march 25, 2009probing sugra models at the lhc1 teruki kamon and bhaskar dutta (full list of...

54
March 25, 2009 Probing SUGRA Models at the LHC 1 P P robing robing SUGRA SUGRA Models Models at the at the LHC LHC Teruki Kamon Teruki Kamon and Bhaskar Dutta and Bhaskar Dutta (full list of collaborators in the next page) (full list of collaborators in the next page) on on (1) Coannihilation, (2) Over-dense Dark Matter, (1) Coannihilation, (2) Over-dense Dark Matter, (3) Focus Point, (4) Non-universarity, (5) String (3) Focus Point, (4) Non-universarity, (5) String Model Model Mitchell Workshop on String Phenomenology and Related String Phenomenology and Related Topics, Topics, with Focus on LHC Opportunities and Dark Matter with Focus on LHC Opportunities and Dark Matter Cook’s Branch, TX, March 23 ~27, 2009 1

Post on 21-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

March 25, 2009 Probing SUGRA Models at the LHC 1

PProbing robing SUGRA SUGRA Models Models at the at the LHCLHC

Teruki KamonTeruki Kamon and Bhaskar Dutta and Bhaskar Dutta(full list of collaborators in the next page)(full list of collaborators in the next page)

onon

(1) Coannihilation, (2) Over-dense Dark Matter, (1) Coannihilation, (2) Over-dense Dark Matter,

(3) Focus Point, (4) Non-universarity, (5) String Model(3) Focus Point, (4) Non-universarity, (5) String Model

Mitchell Workshop on String Phenomenology and Related String Phenomenology and Related Topics, Topics,

with  Focus on LHC Opportunities and Dark Matterwith  Focus on LHC Opportunities and Dark MatterCook’s Branch, TX, March 23 ~27, 2009

1

CSI: LHCTHE SECOND SEASON

Collider Scene InvestigationGoal: Goal: Develop technique(s) to test minimal and non-minimal scenarios and extract h2 (standard and non-standard cosmology cases) at the LHC where a limited number of SUSY mass measurements are available.

So far 4 cases were studied or are So far 4 cases were studied or are being studiedbeing studied::Case 1: Coannihilation regionCase 2: Over-dense DM region (OdCDM ~ CDM /10)Case 3: Focus point regionCase 4: Non-universality

2Teruki Kamon Probing SUGRA Models at the LHC

Programs at GlancePrograms at Glance

[Case 1] “Coannihilation (CA)” Region[Case 1] “Coannihilation (CA)” RegionArnowitt, Dutta, Gurrola,Arnowitt, Dutta, Gurrola,*)*) Kamon, Kamon, Krislock,Krislock,*)*) Toback, Toback, PRL100 (2008) 231802 PRL100 (2008) 231802 & arXiv:0802.2968 (hep-ph) & arXiv:0802.2968 (hep-ph) For earlier studies, see Arnowitt et al., PLB 649

(2007) 73; Arnowitt et al., PLB 639 (2006) 46

[Case 2] “Over-dense Dark Matter” Region[Case 2] “Over-dense Dark Matter” RegionDutta, Gurrola,Dutta, Gurrola,*)*) Kamon, Krislock, Kamon, Krislock,*)*) Lahanas, Mavromatos, NanopoulosLahanas, Mavromatos, NanopoulosPRD 79 (2009) 055002 PRD 79 (2009) 055002 & arXiv:0808.1372 (hep-ph)& arXiv:0808.1372 (hep-ph)

[Case 3] “Focus Point” Region[Case 3] “Focus Point” RegionArnowitt, Dutta, Flanagan,Arnowitt, Dutta, Flanagan,#)#) Gurrola, Gurrola,*)*) Kamon, Kolev, KrislockKamon, Kolev, Krislock*)*)

[Case 4] “Non-universality” [Case 4] “Non-universality” Arnowitt, Dutta, Kamon, Kolev, KrislockArnowitt, Dutta, Kamon, Kolev, Krislock*)*)

[Case 5] “String Model” [Case 5] “String Model” Dutta, Kamon, Dutta, Kamon, LeggettLeggett*)*)

*) *) Graduate student, Graduate student, #) #) REU studentREU student

3 22eqnnvHn

dt

dn )( 3 22 SnnvHn

dt

dneq

W Constant in

time?e.g., Quintessence – Scalar field dark energy

Teruki Kamon Probing SUGRA Models at the LHC 33

““Probe” MetricProbe” Metric

3 22eqnnvHn

dt

dn )( 3 22 SnnvHn

dt

dneq

Minimal SUGRA Non-minimal SUGRA

Teruki Kamon Probing SUGRA Models at the LHC 44

Identify Identify smoking-gun smoking-gun signal(s) and signal(s) and kinematical kinematical variables in a variables in a minimal minimal benchmark benchmark model.model.

Prepare Prepare kinematical kinematical templates by templates by changing one changing one mass at a mass at a time.time.

(a)(a)Measure SUSY Measure SUSY massesmasses

(b)(b)Determine the Determine the benchmark benchmark model model parametersparameters

non-non-minimaminimal l case(s)case(s)

01~

p

≟ 0.23(DarkSUSY)(DarkSUSY)

(ISAJET/PYTHIA+PGS4)(ISAJET/PYTHIA+PGS4)Teruki Kamon Probing SUGRA Models at the LHC 55

0.23 = 0.23

ApproachApproach

non-non-minimaminimal l case(s)case(s)

4 parameters + 1 sign

mSUGRA as Minimal ScenariomSUGRA as Minimal Scenario

(WMAP3) 12900940SM from deviation 3 :)2(1054)(1022

GeV 104 GeV; 114

2

44

01

1

.h.~g

.sbB.

MM

~

~Higgs

du

Zdu

HHW

MA

Mm

Mm

MH/H

in of Sign :)sign(

at coupingTrilinear :

at massscalar Common :

at mass gaugino Common :

at :tan

(2)GUT0

GUT0

GUT1/2

Key experimentalKey experimentalconstraintsconstraints

Teruki Kamon Probing SUGRA Models at the LHC 66

Dark Matter Allowed RegionsDark Matter Allowed Regionstan = 40

A0 = 0, > 0

ab

c

Excluded by1)Rare B decay b s 2)No CDM candidate3)Muon magnetic moment

a

bc

m0 (

GeV

)

m1/2 (GeV)

Over-dense DM Region22

Coannihilation Region11

Focus Point Region33

Note: g2 data may still be controversial.

Teruki Kamon Probing SUGRA Models at the LHC 77

SUSY Phenomenology SUSY Phenomenology SnapshotsSnapshots

PRL100 (2008) 231802PRL100 (2008) 231802

PRD 79 (2009) 055002 PRD 79 (2009) 055002

In progress

01

01

02 ~bb~h~

))()(( 01

02

~lljjbjjb

~ttg~

[GeV] )(M

[GeV] )(bbM [GeV] )( jjbM

01

02 ~~~

10 fb1

LS

OS

OSLS

m0 (GeV)

m1

/2 (

Ge

V)

11 2233

Teruki Kamon Probing SUGRA Models at the LHC 88

We assume the following We assume the following luminosity scenario …luminosity scenario …

Teruki Kamon Probing SUGRA Models at the LHC

Case 1: CA RegionCase 1: CA Region

= 50%, ffake = 1% for pTvis > 20 GeV

Mj

&Mj

Lu~

01χ~

02χ~

g~

97%

u

u

SU

SY

Mass

es

(CDM)

pT > 40 GeV

pT > 20 GeV

ET jet > 100 G

eV

M

& pT()

1~

100%

Excesses in 3 Final Excesses in 3 Final States:States: a)ET

miss+ 4jb)ET

miss+ 2j+2 c)ET

miss+ b +3j Example of Analysis Chart:Example of Analysis Chart:

Kinematicalvariables

Teruki Kamon Probing SUGRA Models at the LHC 1010

Invert the equations to determine Invert the equations to determine the massesthe masses

6 equations for 5 SUSY masses6 equations for 5 SUSY masses

[1] 2 taus with 40 and 20 GeV; M & pTin OSLS technique[2] M < M

endpoint; Jets with ET > 100 GeV; Mj masses for each jet; Choose the 2nd large value Peak value ~ True Value

1

1

2

Constructing Kinematical Constructing Kinematical VariablesVariables

)(

)(

) (

)(

)(

)(

6peakeff

01

025

(2)peak2

01

024

(2)peak1

01

023

(2)peak

012

01

021

peak

L

Lj

Lj

Lj

q~,g~fM

~,~,M,q~fM

~,~,M,q~fM

~,~,q~fM

~,MfSlope

~,~,MfM

(see page 14)GeV 660

Lq~M

GeV 840

Teruki Kamon Probing SUGRA Models at the LHC 1111

Example: Templates in Example: Templates in EETT

missmiss+2j+2+2j+2

Clean peak even for low M

(GeV) visM

maxpeak MM

Varying Varying onlyonly one massone mass

Teruki Kamon Probing SUGRA Models at the LHC

The peak position is less sensitive to a tau polarization.

"Measuring tau-polarisation in Neutralino2 decays at the LHC," T. Nattermann, K. Desch, P. Wienemann, C. Zendler , arXiv:0903.0714v1 [hep-ph]

Independent of thegluino masses!

g~M

Example: Templates in Example: Templates in EETT

missmiss+2j+2+2j+2

Clean peak even for low M

(GeV) visM

maxpeak MM 02~

M

Uncertainty bands with 10 fb-1

)( 01

02

1peak

~~ M,M,MfM

Varying Varying onlyonly one massone mass

Teruki Kamon Probing SUGRA Models at the LHC 1313

Example: Templates in Example: Templates in EETT

missmiss+4j+4j

ETj1 > 100, ET

j2,3,4 > 50 No e’s, ’s with pT > 20 GeV Meff > 400 GeV; ET

miss > max [100, 0.2 Meff]Meff

g~g~pp

Meff ETj1+ET

j2+ETj3+ET

j4+ ETmiss [No b jets; b ~ 50%]

m1/2 = 335 GeVMeff

peak = 1220 GeV

m1/2 = 351 GeVMeff

peak = 1274 GeV

m1/2 = 365 GeVMeff

peak = 1331 GeV

e.g.,

)(6 Lq~,g~fTeruki Kamon Probing SUGRA Models at the LHC 1414

Testing gaugino universality at 15% Testing gaugino universality at 15% level.level.

)91.5( 8.09.5/

)19.3( 2.01.3/

0.26.10

;19141;15260

;21831 ;25748

01

02

01

02

~~

~~

~~

~~

theoryMM

theoryMM

M

MM

MM

g

g

gqL

10 fb10 fb-1-1

14119 GeV

(GeV) 01~

M

SUSY Masses in ESUSY Masses in ETTmissmiss+4j and +4j and

EETTmissmiss+2j+2+2j+2

)(

)(

) (

)(

)(

)(

6peakeff

01

025

(2)peak2

01

024

(2)peak1

01

023

(2)peak

012

01

021

peak

L

Lj

Lj

Lj

q~,g~fM

~,~,M,q~fM

~,~,M,q~fM

~,~,q~fM

~,MfSlope

~,~,MfM

6 equations for 5 SUSY masses6 equations for 5 SUSY masses

Inverting Eqs.Inverting Eqs.

Teruki Kamon Probing SUGRA Models at the LHC 1515

[1] Established the CA region by detecting low energy ’s (pT

vis > 20 GeV)

[2] Measured 5 SUSY masses and tested gaugino Universality at ~15% (10 fb-1)

DM Relic Density in mSUGRADM Relic Density in mSUGRA

),tan,,(?

),(

),tan,,(

),(

002/14

02/13peakeff

002/12peak

02/11peak

AmmX

mmXM

AmmXM

mmXM j

),tan,( 02/102

~01

AmmZh

[3] Determine the dark matter relic density by determining m0, m1/2, tan, and A0

Teruki Kamon Probing SUGRA Models at the LHC 1616

Example: Templates in Example: Templates in EETT

missmiss+b+3j+b+3jMeff

(b) ET

j1=b+ETj2+ET

j3+ETj4+ ET

miss [j1 = b jet] ET

j1 > 100 GeV, ETj2,3,4 > 50 GeV [No e’s, ’s with pT > 20 GeV]

Meff(b)

> 400 GeV ; ETmiss > max [100, 0.2 Meff]

MMeffeff((bb)) can be used to probe can be used to probe AA00 and tan and tan

without measuring stop and sbottom without measuring stop and sbottom massesmasses

Meff(b)peak (GeV)

tan = 48Meff

(b)peak = 933 GeVtan = 40Meff

(b)peak = 1026 GeVtan = 32Meff

(b)peak = 1122 GeV

Arb

itra

ry S

cale

un

its

Teruki Kamon Probing SUGRA Models at the LHC 1717

Determining mSUGRA Determining mSUGRA ParametersParameters

Solved by inverting the following functions:

140tan

160

4350

5210

0

2/1

0

A

m

m

),tan,( 02/102

~01

AmmZh

1fb 10 L

1fb 50

)fb 70( %1.4

)fb 30( %2.6/1

12~

2~ 0

101

hh

),tan,,(

),(

),tan,,(

),(

002/14peak )(

eff

02/13peakeff

002/12peak

02/11peak

AmmXM

mmXM

AmmXM

mmXM

b

j

10 fb-1

Teruki Kamon Probing SUGRA Models at the LHC 1818

[1] The CA region was established by detecting low energy ’s (pT

>20 GeV)

[2] Kinematical templates for M, Slope, Mj, Mj, and Meff were prepared in a quasi model-quasi model-

independent wayindependent way, measuring 5 SUSY masses and testing gaugino universality at ~15% (10 fb-1)

[3] The dark matter relic density was calculated by determining m0, m1/2, tan, and A0

using Mj, Meff, M, and Meff(b)

Case 1 SummaryCase 1 Summary

)fb 30( %6/ 12~

2~ 0

101

hh

Teruki Kamon Probing SUGRA Models at the LHC 1919

Case 2: Over-dense Case 2: Over-dense DM RegionDM Region

Smoking gun signals in the region?

A0 = 0, tan = 40

PLB 649 (2007) 63

m1/2

m0

Teruki Kamon Probing SUGRA Models at the LHC 2020

m1/2= 440 GeV; m0 = 471 GeV

m1/2= 600 GeV; m0 = 440 GeV

86.8%86.8%

77.0%77.0%

2 Reference Points2 Reference Points

Teruki Kamon Probing SUGRA Models at the LHC 2121

Case 2(a) : HiggsCase 2(a) : Higgs

1~

Lu~

01χ~

02χ~

g~

h

1χ~

m1/2=440, m0=471, tan=40, mtop=175

Re~

u

87%

10411044

500

393

181

341

114

46213%

Z91

N(b) > 2 with PT > 100 GeV; 0.4< Rbb < 1

ETmiss > 180 GeV;

N(jet) > 2 with ET > 200 GeV; ET

miss + ETj1 + ET

j2 > 600 GeV

Teruki Kamon Probing SUGRA Models at the LHC 2222

w/ side-band BG subtraction

where:

Meff ETj1+ET

j2+ETj3+ET

j4+ ETmiss

[No b jets; b ~ 50%]

Meff(b)

ETj1=b+ET

j2+ETj3+ET

j4+ ETmiss

Meff(bb)

ETj1=b+ET

j2=b+ETj3+ET

j4+ ETmiss

)tan(

)tan(

)(

)(

00214peak )(

eff

00213peak )(

eff

0212peakeff

0211point end

A,,m,mXM

A,,m,mXM

m,mXM

m,mXM

/bb

/b

/

/jbb

4 Kinematical Variables4 Kinematical VariablesSide-band BG subtraction

(GeV) (2)bbjM

(GeV) bbM

71)4(fb 500 01 m

4801/2 m

4001/2 m

Teruki Kamon Probing SUGRA Models at the LHC 2323

Band = Uncertainties with 1000 fb-1

Kinematical TemplatesKinematical Templates

Teruki Kamon Probing SUGRA Models at the LHC 2424

Determining mSUGRA Determining mSUGRA ParametersParameters

Solved by inverting the following functions:

)tan(

)tan(

)(

)(

00214peak )(

eff

00213peak )(

eff

0212peakeff

0211point end

A,,m,mXM

A,,m,mXM

m,mXM

m,mXM

/bb

/b

/

/jbb

Teruki Kamon Probing SUGRA Models at the LHC 2525

DeterminingDetermining hh22

Solved by inverting the following functions:

1839tan

950

15440

50472

0

21

0

A

m

m

/

),tan,( 02/102

~01

AmmZh 1fb 1000 L

%~h/h ~~ 150ΩΩ 2201

01

)tan(

)tan(

)(

)(

00214peak )(

eff

00213peak )(

eff

0212peakeff

0211point end

A,,m,mXM

A,,m,mXM

m,mXM

m,mXM

/bb

/b

/

/jbb

1000 fb1000 fb-1-1

Note: These regions have large h2 if one just calculate based on standard cosmology. We put a factor of 0.1 for this non-standard cosmology.

Teruki Kamon Probing SUGRA Models at the LHC 2626

Case 2(b) : Stau and HiggsCase 2(b) : Stau and Higgs

1~

Lu~

01χ~

02χ~

g~

h

1χ~

m1/2=600, m0=440, tan=40, mtop=175

Re~

u

20.5%

13661252

494

376

249

462

114

46277%

Follow Case 2(a) and Case 1Follow Case 2(a) and Case 1

)tan(

)tan(

)(

)(

00214peak

00213peak )(

eff

0212peakeff

0211(2)peak

A,,m,mXM

A,,m,mXM

m,mXM

m,mXM

/

/b

/

/j

)tan(

)tan(

)(

)(

00214peak )(

eff

00213peak )(

eff

0212peakeff

0211point end

A,,m,mXM

A,,m,mXM

m,mXM

m,mXM

/bb

/b

/

/jbb

Teruki Kamon Probing SUGRA Models at the LHC 2727

Determining Determining hh22

Solved by inverting the following functions:

340tan

450

6600

23440

0

21

0

A

m

m

/

),tan,( 02/102

~01

AmmZh 1fb 500 L

%~h/h ~~ 19ΩΩ 2201

01

)tan(

)tan(

)(

)(

00214peak

00213peak )(

eff

0212peakeff

0211(2)peak

A,,m,mXM

A,,m,mXM

m,mXM

m,mXM

/

/b

/

/j

500 fb500 fb-1-1

b/c stau helps to determine tan accurately.Teruki Kamon Probing SUGRA Models at the LHC 2828

Case 2 SummaryCase 2 SummaryOver-dense Dark Matter Region:

OD-CDM ~ CDM /10

Implication at the LHC: Region where 2

0 decays to HiggsHiggsCDM /CDM ~ 150% (1000 fb-1)

Region where 20 decays to staustau and HiggsHiggs

CDM /CDM ~ 20% (500 fb-1)

Future Work: o More over-dense and under-dense cases?

Teruki Kamon Probing SUGRA Models at the LHC 2929

Case 3 : Focus Point Case 3 : Focus Point RegionRegion

Prospects at the LHCProspects at the LHC: A few mass measurements are available: 2nd and 3rd neutralinos, and gluino

Can we make a cosmological measurement?

g~

0i

~

q~ l~ Z

ZZ

Z

An image by Abram Krislock, October 18, 2008An image by Abram Krislock, October 18, 2008

Goals:Goals:1)New technique on h2

2)SUSY mass measurements (e.g., ATLAS) Can we improve?

m0, A0, , tan

m1/2, tan

Teruki Kamon Probing SUGRA Models at the LHC 3030

Ref: "Perspectives for the detection and measurement of Supersymmetry in the focus point region of mSUGRA models with the ATLAS detector at LHC," U. De Sanctis, T. Lari, S. Montesano, C. Troncon, arXiv:0704.2515v1 [hep-ex] (Eur.Phys.J.C52:743-758,2007)

0

0

0

0

2

1

0

scMssM

ccMcsM

scMccMM

ssMcsMM

WZWZ

WZWZ

WZWZ

WZWZ

0

0

0

0

2

1

0

scMssM

ccMcsM

scMccMM

ssMcsMM

WZWZ

WZWZ

WZWZ

WZWZ

A4x4 (m1/2, , tan)

g~M 01

02

21 ~~ MMD 01

03

31 ~~ MMD

Part 1 : New to Probe Part 1 : New to Probe hh22

)tan( 212

01

,,mZh /~

Teruki Kamon Probing SUGRA Models at the LHC 3131

DD2121 andand DD3232 andand tantan

DD2121//DD2121 DD3131//DD3131

ta

nta

n

// tan

tan

ta

nta

n

// tan

tan

// //

0g~g~ M/MassumingExample ( = 195, tan = 10):

%.D

D71

21

21

%.D

D11

31

31

%.M

M

g~

g~ 54

(1) D. Tovey, “Dark Matter Searches of ATLAS,” PPC 2007(2) H. Baer et al., “Precision Gluino Mass at the LHC in SUSY Models with Decoupled

Scalars,” Phys. Rev. D75, 095010 (2007), reporting 8% with 100 fb-1

(1) (1) (2)

300 fb300 fb

-1-1

Let’s test this idea:

%M

M

h

h 1

arbitrary scale

arbitrary scale

Teruki Kamon Probing SUGRA Models at the LHC 3232

hh22 DeterminationDetermination

LHC Goal: DLHC Goal: D2121 and D and D3232 at 1-2% and gluino mass at 5% at 1-2% and gluino mass at 5%

%.70

%~ 31tan

tan

%~h

h282

2

%.m

m65

1/2

1/2

Teruki Kamon Probing SUGRA Models at the LHC 3333

Part 2 : Can we improve the Part 2 : Can we improve the measurements?measurements? 12 ~Z~

EETTmissmiss > 150 GeV > 150 GeV

GeV) 50( )( TEjN

(GeV) )(M

2)( jN

total = 3.1 pb

OSDF

OSSF

GeV) 10( 2)( TpN

01

032 ~~

,

19%19%5.3%5.3%11%11% 10%10%

Teruki Kamon Probing SUGRA Models at the LHC 3434

1fb 500

(GeV) )( jjbM

))()(( 01

02 ~bWbW~ttg~

Simultaneous Detection of Simultaneous Detection of Neutralinos and Top(s)Neutralinos and Top(s)

1fb 300

Working on the gluino mass estimate …Working on the gluino mass estimate …

ETmiss + Dilepton + Jets

[1] N(N(ℓℓ) ) >> 2 2 pT > 10 GeV; || < 2.5

[2] EETTmissmiss > 150 GeV > 150 GeV

[3] Selection of Selection of WWjjjj pT(j) > 30 GeV; 0.4 < R(j,j) < 1.5M(jj) < 78 15 GeV

[4] Selection of Selection of ttWbWb pT(b) > 30 GeV0.4 < R(jj, b) < 2

(GeV) )(M

)OSDF(OSSF eee

Teruki Kamon Probing SUGRA Models at the LHC 3535

Case 4 : Non-U SUGRACase 4 : Non-U SUGRANature may not be so kind Nature may not be so kind …… Our studies have been done based on a minimal scenario (= mSUGRA). … … Let’s consider a non-minimal case (= non universality) and address “Can we make a cosmological measurement?”

An image by Abram Krislock, March18, 2009An image by Abram Krislock, March18, 2009

Steps:Steps:1)Start with over-abundance region in mSUGRA2)Reduce Higgs coupling parameter, , by increasing mHu, … Extra contributions to h2 More annihilation (less abundance) normal values of h2

3)Find smoking gun signals Technique to calculate h2

Teruki Kamon Probing SUGRA Models at the LHC 3636

Teruki Kamon Probing SUGRA Models at the LHC 37

Reference PointReference Point

h2=0.112

Teruki Kamon Probing SUGRA Modles at the LHC 38

Decays at Reference PointDecays at Reference Point

Teruki Kamon Probing SUGRA Models at the LHC 39

Extraction of Model Extraction of Model ParametersParameters

Work in Progress …Work in Progress …

CSI: LHCTHE SECOND SEASON

SummaryGoal: Goal: Develop technique(s) to test minimal and non-minimal scenarios and extract h2 (standard and non-standard cosmology cases) at the LHC where a limited number of SUSY mass measurements are available.

So far 4 cases were studied or are So far 4 cases were studied or are being studiedbeing studied::Case 1: Coannihilation regionCase 2: Over-dense DM region (OdCDM ~ CDM /10)Case 3: Focus point regionCase 4: Non-universality

Future:Future: Further improvements New cases … in progress

40Teruki Kamon Probing SUGRA Models at the LHC

OSOSLS MLS M Distribution Distribution

Clean peak even for low M

(GeV) visM

maxpeak MM

02~

M

g~M

Independent of thegluino masses!

Uncertainty Bands with 10 fb-1

Appendix 1Teruki Kamon Probing SUGRA Models at the LHC

OSOSLSLS Slope ( Slope (ppTTsoft soft ))

Uncertainty Bands with 10 fb-1

(GeV) g~M

Independent of the gluino masses!

)( ),( 01

01

02

21peak

~~~ M,MfslopeM,M,MfM Appendix 2Teruki Kamon Probing SUGRA Models at the LHC

MMjj Distribution Distribution

endpeak jj MM 2~

2~

2~

2~

~

02

01

02 11

M

M

M

MMM

qq

endj

1) M < Mendpoint; Jets with ET > 100 GeV; Mj masses for each jet

2) Choose the 2nd large value Peak value ~ True Value

Mj(GeV)

)( 01

02

3(2)peak

~~q~j M,M,MfML

)( ), ( 01

02

01

02

5(2)peak

24(2)peak

1 ~~q~j~~q~j M,M,M,MfMM,M,M,MfMLL

Appendix 3Teruki Kamon Probing SUGRA Models at the LHC

2200 DecayDecay Branching RatiosBranching Ratios

m1/2= 500 GeV, m0 = 470 GeV

m1/2= 600 GeV, m0 = 440 GeV

Teruki Kamon Probing SUGRA Models at the LHC Appendix 4

BACKUPsBACKUPs

1) Find smoking gun signal(s)

2) Determine as many SUSY masses as possible

3) Test with a minimal SUSY scenario see if we can extract the model parameters.

4) Calculate the dark matter relic density

5) Work on non-minimal caseTeruki Kamon Probing Supersymmetric Cosmology at the LHC

ExampleExample

3

SUSY SUSY Phenomenology/ProspectsPhenomenology/Prospectshep-ph/0603128

hep-ph/0808.1372

In progress

01

01

02 ~bb~h~

))()(( 01

02

~lljjbjjb

~ttg~

[GeV] )(M

[GeV] )(bbM [GeV] )( jjbM

01

02 ~~~

10 fb1

LS

OS

OSLS

D0

colla

bo

rati

on

(T

evat

ron

)P

hys

. Let

t. B

660

(20

08)

449

m0 (GeV)m

1/2

(GeV

)

11

22

33

47Teruki Kamon Probing Supersymmetric Cosmology at the LHC

11 22

33

1) N(ℓ) > 2 pT > 10 GeV|| < 2.5

2) ETmiss > 150 GeV

3) Selection of Wjj pT(j) > 20 GeV0.9 < R(j,j) < 3.2M(jj) < 77 10 GeV

4) Selection of 2nd tWb pT(b) > 30 GeV ????1.2 < R(jj, b) < 3.2

22ndnd Top? Top?

48Teruki Kamon Probing Supersymmetric Cosmology at the LHC

Nikolay – Need an update

49Teruki Kamon Probing Supersymmetric Cosmology at the LHC

3 22eqnnvHn

dt

dn

)( 3 22 SnnvHndt

dneq

e.g., Quintessence – Scalar field dark energy

DECDMbaryontotal

W Constant in

time?

Case 1: CA Region

Program:(1) Establish the “CA region” signal (2) Determine SUSY masses/mSUGRA parameters

(3) Measure h2 and compare with CDMh2

Nu

mb

er o

f C

ou

nts

/ 1

GeV

ETvis(true) > 20, 20

GeVET

vis(true) > 40, 20 GeV

ETvis(true) > 40, 40 GeV

GeV) 5.7(

011

02

M

~~~

(GeV) )( visibleM

%~~B

%~~B

%~~B

qq~qq~g~

M,M

L

R

q~g~

0)(

100)(

0)(

748831

1

102

02

02

pT

> 20 GeV is essential!

In the CA region, the ee and channels are almost absent.

(GeV) 21 /m

M = 5-15 GeV

Smoking Gun of CA Region?Smoking Gun of CA Region?R. Arnowitt et al., Phys. Lett. B639 (2006) 46

Case 1: CA RegionCase 1: CA Region

SUSY DM ≟ CDM

Catching SUSY Dark MatterCatching SUSY Dark Matter

SUSY Signals at the LHC SUSY Signals at the LHC DM Density ( DM Density (hh22 ) )

52Teruki Kamon Probing Supersymmetric Cosmology at the LHC

MENUMENU ~SPECIALS~

*Dark Energy Power Drink .. $73- Chef’s choice

*Dark Matter Sandwich …… $23- Neutral, long-lived

*Atomic Soup ………………. $4- All elements in one

No, Sir. But with

neutralino?

No, Sir. But with

neutralino?

I am hungry. Can you make the DM sandwich with any Standard Model particle?

I am hungry. Can you make the DM sandwich with any Standard Model particle?

““Dark Matter” SandwichDark Matter” Sandwich

53Teruki Kamon Probing Supersymmetric Connection with DM

SUSY DM ≟ CDM

Catching SUSY Dark MatterCatching SUSY Dark Matter

SUSY Signals at the LHC SUSY Signals at the LHC DM Density ( DM Density (hh22 ) ) 54Teruki Kamon

Dark Matter SandwichDark Matter Sandwich

01

~01~

01~