bhaskar dutta

10
1 Bhaskar Dutta Texas A&M University Dark Matter and neutrinos di, Campbell, Dutta, Phys.Rev. D85 (2012) 035004 di, Bornhauser, Dutta, Richardson-McDaniel Phys.Rev. D80 (200 di, Dutta, Richardson-McDaniel, Santoso, Phys.Lett. B677 (200

Upload: mercury

Post on 14-Feb-2016

45 views

Category:

Documents


0 download

DESCRIPTION

Dark Matter and neutrinos . Bhaskar Dutta. Texas A&M University. Allahverdi , Campbell, Dutta , Phys.Rev . D85 (2012) 035004 Allahverdi , Bornhauser , Dutta , Richardson-McDaniel Phys.Rev . D80 (2009) 055026 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Bhaskar Dutta

1

Bhaskar Dutta

Texas A&M University

Dark Matter and neutrinos

Allahverdi, Campbell, Dutta, Phys.Rev. D85 (2012) 035004Allahverdi, Bornhauser, Dutta, Richardson-McDaniel Phys.Rev. D80 (2009) 055026Allahverdi, Dutta, Richardson-McDaniel, Santoso, Phys.Lett. B677 (2009) 172

Page 2: Bhaskar Dutta

MSSM x U(1)B-L

22

Only left-handed neutrinos have charges under SM

Under MSSM x U(1)B-L :

The new sneutrino: (inside ) can be a dark matter candidate of this model

N~

Non-zero neutrino masses are well accommodated in U(1)B-L

We have a new gauge boson: +SUSY partner'Z

W = WMSSM + l NcHuL + )(HH '2

'2

'1

ccNNfHLc contains ec and Nc Nc: Right Handed Neutrino

Fields: Q Qc L Lc QB-L : 1/6 -1/6 -1/2 1/2 1 -1

+ SUSY partners'2H

'1H

cL~

R. Allahverdi, B. Dutta,K. Richardson-Mcdaniel, Y. Santoso

Phys.Rev.D79:075005,2009

cNH ,' are MSSM singlets

Page 3: Bhaskar Dutta

MSSM x U(1)B-L and Unification

33

The gauge couplings unify => gB-L (TeV) ~ 0.4: Low scale breakingWe use the spectrum (from the previous page) :

MSSM x U(1)B-L can be unified in SO(10) GUT Dutta, Mimura, Mohapatra; Phys.Rev. D87 (2013) 075008

The unificationholds with QB-L for Higgs=3/2, -3/2 or(1, -1)

Phys.Lett.B677:172,2009

R. Allahverdi, B. Dutta,K. Richardson-Mcdaniel, Y. Santoso

The B-L symmetry is broken: between EW scale to GUT scale

Page 4: Bhaskar Dutta

MSSM x U(1)B-L and Dark Matter

44

Sneutrino annihilate into new Higgs/fermions

ff

NN

*

cc

*

N~N~ N~N~

N~N~ S-channel Z’, Higgs’

T channel Z’-ino

S-channel Z’, Higgs’

F, A: Heavy Higgs final states are also there, but are mostly kinematically suppressed

The annihilation cross-sections involving Higgs are governed by the D terms interactions involving MZ’

Page 5: Bhaskar Dutta

MSSM x U(1)B-L and ICECUBE

55

Case1: Sneutrinos annihilate to produce mostly taus, b’sAll these final states produce neutrinosIceCube

m neutrino flux from Sun m rates detection

taus, b’s produce left handed neutrino in 3 body decay processes

From Sun

Page 6: Bhaskar Dutta

MSSM x U(1)B-L and ICECUBE

66

Case 2: Sneutrinos annihilate to produce mostly Right-handed neutrinos which then decay into left handed neutrinos via Dirac coupling

mSUGRA: Hyperbolic branch/Focus point. Best case for mSUGRA at the IceCube

R. Allahverdi, S. Bornhauser, B. Dutta, K. Richardson-Mcdaniel

From Sun

Page 7: Bhaskar Dutta

7

Annihilation to Neutrinos

All-sky event rates for 150 GeV sneutrino DM scatters into 135 GeV RH neutrinos each of which decays to a light neutrino and SM Higgs

All-sky event rates for 150 GeV Neutralino DMtt (blue), WW (blue), bb (red)

Allahverdi, Campbell, Dutta

Page 8: Bhaskar Dutta

8

Majorana vs DiracCan we see the difference between Majorana – Dirac type neutrino?

Light Neutrino mass: 1) l nL <v> : Dirac type (l is very small) 2) : Majorana type (l is large, MR is 1 TeV or larger)

LHC? Any signal ? Indirect Detection? Any Signal

Also Neutrino mixing matrix introduces PMNS matrix flavor violation in the slepton sector: LHC signal? LFV In the context of mSUGRA: Allahverdi, Dutta, Kamon Krislock Phys.Rev. D86 (2012) 015026

TDR

D MMM )(1nn

Page 9: Bhaskar Dutta

9

Majorana vs Dirac

cc N~N~ NN

Dirac Case: Nc does not decay due to small l, DNeff > 0, current Planck: 0:48+0.48-0.45

Majorana case: Nc decays into n + Higgs

Higgs decays into bs, t’s: Photon signal (Fermi) and neutrino signal (IceCube)

Indirect Detection

Allahverdi, Campbell, Dutta, Gao, In preparation

Page 10: Bhaskar Dutta

10

Conclusion

Neutrino mass differences and mixing angles are well measured

Models which explain neutrino masses require new symmetry

These models can have new DM candidate, e.g., spin 0 sneutrino

The origin of neutrino mass can be distinguished indirect detection

The Lepton flavor violation arising in this model can be investigated at the LHC