

0 1.

000

1.00

0 1.

000

1.00

0 1.

000

Li S

ept

2002

1.

000

1.00

0 1.

000

1.00

0 1.

000

1.00

0 1.

000

1.00

0 1.

000

1.00

0 1.

000

1.00

0 1.

000

Li J

uly

2002

1.

000

1.00

0 1.

000

1.00

0 1.

000

1.00

0 1.

000

1.00

0 1.

000

1.00

0 1.

000

1.00

0 1.

000

Mn

Apr

il 20

04

8.45

2.

29

8.89

6.

66

7.17

6.

23

6.53

8.

16

9.02

8.

57

5.10

4.

02

5.36

M

n Se

pt 2

002

6.73

9.

04

8.97

10

.54

6.38

6.

58

7.99

11

.40

9.17

8.

72

12.6

9 8.

67

10.9

4 M

n Ju

ly 2

002

9.16

7.

69

6.96

7.

84

5.29

4.

16

5.70

7.

00

5.19

5.

21

5.10

6.

25

6.22

N

i Apr

il 20

04

0.54

9 0.

322

0.53

0 0.

565

0.54

5 0.

519

0.52

0 0.

441

0.33

6 0.

519

0.49

9 0.

445

0.51

0 N

i Sep

t 20

02

0.39

1 0.

421

0.41

2 0.

447

0.37

4 0.

359

0.41

4 0.

423

0.41

5 0.

415

0.48

0 0.

410

0.48

0 N

i Jul

y 20

02

0.48

2 0.

502

0.46

4 0.

498

0.44

2 0.

389

0.45

1 0.

419

0.41

7 0.

433

0.36

9 0.

341

0.49

2 P

b A

pril

2004

0.

515

0.22

0 0.

410

0.44

0 0.

593

0.43

3 0.

490

0.48

5 1.

280

0.50

3 0.

406

0.37

9 0.

449

Pb

Sept

200

2 0.

318

0.44

8 0.

330

0.35

9 0.

309

0.28

2 0.

340

0.32

6 0.

323

0.33

9 0.

398

1.68

7 0.

365

Pb

July

200

2 0.

398

0.50

2 0.

363

0.44

4 0.

369

0.28

0 0.

357

0.32

9 0.

321

0.35

1 0.

282

1.29

5 0.

360

Zn

Apr

il 20

04

1.58

7 0.

850

1.23

8 1.

616

1.53

4 1.

550

1.59

9 1.

375

1.25

9 1.

559

1.42

0 1.

406

1.59

4 Z

n Se

pt 2

002

1.33

4 1.

284

1.34

9 1.

382

1.28

4 1.

316

1.37

1 1.

371

1.36

8 1.

364

1.60

8 1.

687

1.53

1 Z

n Ju

ly 2

002

1.69

6 1.

639

1.56

8 1.

732

1.53

8 1.

399

1.56

2 1.

398

1.44

6 1.

490

1.29

3 0.

909

1.61

7

338

APPENDIX I. PLANT AND SOIL BIOAVAILABILITY DATA

Table I.1. Concentration statistics for Al, As, Co, Cr, Pb, Zn in above ground parts (stems) and below ground parts (roots) of Acrostichum speciosum samples collected from East Trinity.

Acrostichum speciosum Smallest 25th%tile Median 75th%tile Largest IAASS Stems (n = 8)

Al ug/g 9 54 98 374 442 As ug/g 0.5 0.5 0.5 0.5 0.5 Co ug/g 0.05 0.05 0.28 0.37 0.83 Cr ug/g 0.42 0.72 0.81 0.97 1.52 Cu ug/g 2.03 5.08 5.63 7.32 11.40 Pb ug/g 0.02 0.02 0.08 0.12 0.23 Zn ug/g 5.2 10.1 12.0 12.7 15.6

Background Stems (n = 8) Al ug/g 74 86 103 170 432 As ug/g 0.5 0.5 0.5 0.5 0.5 Co ug/g 0.05 0.05 0.05 0.12 0.16 Cr ug/g 0.05 0.05 0.15 0.37 1.65 Cu ug/g 3.25 4.64 5.61 6.625 7.97 Pb ug/g 0.05 0.13 0.17 0.18 0.45 Zn ug/g 7.4 7.5 8.5 9.6 10.1

IAASS Roots (n = 8) (n = 8) Al ug/g 4 351 858 2840 4930 As ug/g 0.5 1.0 1.7 6.8 95.4 Co ug/g 0.09 0.31 0.49 0.97 1.50 Cr ug/g 0.84 1.22 1.47 2.33 4.23 Cu ug/g 3.68 5.13 6.53 8.53 16.70 Pb ug/g 0.06 0.26 0.76 2.72 8.74 Zn ug/g 2.5 7.9 9.5 11.3 18.6

Background Roots (n = 8) Al ug/g 1170 1987 2240 2957 3890 As ug/g 0.5 0.92 1.27 5.97 8.56 Co ug/g 0.20 0.31 0.44 0.73 1.63 Cr ug/g 0.05 0.05 0.485 0.90925 1.24 Cu ug/g 5.79 5.8675 6.15 8.1275 8.81 Pb ug/g 0.98 1.41 1.64 1.99 2.53 Zn ug/g 7.2 8.6 9.8 12.5 17.3

339

Table I.2. Concentration statistics for Al, As, Co, Cr, Pb, Zn in above ground tissue (stems) and

below ground tissue (roots) of the Paspalum vaginatum samples collected from East Trinity.

Paspalum vaginatum Smallest 25th%tile Median 75th%tile Largest IAASS Stems (n = 8)

Al µg/g 1 370 540 866 1140 As µg/g 0.5 0.5 0.5 1.1 1.5

Co µg/g 0.05 0.141 0.23 0.56 1.24

Cr µg/g 0.36 0.72 0.89 0.94 3.48

Cu µg/g 1.81 4.79 6.73 9.4475 14.1 Pb µg/g 0.13 0.25 0.35 0.40 0.43

Zn µg/g 13.7 16.4 16.7 22.5 58.2 Background Stems (n = 8)

Al µg/g 4 1651 2980 4142 6260

As µg/g 0.5 1.0 1.3 1.4 2.8

Co µg/g 0.36 0.59 0.75 0.85 1.19 Cr µg/g 1.38 1.91 3.07 3.38 4.40

Cu µg/g 4.31 4.38 5.24 5.56 10.90

Pb µg/g 1.08 1.35 1.45 1.71 2.22

Zn µg/g 9.4 12.0 12.9 17.7 27.2 IAASS Roots (n = 8)

Al µg/g 418 550 871 1460 2210

As µg/g 1.5 2.6 3.2 9.0 38.8 Co µg/g 0.28 0.65 0.92 1.27 2.74

Cr µg/g 0.05 0.81 1.00 1.54 1.86

Cu µg/g 1.74 6.00 12.20 16.20 28.40 Pb µg/g 0.34 0.63 1.00 1.73 2.15

Zn µg/g 7.7 12.1 47.8 82.2 166.0 Background Roots (n = 8)

Al µg/g 613 1018.25 2630 13475 22800

As µg/g 1.3 4.2 5.1 10.7 21.3

Co µg/g 0.31 0.54 1.00 2.82 3.88

Cr µg/g 0.05 0.05 1.15 7.91 15 Cu µg/g 7.57 9.57 9.94 11.77 17.80

Pb µg/g 0.26 1.42 2.01 7.14 8.88

Zn µg/g 14.5 30.7 37.5 45.1 60.3

340

Table I.3

. C

once

ntra

tions

of

Al,

As,

Co,

Cr,

Pb,

Zn

in a

bove

gro

und

part

s (s

tem

s) a

nd b

elow

gro

und

part

s (r

oots

) of

Acr

ostich

um s

pecios

um (

Man

grov

e F

ern,

sam

ple

ID =

MF

) sam

ples

col

lect

ed f

rom

Eas

t Tri

nity

.

Sam

ple

MF

-1

MF

-2

MF

-3

MF

-5

MF

-6

MF

-7

MF

-15

MF

-16

MF

-4

MF

-8

MF

-9

MF

-10

MF

-11

MF

-12

MF

-13

MF

-14

Typ

e IA

ASS

IA

ASS

IA

ASS

IA

ASS

IA

ASS

IA

ASS

IA

ASS

IA

ASS

B

G

BG

B

G

BG

B

G

BG

B

G

BG

St

ems

Al µ

g/g

9.11

36

7 66

.1

188

396

442

20.9

98

.1

174

432

103

79.5

16

9 74

.1

88.1

10

6

As

µg/g

0.

50

0.50

0.

50

0.50

0.

50

0.50

0.

50

0.50

0.

50

0.50

0.

50

0.50

0.

50

0.50

0.

50

0.50

Co

µg/g

0.

05

0.35

0.

05

0.83

0.

28

0.42

0.

05

0.05

0.

16

0.14

0.

05

0.05

0.

11

0.05

0.

05

0.05

Cr

µg/g

0.

42

0.74

0.

73

1.00

0.

71

0.82

0.

97

1.52

0.

76

0.05

0.

05

0.24

0.

05

1.65

0.

11

0.15

Cu

µg/g

8.

2 5.

5 4.

0 5.

6 5.

6 2.

0 11

.4

7.0

5.8

6.5

8.0

5.6

4.8

7.1

4.3

3.3

Pb

µg/g

0.

03

0.08

0.

03

0.03

0.

08

0.03

0.

22

0.23

0.

05

0.45

0.

19

0.14

0.

13

0.18

0.

13

0.17

Zn

µg/g

6.

1 12

.4

5.3

15.6

12

.0

12.7

12

.9

11.4

10

.1

9.6

7.5

9.8

7.6

8.9

7.4

8.5

Roo

ts

Al µ

g/g

858

3080

87

1 34

4 4.

3 35

3 49

30

2760

11

70

3460

38

90

1500

27

90

2150

22

40

2540

As

µg/g

0.

50

3.00

1.

11

0.50

1.

69

1.98

18

.10

95.4

0 0.

50

1.27

6.

02

5.95

1.

06

0.50

1.

67

8.56

Co

µg/g

0.

27

1.06

0.

09

0.94

0.

37

0.32

1.

50

0.49

0.

32

0.27

1.

13

0.60

0.

37

0.20

0.

44

1.63

Cr

µg/g

1.

28

2.09

1.

55

1.06

3.

06

0.84

1.

47

4.23

1.

24

0.05

0.

90

0.05

0.

49

0.05

0.

47

0.93

Cu

µg/g

16

.7

7.1

5.5

12.9

6.

5 3.

7 6.

5 4.

1 8.

3 8.

8 5.

8 6.

2 8.

1 6.

6 5.

9 5.

8

Pb

µg/g

0.

52

1.68

0.

31

0.10

0.

76

0.06

8.

74

5.83

0.

98

2.53

2.

31

1.88

1.

84

1.46

1.

26

1.64

Zn

µg/g

9.

5 11

.2

5.5

11.8

2.

5 8.

7 10

.3

18.6

11

.4

8.7

7.2

17.4

10

.8

8.4

9.8

16.0

341

Table I.4

. C

once

ntra

tions

of

Al,

As,

Co,

Cr,

Pb,

Zn

in a

bove

gro

und

part

s (s

tem

s) a

nd b

elow

gro

und

part

s (r

oots

) of

the

Pas

palu

m v

agin

atum

(G

rass

, sam

ple

ID =

PV

) sa

mpl

es c

olle

cted

fro

m E

ast T

rini

ty.

Sam

ple

PV

-1

PV

-2

PV

-4

PV

-5

PV

-6

PV

-7

PV

-15

PV

-16

PV

-3

PV

-8

PV

-9

PV

-10

PV

-11

PV

-12

PV

-13

PV

-14

Typ

e IA

ASS

IA

ASS

IA

ASS

IA

ASS

IA

ASS

IA

ASS

IA

ASS

IA

ASS

B

G

BG

B

G

BG

B

G

BG

B

G

BG

St

ems

Al µ

g/g

849

916

540

656

1.33

11

40

138

448

2200

5.

98

5170

30

80

6260

3.

89

3800

29

80

As

µg/g

0.

50

0.50

0.

50

0.46

1.

09

1.48

0.

50

1.08

1.

38

2.77

1.

22

0.50

1.

44

0.50

1.

50

1.28

Co

µg/g

0.

17

0.53

0.

21

1.24

0.

23

0.63

0.

05

0.05

0.

83

1.19

0.

62

0.36

0.

91

0.63

0.

75

0.51

Cr

µg/g

0.

79

0.60

0.

76

0.89

0.

93

0.98

3.

48

0.36

1.

38

4.40

3.

07

2.06

4.

05

3.15

3.

14

1.47

Cu

µg/g

14

.1

9.1

10.4

5.

0 4.

1 1.

8 7.

1 6.

7 10

.9

5.6

4.4

4.3

5.6

5.5

5.2

4.4

Pb

µg/g

0.

26

0.27

0.

43

0.13

0.

39

0.35

0.

23

0.40

1.

39

2.22

1.

63

1.08

1.

95

1.45

1.

57

1.21

Zn

µg/g

16

.3

13.7

34

.3

18.6

16

.7

16.5

18

.5

58.2

27

.2

18.2

12

.8

9.6

17.6

14

.5

9.4

12.9

R

oots

Al µ

g/g

1350

41

8 22

10

591

986

426

871

1790

61

3 26

30

713

1120

58

80

1970

0 22

800

1140

0

As

µg/g

3.

22

2.69

1.

52

4.57

7.

44

9.51

2.

39

38.8

0 1.

27

5.06

2.

95

5.14

4.

63

10.6

0 10

.90

21.3

0

Co

µg/g

1.

17

0.28

0.

91

1.57

2.

74

0.77

0.

92

0.28

0.

31

0.46

0.

57

0.78

1.

63

3.88

3.

32

2.65

Cr

µg/g

0.

95

0.81

1.

58

1.06

1.

53

1.86

0.

05

0.79

1.

15

0.05

0.

05

0.05

3.

65

12.0

0 15

.00

6.55

Cu

µg/g

28

.4

12.2

18

.0

6.5

4.6

1.7

15.6

13

.7

17.8

7.

6 9.

9 8.

9 10

.9

12.6

9.

8 11

.5

Pb

µg/g

2.

01

0.34

2.

15

0.63

1.

08

0.63

0.

91

1.64

0.

26

2.01

1.

04

1.55

2.

63

6.59

8.

88

8.78

Zn

µg/g

87

.2

7.7

80.6

47

.8

12.4

11

.2

55.3

16

6.0

14.5

42

.2

33.6

22

.2

60.3

37

.5

42.2

53

.8

342

Table I.5

. E

lem

ent

conc

entr

atio

ns i

n E

DT

A e

xtra

ctio

ns o

f pl

ant

soils

(re

duce

d an

d ox

idis

ed)

colle

cted

fro

m E

ast

Tri

nity

. C

once

ntra

tions

hav

e be

en

corr

ecte

d to

µg/

g of

dry

soi

l.

Sam

ple

MF

1 R

ed

MF

2 R

ed

MF

3 R

ed MF4 Red

M

F5

Red

M

F6

Red

M

F7

Red

P

V1

Red

P

V2

Red

PV3 Red

P

V4

Red

P

V5

Red

P

V6

Red

P

V7

Red

A

l µg/

g 10

63

0

7 38

14

3 29

6 86

46

46

24

6 98

0

0 A

s µg

/g

0.35

0.

52

4.53

0.32

0.

33

0.72

0.

44

0.49

0.

44

2.33

0.

26

0.48

0.

69

0.85

C

o µg

/g

0.07

0.

20

0.07

0.13

0.56

0.

07

0.29

0.

15

0.12

0.69

0.

11

0.64

0.

51

0.25

C

r µg

/g

0.75

0.

62

3.56

0.08

0.

66

2.91

2.

25

1.56

2.

18

0.24

1.

26

0.65

1.

17

1.33

C

u µg

/g

0.18

0.

64

0.95

0.78

1.

56

0.88

1.

31

1.63

1.

02

2.47

0.

91

1.77

0.

24

0.09

N

i µg/

g 0.

09

0.16

0.

06

0.48

1.

76

0.25

1.

44

0.28

0.

23

0.73

0.

37

2.38

1.

14

0.41

P

b µ

g/g

0.31

2.

23

0.01

1.55

1.

65

0.26

3.

34

0.36

1.

45

7.24

2.

01

2.29

1.

17

2.03

Z

n µ

g/g

0.37

0.

65

0.22

0.62

1.

98

0.53

1.

98

1.49

0.

61

5.30

0.

82

3.98

3.

86

1.70

Sa

mpl

e M

F1

Ox

MF

2 O

x M

F3

Ox

MF4

Ox

MF

5 O

x M

F6

Ox

MF

7 O

x P

V1

Ox

PV

2 O

x PV3 Ox

PV

4 O

x P

V5

Ox

PV

6 O

x P

V7

Ox

Al µ

g/g

77

81

0 11

61

99

62

87

44

70

256

179

37

42

As

µg/g

0.

25

0.52

6.

43

0.58

0.

46

0.99

2.

20

0.67

0.

34

2.34

0.

36

0.68

0.

72

0.62

C

o µg

/g

0.11

0.

15

0.04

0.24

0.

56

0.04

0.

19

0.12

0.

12

0.75

0.

11

1.03

0.

61

0.45

C

r µg

/g

0.61

0.

64

3.10

0.17

1.06

2.

37

3.26

2.

00

2.21

0.42

1.

17

0.97

1.

41

2.14

C

u µg

/g

0.40

0.

69

0.81

0.82

2.

78

0.83

1.

49

1.85

2.

32

3.25

0.

97

3.35

1.

85

2.16

N

i µg/

g 0.

43

0.14

0.

05

0.39

1.

99

0.25

0.

35

0.29

0.

27

0.90

0.

37

3.05

1.

41

0.87

P

b µ

g/g

1.43

2.

50

0.03

2.59

2.

26

0.40

1.

58

0.28

1.

55

8.25

3.

15

3.94

1.

36

3.06

Z

n µ

g/g

0.58

0.

57

0.23

0.71

3.69

0.

60

1.23

1.

51

0.70

6.63

1.

01

10.4

1 6.

72

2.87

343

AP

PE

ND

IX J

. D

AT

A F

OR

ED

DS,

ED

TA

AN

D D

TP

A E

XT

RA

CT

ION

S O

F A

SS S

AM

PL

ES

Table J.1

. E

DT

A,

DT

PA

and

ED

DS

leac

h el

emen

t da

ta f

rom

ASS

sam

ples

. E

lem

ents

wer

e de

term

ined

usi

ng I

CP

-MS/

OE

S te

chni

ques

. D

ry m

ass

is i

n

gram

s.

Sam

ple

DP

2-01

D

P2-

02

DP

2-03

D

P2-

04

DP

2-05

D

P2-

06

DP

2-07

W

P2-

01

WP

2-02

W

P2-

03

WP

2-04

W

P2-

05

WP

2-06

W

P2-

07

Bla

nk

Dry

Mas

s

0.84

99

0.83

95

0.78

55

0.80

08

0.75

54

0.72

8 0.

7637

0.

7472

0.

76

0.76

03

0.73

86

0.70

51

0.69

94

0.67

93

- EDTA

Al p

pb

1080

0 62

20

2180

20

1 25

8 38

7 14

60

2440

13

20

2800

47

40

4310

36

20

4000

<

= 0

.5

As

ppb

42.9

94

57

.1

53

60.7

74

.6

131

78.3

82

.2

115

246

283

441

463

0.59

5 C

o pp

b 19

.7

8.28

5.

22

4.86

4.

55

4.07

94

.9

21.8

4.

17

5.7

17.8

25

.5

26.4

24

.5

<=

0.0

5 C

r pp

b 15

3 31

8 19

8 16

6 16

6 13

1 81

.6

69.2

12

7 15

7 17

1 14

2 12

8 13

2 5.

1 C

u pp

b 23

5 17

9 12

3 11

7 29

0 29

7 19

5 82

.4

115

65.6

55

.4

38.5

32

37

.6

6.65

F

e pp

b 10

7000

10

1000

73

500

9780

0 51

700

6020

0 78

000

8860

0 16

5000

14

6000

42

300

2870

0 25

100

2550

0 40

.8

Mn

ppb

1320

60

4 33

2 40

6 39

1 51

1 90

7 29

8 43

1 47

6 49

3 29

9 35

2 31

0 0.

146

Ni p

pb

59.6

19

12

.2

14.6

12

.1

15.3

64

40

.8

25.4

30

.2

40.3

44

.4

48.3

49

.9

0.57

2 P

b pp

b 38

.4

14.9

6.

33

6.1

54

110

209

227

404

257

331

252

387

405

1.61

Z

n pp

b 11

1 64

.8

44.5

60

.1

57.3

75

.1

87.1

72

.9

61.9

59

.9

112

86.9

10

1 10

0 22

.4

DTPA

Al p

pb

3400

29

40

3780

16

10

959

722

267

1310

10

30

1390

11

800

6420

76

00

1100

0 <

= 0

.5

As

ppb

3.3

10.2

9.

81

5.34

3.

39

4.51

4.

04

11.8

12

.2

14.8

54

.4

49.9

75

.8

76.3

<

= 0

.5

Co

ppb

7.39

5.

9 5.

23

3.08

3.

54

2.99

71

.4

17.8

2.

78

3.46

14

.4

19.7

46

.3

20

<=

0.0

5 C

r pp

b 24

.9

34.8

36

.9

33.9

31

.8

30.3

27

.6

34.3

36

.1

36.9

50

.1

41.8

39

.2

42.2

24

.5

Cu

ppb

26.6

62

.1

58.1

24

.2

147

133

36.4

19

.5

22.7

7.

29

23.1

18

.5

31.4

26

.7

6.63

F

e pp

b 19

700

3660

0 39

400

3840

0 34

600

3780

0 33

800

4670

0 50

100

4840

0 35

000

2370

0 23

000

2560

0 25

7 M

n pp

b 31

6 38

6 29

7 10

2 28

1 27

3 18

1 99

.8

103

87.1

34

9 24

1 27

7 26

5 <

= 0

.05

Ni p

pb

21.8

11

.5

10.9

11

.2

7.83

7.

92

32.1

20

.4

8.83

11

.1

22.3

24

.8

41.9

29

.8

0.37

P

b pp

b 1.

53

2.05

0.

922

0.46

7 23

.1

37.1

15

.2

22.9

18

.6

17.1

23

7 17

8 26

0 28

0 <

= 0

.01

Zn

ppb

47.4

64

.3

81.7

39

.8

104

52.8

42

.8

41.9

27

.8

27.2

96

.7

56.3

68

.7

68

14.8

EDDS

Al p

pb

2220

0 37

00

2640

27

3 26

1 13

20

3520

67

10

2470

44

00

7290

89

90

8000

90

20

<=

0.5

A

s pp

b 50

.8

70.6

63

.2

46.2

47

.8

58.2

98

.4

116

85.8

11

2 23

6 27

5 41

8 43

7 7.

54

Co

ppb

19.7

7.

94

7.08

4.

83

4.55

4.

52

113

30.2

4.

17

5.69

20

.2

30.5

31

.4

26.2

<

= 0

.05

Cr

ppb

245

462

473

372

376

358

269

115

140

158

245

256

235

246

7.52

- T

able

Con

tinue

d N

ext P

age

-

344

Table J.1

. (C

ontin

ued)

ED

TA

, DT

PA

and

ED

DS

leac

h el

emen

t da

ta f

rom

ASS

sam

ples

. E

lem

ents

wer

e de

term

ined

usi

ng I

CP

-MS/

OE

S te

chni

ques

. D

ry

mas

s is

in g

ram

s.

Sam

ple

DP

2-01

D

P2-

02

DP

2-03

D

P2-

04

DP

2-05

D

P2-

06

DP

2-07

W

P2-

01

WP

2-02

W

P2-

03

WP

2-04

W

P2-

05

WP

2-06

W

P2-

07

Bla

nk

Cu

ppb

261

180

178

126

293

313

230

194

169

135

94.1

74

.8

81.6

90

19

.8

Fe

ppb

8990

0 59

600

6920

0 70

600

2840

0 42

100

6720

0 13

5000

19

1000

15

6000

35

300

2530

0 22

200

2210

0 16

1 M

n pp

b 13

50

639

579

390

399

520

945

434

393

406

503

325

319

313

4.41

N

i ppb

67

.2

20.4

20

.1

14.9

13

.3

15.2

73

.4

67.4

28

34

.3

46.8

56

.2

66.3

58

.8

1.61

P

b pp

b 20

.7

9.06

7.

74

6.49

39

.3

79.2

14

4 21

1 18

8 15

3 30

8 21

9 26

0 26

4 3.

95

Zn

ppb

116

69.8

65

.7

58.4

55

.4

77.4

85

.7

99.1

72

.5

61.9

12

4 91

.9

111

106

28.8