beyond conformance testing in 3gpp lte white...

20
Beyond Conformance Testing in 3GPP LTE White Paper

Upload: dinhtruc

Post on 29-Jun-2018

237 views

Category:

Documents


1 download

TRANSCRIPT

Beyond Conformance Testing in 3GPP LTE

White Paper

Beyond Conformance Testing in 3GPP LTE

White Paper

Published 22nd June 2009

Writers: Tommi Jämsä (EB), Juha Ylitalo (EB), Janne Kolu (EB),

Petteri Heino (EB), Jonne Piisilä (EB), Sanna Mäkeläinen (EB),

Jussi Laakso (Upknowledge)

Copyright 2009 EB (Elektrobit). All rights reserved.

The information contained herein is subject to change without

notice. EB retains ownership of and all other rights to the material

expressed in this document. Any reproduction of the content of this

document without prior written permission from EB is prohibited.

BEYOND CONFORMANCE TESTING IN 3GPP LTE 3

TABLE OF CONTENTS

1. ABSTRACT.........................................................................................................................................................................4

2. inTRoduCTion................................................................................................................................................................5

2.1 MobiledataBusinessdrivers............................................................................................................................5

2.2 LTE–nextGenerationofMobiledata.............................................................................................................5

2.3 LTERadioFundamentals...................................................................................................................................6

2.4 LTE-Advanced......................................................................................................................................................8

3. PRoduCTTESTinGinLTE...............................................................................................................................................9

3.1 FieldTesting........................................................................................................................................................9

3.2 RadioChannelEmulation...................................................................................................................................9

3.3 ConformanceTesting.........................................................................................................................................9

3.4 BeyondConformanceTesting...........................................................................................................................10

4. RAdioChAnnELModELS..............................................................................................................................................12

4.1 RadioChannelModelsforLTEConformanceTesting.....................................................................................12

4.2 RadioChannelModelsforBeyondConformanceTesting..............................................................................12

4.2.1 SCMModel..............................................................................................................................................13

4.2.2 SCMEModel...........................................................................................................................................14

4.2.3 LTEEvaluationModel............................................................................................................................14

4.2.4 WinnERModels.....................................................................................................................................15

4.2.5 iMT-AdvancedChannelModels............................................................................................................15

4.2.6 ComparisonofGSCMModels...............................................................................................................16

5. SuMMARy.........................................................................................................................................................................17

6. EBSoLuTionS..................................................................................................................................................................17

7. REFEREnCES.....................................................................................................................................................................18

BEYOND CONFORMANCE TESTING IN 3GPP LTE4

ABSTRACT1.

The3rdGenerationPartnershipProject(3GPP)LongTerm

Evolution(LTE)standardwasformallyfrozeninMarch2009.

ThefreezingofthestandardspeedsupLTEproductdevelop-

mentandtesting.ThisWhitePaperintroducesthe3GPP

LTEtechnologyanddiscussestheconformanceandbeyond

conformancetestaspects.ThepaperdescribeshowLTE

products,systemsandapplicationsaretestedinarealistic

wirelessenvironment–notinthefieldbutinalaboratory.

3GPP 3rdGenerationPartnershipProject

AoA AngleofArrival

Aod Angleofdeparture

AWGn AdditiveWhiteGaussiannoise

B3G Beyond3G

BER BitErrorRate

BLER BLockErrorRate

BSC BaseStationController

CdL ClustereddelayLine

enodeB evolvednodeB(LTEbasestation)

EPA ExtendedPedestrianAchannelmodel

ETu ExtendedTypicalurbanchannelmodel

EVA ExtendedVehicularAchannelmodel

hSdPA highSpeeddownlinkPacketAccess

hSPA highSpeedPacketAccess

hSPA+ hSPAevolution

Flash-oFdM FastLow-latencyAccesswithSeamlesshandoff–oFdM

GSCM Geometry-basedStochasticChannelModel

iMT-2000 internationalMobileTelecommunications(global3Gstandard)

iMT-Advanced iMT-Advanced(global4Gstandard)

iPTV internetProtocolTelevision

iTu internationalTelecommunicationunion

iTu-R iTuRadiocommunicationsector

LoS LineofSight

LSP LargeScaleParameter

LTE LongTermEvolution(3.9G)

LTE-Advanced LongTermEvolutionAdvanced(4G)

MiMo Multiple-inputMultiple-output(anymulti-antennasystem)

nLoS nonLineofSight

oFdM orthogonalFrequencydivisionMultiplexing

oFdMA orthogonalFrequencydivisionMultipleAccess

PAPR PeaktoAveragePowerRatio

QoS QualityofService

RnC RadionetworkController

RRM RadioResourceManagement

SAE SystemArchitectureEvolution

SC-FdMA SingleCarrierFrequencydivisionMultipleAccess

SCM SpatialChannelModel

SCME SCMExtended

TdL TappeddelayLine

uE userEquipment

uMTS universalMobileTelecommunicationsSystem

WCdMA WidebandCodedivisionMultipleAccess

WinnER WirelessworldinitiativenEwRadio(projectname)

ABBREviATiONS

Thebenefitsofbeyondconformancetestingcomparedto

standardconformancetestingareexplained.LTEterminal

andbasestationmanufacturersaswellasoperatorsare

recommendedtogobeyondbasictestingandcarryout

performancemeasurementsalreadyintheearlyphasesof

LTEproductdevelopment.TheWhitePaperalsodiscusses

thedifferenttestingmethodsandintroduceskeyradio

channelmodelswhichcanbeusedinthetestingprocess.

BEYOND CONFORMANCE TESTING IN 3GPP LTE 5

iNTROdUCTiON2.

inthepastfewyearsmobiledatausagehasexperienced

aremarkablegrowth.Mobilesubscribersareincreasingly

usingthecellularnetworkstoaccesstheinternetandother

dataservices.Thistrendisshowingnosignsofslowing.

Figure1illustratesanestimationofthetotaldatagrowthin

mobilenetworksforthenearfuture.Manytelecomoperators

havebeenreportinga6-to14-foldincreaseinmobiledata

consumptionfrom2007.[Source:RysavyResearch,EdGE,

hSPAandLTE-Broadbandinnovation,november2008].

Mobile data Business drivers2.1

Thekeybusinessdriverforthesignificantgrowthinmobile

dataconsumptionistherecentbreakthroughofbroadband

wirelessaccess(broadbandwirelessaccess)technologies

suchasWLAn,uMTS/hSPA,LTEandWiMAX.Theincrease

inthedatatrafficfromcellularsubscribersisdrivenbyeasy

andubiquitousaccessfromlaptopcomputerswithcellular

uSBdongles,aswellasnewlaptopmodelsfeaturingbuilt-in

cellularinterfaces.Thisaccessmethodismadefeasiblebythe

flatratebillingmodelthatisbecomingincreasinglypopular

withoperators.Theincreaseddataratesalsomakeitpossible

tointroducemanynew,innovativeservices.

Althoughthebroadbandwirelessaccesstrend

providesmanybusinessopportunitiesformobilebroadband

internetserviceproviders,itdoesnotcomewithoutsome

seriouschallenges.Thekeychallengeforcellularoperatorsin

providingaflat-ratebroadbandwirelessaccesssubscription

isthecostperbitoffered.Asthedataratesincrease,itis

becomingincreasinglyevidentthatthecostperbitfigures

offeredbycurrentthirdgeneration(3G)technologiescannot

scaletothewidespreadadoptionofhighspeedbroadband

wirelessaccesssubscriptions.Thisisduetothecomplexityof

thecurrentcellularnetworkinfrastructureandthelimitations

oftheradiointerfacetechnology.Toovercometheabove-

mentionedchallenges,LTEprovidesinterestingopportunities

forhighdatarateapplications.

LTE – Next Generation 2.2 of Mobile data

Manytraditionalcellularoperatorsarelookingtowardsan-

otheremergingtechnologyasawaytoevolvetheirnetworks.

ThistechnologyiscalledLongTermEvolution(LTE).LTEis

specifiedbytheThirdGenerationPartnershipProject(3GPP).

Thesameorganizationcurrentlyoverseesthedevelopment

oftheother“GSMfamily”oftechnologies.TheGSMfamilyis

illustratedinFigure2.

The3GPPLTEisspecifiedinRelease8of3GPPspeci-

fications.LTEhasbeendesignedtobeinteroperablewith

theotherGSMfamilyoftechnologies.Thereforeitprovidesa

logicalevolutionpathforexistingGSMandWCdMAoperators.

Figure1.Trafficgrowthestimationinmobilenetworks.

Figure2.GSMfamilyoftechnologies

2007 2008 2009 2010 2011

Mobile voice Mobile data

Terabyte

3 000 000

2 250 000

1 500 000

750 000

2G 2.5G 2.9G 3G 3.5G 3.9G 4G

3GPP Cellular Network Evolution

GSM GPRS EDGE WCDMA HSPA LTE LTE-A

BEYOND CONFORMANCE TESTING IN 3GPP LTE6

LTEcoversanewradiointerfaceandenhancedcore

networkarchitecture(SAE)thatisbasedcompletelyoniP

transport.LTEisexpectedtosubstantiallyimprovecellcapac-

ity,end-userthroughput,provideenhancedQualityofService

(QoS)andreducethelatencyexperiencedbytheuser.These

featuresareexpectedtofinallymakemobilebroadband

arealityandbringwithitasignificantlyimproveduser

experience.ThesefeaturesallowLTEtosupportnew,more

demandingservices,suchasiPTV,musicandvideosharing,

interactivegamingandothermultimediaapplications.Some

keyfeaturesofLTEarelistedbelow.

downlinkpeakdataratesofmorethan100Mbps•

anduplinkpeakdataratesintherangeof50Mbps.

RadiointerfacebasedonoFdMAandSC-FdMA•

withsupportforhighordermodulation(64-QAM).

Supportforflexiblecarrierbandwidthsranging•

from1.25Mhzupto20Mhz.

Supportforawidevarietyofnewandexisting•

spectrumbands.

SupportforFddandTdddeployments.•

Supportforseamlesshandoverstoexisting•

3GPPcellularnetworks.

Supportformulti-antennaMiMoconfigurations•

bothintheterminalandinthebasestation.

LTEcoveragewillmostlikelybeprovidedforurbancenters

first,whereitwillcomplementtheexisting2Gand3Gnetwork

coverage.

LTE Radio Fundamentals2.3

TheLTEradiointerfacecarriesdataandcontrolsignals

betweentheLTEterminalandthebasestation,morespecifi-

callyknownastheevolvednodeB(enodeB).inGSM/WCdMA

systemsthebasestationisonlyresponsibleforthephysical

layerprocessing,andtheBSC/RnChandlescriticalRadio

ResourceManagement(RRM)relatedtasks.inLTEthebase

stationissolelyresponsibleforallradio-relatedprocessing.

TheLTEdownlinkradiotransmissionisbasedon

orthogonalFrequencydivisionMultiplexing(oFdM).oFdMis

aso-calledmulticarriermodulationtechnique,inwhichthe

channelbandwidthisdividedintoanumberofsubcarriers

(Figure3).Eachsubcarrierisindividuallymodulatedwith

apartoftheoverallbitstreamtobetransmitted.oFdM

providesseveralbenefitsthatmakeitasuitablechoice

forwirelesstransmission.oFdM-basedreceiversareless

complexthanWCdMAreceivers,whichdirectlyrelatesto

thedevelopmentcostsofuEandmakingoFdMwellsuitable

fordownlink.oFdMprovidesgoodprotectionagainst

inter-Symbolinterference(iSi),aswellasagainstnarrowband

interferenceingeneral.inaddition,implementationofthe

flexiblechannelbandwidthisrelativelyeasywithoFdM-based

systems.Thebandwidthcanbescaledbysimplychangingthe

numberofsubcarriersusedfortransmission.oFdMisalso

usedinWLAnandWiMAX.

WhatseparatesoFdMfromnormalfrequencydivision

multiplexingisthesubcarrierspacing.Bycarefullyselecting

thecorrectparametersthesubcarriersaremadeorthogonal

ornon-interferingtoeachother.Thisallowsthesubcarriersto

beplacedclosertoeachotherinthefrequencydomain,thus

increasingthespectralefficiencyofthetransmission.

LTEradiousesoFdMsomewhatdifferentlyinthe

downlinkandintheuplink.inthedownlinkthebasicoFdM

functionalityisextendedtoalsoprovidethemeansfor

multipleaccess.ThisvariationofoFdMiscalledorthogonal

FrequencydivisionMultipleAccess(oFdMA).WithoFdMAthe

LTEbasestationtransmitstodifferentusersbyusingdifferent

setsofsubcarriers,asillustratedinFigure4.

Thesubcarrierallocationcanbechangedrapidlyin

ordertoadapttochangingradiochannelconditions.TheLTE

basestationmakestheradioresourceallocationdecision

byemployingRRMalgorithms.Theuplinkanddownlink

resourcesareallocatedindependentlyofeachother.Theallo-

cationcriterionisnotspecifiedinthe3GPPspecifications,but

itcouldbebasedonthechannelqualityfeedbackreportedby

themobileterminals,forexample.

oneofthedrawbacksofoFdMAistherelativelyhigh

PeaktoAveragePowerRatio(PAPR).TheoFdMAsymbolscan

Figure3.illustrationofoFdMtechnology.Thechannelbandwidthisdividedtocloselyspacedorthogonalsub-carriers.

OFdM SubcarriersChannel BW

ff

BEYOND CONFORMANCE TESTING IN 3GPP LTE 7

havehighamplitudepeaks,whichrequiresadvancedlinear

poweramplifiersandinpracticeleadstopowerinefficiency.

oFdMmodulationwasdeemedunfeasibleforLTEterminal

transmission.Therefore,amorepower-efficienttransmission

scheme,knownasSingleCarrierFrequencydivisionMultiple

Access(SC-FdMA),wasdevelopedfortheuplinktransmission.

SC-FdMAisinprinciplequitesimilartooFdMA.Themain

differenceisthatwithSC-FdMAdataistransmittedeffectively

onasymbol-by-symbolbasis.ThisapproachproducesaPAPR

levelwhichissignificantlysmallerthanthatofoFdMA.

Multiple-input-Multiple-output(MiMo)technologyhas

receivedmuchattentioninrecentyearsduetoitspotential

todrasticallyincreasethecapacityofthesysteminwhichitis

deployed.ThebasicconceptbehindMiMoistousemultiple

antennasbothinthebasestationandintheuserterminal

forsignaltransmissionandreception.MiMotechnologywill

haveakeyroleinimprovingthespectralefficiencyoffuture

wirelesscommunicationsystems.hSPA+,WiMAXandLTEall

takeadvantageofMiMo.

MiMocanbeusedtoservemanypurposes,onesuch

purposebeingSpatialMultiplexing.Withspatialmultiplexing

differentdatastreamsaretransmittedsimultaneouslyinpar-

allelthroughdifferenttransmitantennas.intheory,assuming

idealMiMoradiochannels,doublingthenumberoftransmit

andreceiveantennaswilldoublethetransmissioncapacityof

thesystem.Thespatialmultiplexingprincipleisillustratedin

Figure5.

Figure4.MultipleaccessinoFdMAisdonebyassigningdifferentsubcarrierstoindividualusers.

Figure5.inspatialmultiplexingparaleldatastreamsareusedforincreasingthelinkcapacity.

LTE Terminal 1

LTE Terminal 2

LTE Terminal 3

LTE Base Station

Subcarrier Allocation

f

LTE Base Station

LTE Terminal

data Stream 1

data Stream 2

BEYOND CONFORMANCE TESTING IN 3GPP LTE8

Asboththetransmittingantennasandthereceiving

antennashavespatialseparationbetweenthem,the

transmissionswillfadedifferentlyatdifferentantennaswhen

propagatingthroughtheradiochannel.Thereceivercanuse

this“spatialsignature”todifferentiatebetweenthedifferent

datastreams.

Thereceiverhastohaveknowledgeaboutthefading

characteristicsofeachspatialchannelpriortodatatransmis-

sion.Thisknowledgeisprovidedbysendingpilotsignals,

whichareknownforboththetransmitterandthereceiver,

individuallyfromeachtransmittingantenna.Thefadingofthe

pilotsignalconveysthe“signature”ofthatparticularspatial

path.Asthechannelconditionsareconstantlychangingthe

pilotsignalsneedtobetransmittedperiodicallyinorderto

updatethereceiver.

LTE-Advanced2.4

WhileLTEisnotyetevendeployedthe3GPPhasalready

begunthinkingabouthowtofurtherevolveit.Thisevolution

ofLTEcurrentlygoesbythenameofLTE-Advanced.

TheinternationalTelecommunicationunion(iTu)isthe

internationallyrecognizedentitythatwillproducetheofficial

definitionofthefourthgenerationcellularnetworks.TheiTu

RadiocommunicationSector(iTu-R)iscurrentlyestablishing

agloballyaccepteddefinitionof4Gwirelesssystems.This

initiativeismorecommonlycallediMT-Advanced.itisalogical

continuationoftheworkdoneiniMT-2000,whichprovided

astandarddefinitionandsetofrequirementsforthe3G

technologies.

Althoughthespecificationshavenotyetbeen

finalized,thecurrentconsensusforthedataratesiniMT-

Advancedisaveryambitiousone:100Mbpsforhighmobility

subscribersandupto1Gbpsforlowmobilitysubscriberswith

channelbandwidthsupto100Mhz.Clearlythedatarates

providedbyLTEfallshortoftheiMT-Advancedrequirements.

ManyplayersinthetelecomindustrythusregardLTEto

bemoreofa“3.9G”technology–betterthancurrent3.5G

systems,butnotquite4G.

ThemaindriverforthedevelopmentofLTE-Advancedis

tomeet,orevenexceed,theiMT-Advancedrequirementsfora

4Gwirelesssystem.ThebandwidthofLTE-Advancedwillmost

probablybeamultipleof20MhzLTE-typeslots,i.e.,20,40,60,

80and100Mhz.TheLTE-Advancedspecificationisexpectedto

beincludedinthe3GPPRelease10.Asimilarevolutionisbeing

realizedforWiMAXtechnologyintheformoftheiEEE802.16m

standard,whichwillbethebaseforWiMAX2.0.

BEYOND CONFORMANCE TESTING IN 3GPP LTE 9

PROdUCT TESTiNG iN LTE3.

LTEproducttestingincludesbasicconformancetesting,

beyondconformancetesting,andfieldtesting.Radiochannel

emulationcanbeefficientlyutilizedindifferentproduct

testingphases.

Field Testing3.1

inordertoguaranteetheproductperformanceforreal-life

operationthetestingshouldmimicreal-lifescenariosas

closelyaspossible.TheLTEequipmentcanbefieldtestedina

testsetupthatmatchestheintendedusescenario.Thiscould

includeforexampleperformingdrivetestingwithameasure-

mentdevicethroughacoverageareaofalivenetwork.Field

testingisanessentialpartofproduct,systemandapplication

development.

Traditionalfieldtestingofwirelesstelecommunica-

tionsystemshassomedrawbacks.Fieldtestingisgenerally

alabor-intensive,time-consumingandexpensiveprocess.

Whenperformingtestinginthefield,testingofdifferent

environmentsrequiresphysicallymovingthetestingequip-

menttoanothergeographicallocation.Fieldtestingresults

arespecifictotheenvironment,locationandtime.They

arenon-repeatable,evenundertheexactsametestsetup,

locationandtestscenarioconditions.Thisisduetothefact

thatwithfieldtestingthereisnorealcontroloverthenatural

environmentortheradiochanneleffects.Asatransmission

signalpropagatesthroughtheradiochannelitisaffectedby

manydifferentphenomena,suchaspathloss,shadowing,

multipathfading,delayspread,dopplerspread,anglespread,

polarizationeffectsaswellastheadditionofinterference.

Thesephenomenaaresomewhatrandomanddependonthe

timeandplacethetestisperformed.

Radio Channel Emulation3.2

AmoresophisticatedapproachtotestingLTEproducts

comparedtofieldtestsistoemulatetheradiochannelina

controlledlaboratoryenvironment.Withthisapproachthereal

radiochannelisreplacedwitharadiochannelemulator,which

takesalltheradiochannelphenomenaintoaccount.Theradio

channelemulatorisatestandmeasurementdeviceconnected

betweenthetransmitterandthereceiver.Thetransmission

passesthroughtheemulator,whichrecreatese.g.,pathloss,

shadowing,multipathfading,delayspread,dopplerspread,

anglespread,polarizationeffectsaswellastheadditionof

noiseandinterference.Figure6illustratestheprincipleof

radiochannelemulationtesting.

Thebenefitsofradiochannelemulationarethatit

enablesaccurate,controllableandfullyrepeatabletestruns

tobeperformedinalaboratoryenvironment.Testingthrough

radiochannelemulationcanbeusedtocomplement–orin

somecasesevenreplace–traditionalfieldtesting.Emulator

testingsignificantlyreducesthetestingtimeandcostforava-

rietyofstandardandspecificradioenvironments.Witharadio

channelemulatoritispossibletotestproductperformance

duringonetestsessioninanyenvironmentsuchasindoor,

metropolitan,highway,ruralandmountainousareas.Faster

testingcyclesleadtoshorterdevelopmentcycles,whichin

turnwillleadtoshortertimetomarketfornewproducts.

Conformance Testing3.3

LTEconformancetestsareusedtoverifythattheLTEprod-

uctsconformto3GPPstandardsandthatthetransmitterand

receiverperformancefulfilltheminimumrequirementsset

by3GPP.Conformancetestsaretechnologyspecific.usually

theconformancetestsarespecifiedbythesameorganization

thatdevelopedthetechnologyitself.The3GPPhasproduct

Figure6.howreal-worldradiochannelenvironmentscanbeemulatedinlab:theprincipleofradiochannelemulation.

EB Propsim

Radio channel

Mobile terminal

Transceiver

Base station

Transceiver

BEYOND CONFORMANCE TESTING IN 3GPP LTE10

conformancetestsfortheexistingtechnologiesithasdevel-

oped,suchasWCdMAandhSPA.The3GPPhasalsospecified

conformancetestsfortestingLTEterminalsandbasestations

[1]–[2].Theconformancetestsaretypicallyperformedbyan

externalorganization,suchasacertifiedconformancetest

laboratory.

AlthoughboththeLTEterminalsandbasestationsare

developedaccordingto3GPPspecifications,ambiguitywithin

thestandardsallowssomefreedomofinterpretation.For

example,theLTEstandardsonlydefinethemainfunctionality

andtasksofRRM.TheactualRRMalgorithmsdesignisleftto

themanufacturers.Thesameappliestophysicallayerreceiver

algorithms,whichcausesperformancedeviationsbetween

differentvendors.Conformancetestingisvitaltoensurethat

anydifferencesinimplementationdonotcausedisturbanceto

thenetworkorproblemsvisibletotheenduser.

Conformancetestscoverthebasictransmitterand

receivercharacteristicsforboththemobileterminalandthe

basestationandtheminimumperformancerequirements

(forbothFddandTddmodes).Relatedtoradiochannel

modeling,theyincludemeasurementsone.g.

Receiverdiversitycharacteristics•

Referencesensitivitypowerlevel•

Receiverperformancerequirements•

Singleantennaportperformance•

Transmitdiversityperformance•

openloopspatialmultiplexingperformance•

Closedloopspatialmultiplexingperformance•

Reportingofchannelstateinformation•

AWGnradiochannel•

Frequencyselectiveradiochannel•

Frequencynon-selectiveradiochannel•

ReportingofPre-codingMatrixindicator.•

LTEconformancetestsaremandatoryforanyterminalor

basestationproduct.Theconformancetestsaredesigned

withapass/failcriterion.Productsthatpasstheconformance

testsgainaformalapprovaltobedeployedincommercial

networks.

Anexampleofa2x2MiMouEconformancetesting

setupisshowninFigure7.Thechannelmodelisatapped

delaylinemodelwithafixedper-channelcorrelation

matrix,seesection4.1.

Beyond Conformance Testing3.4

Thepurposeofconformancetestingisnottosecureoptimal

productoperationinthefield,butmerelytovalidatethat

thevariousproductsintheLTEnetworkconformtothe

basicrequirementsandthattheydonotcauseunexpected

problemswhenoperatinginthenetwork.Becauseofthe

“pass”or“fail”criterionofLTEconformancetests,thesetests

donotmeasurethetrueperformanceofaproductaccurately.

Theyonlygiveanindicationwhetherornotatestedproduct

performsaboveorbelowaspecifiedthreshold.

LTEterminalandbasestationmanufacturersneeda

methodtoquantifythetrueperformanceoftheirequipment

inrealisticradiochannelconditions.onlybyobtainingaccu-

rateandreliableperformancedataitcanbeensuredthatthe

goalssetfortheproductqualityaremet.inordertoobtain

thisdata,testingthatgoesbeyondthebasicconformance

testingneedstobeperformed.Thistypeoftestingisalso

knownasperformancetesting.Performancetestingallows

themanufacturertooptimizetheairinterfaceperformance

andtomaximizetheachievablesystemthroughputbefore

launchingproductsonthemarket.optimizationcanbe

performedforexampleonthefollowingkeyareas:

RadioChannelEmulator

EBPropsimF8

eNodeB Emulator

Fading Channel

Fading Channel

Fading Channel

Fading Channel

UE

Figure7.uEconformancetestsetupshowingconnectionsfor2x2MiModownlink.

BEYOND CONFORMANCE TESTING IN 3GPP LTE 11

Adaptivemodulationandcoding•

Channelequalization•

Frequencydomainscheduling•

handovers•

MiMoconfigurations•

AdaptationbetweendifferentMiMomodes•

Closedlooppre-codingMiMo•

interferencecancellation•

RRMalgorithms(e.g.multi-userscheduling).•

Advancedperformancetestingisbeneficialformarketingand

businesspurposesaswell.Competitioninthewirelessindustry

istough,anddevicemanufacturersareforcedtofindwaysto

differentiatethemselvesfromtheircompetitors.Productper-

formanceisonekeydifferentiator.Becausetheresultofcon-

formancetestingdoesnotexpressthetrueperformanceofthe

product,itcannotbeusedasadifferentiatingfactorbetween

differentmanufacturers’products.Byvalidatingproductswith

reliableperformancetestingmanufacturersandoperatorscan

gainacompetitiveadvantageontheLTEmarket.

Thekeybenefitsthatcanbeachievedbyperforming

beyondconformancetestingarelistedbelow:

Figure8.Exampleof2x2MiMohandovertest

Fading Channel

Fading Channel

Fading Channel

Fading Channel

Fading Channel

Fading Channel

Fading Channel

Fading Channel

Fading Channel

Fading Channel

Fading Channel

Fading Channel

eNodeB 1 UE

eNodeB 2

Fading Channel

Fading Channel

Fading Channel

Fading Channel

RadioChannelEmulator

EBPropsimF8

improvednetworkperformanceandcoverage•

Fasterdeployment•

Avoidingover-andunder-specifyingtheproduct•

optimizingproductperformanceand•

developmentcosts

demonstratingtheperformanceof•

theproductinrealisticuserscenarios

Reducingtheneedforextensivefieldtests•

Realisticperformancefiguresforphysical•

layerandsystemthroughput

e.g.biterrorrate(BER)andblockerrorrate(BLER)•

Betterriskmanagement.•

AnexampleofabeyondconformanceMiMohandovertest

setupisshowninFigure8.inthetestsetup,therearetwo

enodeBswithtwoantennaeach,andoneuEwithtwoanten-

naseach.uplinkanddownlinkcanoperateatthesameor

differentfrequencies(TddorFdd).Theradiochannelmodel

canbe,e.g.,SCMEorWinnER(seesections4.2.2and4.2.4).

Thenextsectiondefinestheradiochannelmodels

usedinLTEconformanceandbeyondconformancetesting.

BEYOND CONFORMANCE TESTING IN 3GPP LTE12

RAdiO CHANNEL MOdELS4.

Theonlywaytoguaranteethataproductwillfunctionasex-

pectedintherealenvironmentistotestitinconditionsthatare

closetoreality.Whenperformingtestingthroughemulations,

theradiochannelemulatorrequiresaccuratechannelmodels

toruntheemulations.Thereliabilityandaccuracyofemulation

resultsaredirectlylinkedtotheaccuracyofthechannelmodel

usedtoobtainthoseresults.Theclosertheradiochannelmodel

istorealitythemorereliabletheresultswillbe.

inadditiontobeingaccurate,themodelusedshould

beflexibleenoughsoitcanbeusedtoemulatemany

differenttypesofenvironments.Theeffectsoftheradio

channelaredependentontheenvironmentalconditions–an

urbancitycenterpresentsadifferentchallengefromrural

countrysideoranindoormeetingroom.Eachradioenviron-

mentrequiresaspecificadaptationintheLTEequipment.

Bytestingdeviceperformanceacrossarangeofconditions

expectedinacellularsystemwecanensurethatthedeviceis

notonlyoptimizedforafewenvironments.

Manydifferentradiochannelmodelshavebeencre-

atedbydifferentorganizationsfortestingthevariouscellular

technologies.Thesemodelsareintroducedinthefollowing

sections.

Radio Channel Models for 4.1 LTE Conformance Testing

The3GPPhasdefinedtheLTEconformancetestsandthepa-

rametersfortheradiochannelmodelsinTS36.141(enodeB)

andTS36.521(uE)[2].

ThechannelmodelsthatareusedinLTEconformance

testingarerelativelysimple,especiallyforMiMoapplications.

ThemodelsareextendediTumodels(EPA,EVA,ETu)

having7to9fadingpathseachandthesamecorrelation

matrixtoallthemultipathcomponents[3].Eachfadingpath

correspondstoonesignalpropagationpathfromTXantenna

toRXantennawithaspecificdelay.Thecorrelationbetween

differentantennasignalsisonlyartificiallydefinedashigh,

medium,andlow.itdoesnotprovidethelevelofdetail

neededtoreliablymeasureproductperformancelimits.

Radio Channel Models for 4.2 Beyond Conformance Testing

ingeneral,therearethreefundamentalapproachesto

performingchannelmodeling:deterministic,stochastic,and

geometry-basedstochastic.

Withthedeterministicapproachthefullenvironment

hastobemodeledindetail(buildingmaterials,trees,ground

Figure9.SinglelinkdescriptionofGSCM-modelshowingTXandRXantennaarraysandgeometricpropertiesofthepropagation.

Tx Antenna Array

Rx Antenna ArrayPath 1

Path L

...

...

BEYOND CONFORMANCE TESTING IN 3GPP LTE 13

withintheaccuracyofmillimeters)basedonwavepropaga-

tiontheory(Maxwell’sequations).inpractice,itwouldneeda

differentmodelforeachlocationofthemobileateachgiven

time.Eachmodelrequirestrillionsofoperationstocalculate

thepropagationcharacteristics.Therefore,themodelingof

theenvironmentisintractable.

instochasticmodelingthechannelparametersare

determinedrandomlybasedonstatisticaldistributions.A

typicalexampleofastochasticmodelisthetraditionaltapped

delayline(TdL)model,whichhasbeenusedtotestnarrow-

band,singleantennasystems.TdLmodelsarenotsuitablefor

testingthenewcellularMiMosystemsduetothefactthatthe

modellacksdirectionalinformationofthepropagationpaths.

RadiochannelmodelsrecommendedforLTEbeyond

conformancetestingbelongtothefamilyofGeometry-based

StochasticChannelModels(GSCM).TheGSCMapproachac-

curatelymodelsthespatialcharacteristicsoftheMiMoradio

channel. They aremeasurement-based,multi-dimensional

modelscoveringallthenecessarydimensions(time,frequency,

space,andpolarization)oftheradiochannel.Figure9simpli-

fiesthesinglelinkmodeloftheGSCMandfigure10showsthe

physicalinterpretationoftheGSCMmodel.

GSCMsdeterminecertainchannelmodelvariablesac-

cordingtostatisticaldistributions.Thesevariablesincludefor

exampletheangleofarrival(AoA)andtheangleofdeparture

(Aod)ofthetransmittedandreceivedsignalcomponents.The

geometry-basedstochasticchannelmodelscanbeusedto

modelawiderangeofenvironmentsandsystemssupporting

variousMiMotechnologies,suchasbeamformingandspatial

multiplexing.duetothesepropertiesthesemodelshavebeen

foundtobewellsuitedtomobileenvironmentsandcanbe

usedtoperformbeyondconformancetesting.Thefollowing

sectionsintroducethekeyGSCM-basedchannelmodels.

SCM Model4.2.1

The3GPPand3GPP2initiallyspecifiedtheSpatialChannelMod-

el(SCM)asajointventurefortesting3Gsystems[4].Themain

driverfortheSCMmodelwastodefinerealisticMiMochannel

characteristics.Thesecharacteristicswererequiredinorderto

evaluatedifferentMiMoschemesforhSdPAtechnology.

BothsimpleTdLmodelsforcalibrationpurposesand

aGSCMforsystem-levelsimulationsareincludedintheSCM.

ThechannelparametersintheSCMmodelaredetermined

stochastically.Theseparametersarethenusedtoestablish

thepropagationcharacteristicsforaparticularchannel

realization.ParametersincorporatedbytheSCMinclude,e.g.,

pathloss,powerdelayprofile,shadowfading,delayspread,

anglespreadatuE,anglespreadatbasestation,uEspeed,

andantennapatterns.Therearethreedifferentscenarios

includedintheSCM,namelysuburbanmacro-cell,urban

macro-cell,andurbanmicro-cell.Eachscenariorepresentsa

uniqueenvironmentandauniquesetofconditionsforMiMo

testing.Thedifferentscenariosaremodeledbyusingthesame

approachbutdifferentparameters.Themodeltakesinto

accounttheantennaspacingintransmitterandreceiverarrays

andthenspecifiespathcharacteristicstoestablishthefading

andcorrelationbehaviorbetweendifferentantennaelements.

TheSCMmodelusesasystem-levelapproachto

emulateperformanceacrossarangeofconditionsexpected

Figure10.PhysicalinterpretationofGSCMmodel.

BEYOND CONFORMANCE TESTING IN 3GPP LTE14

inacellularsystem.Withsystem-leveltestingthescenario

issimilartothedeploymentsinarealnetwork,withmany

basestationsanduserterminalsactiveatthesametime.in

comparisontolink-leveltesting,wherealinkbetweenasingle

terminalandasinglebasestationistested,system-level

testingprovidesmorerealisticresults.

Thesystem-leveltestingwithSCMenablesthetotal

performanceofboththeuplinkandthedownlinktobe

testedatthesametime.EmulationswiththeSCMmodel

mayusemultiplebasestations,eachwithmultiplesectors

andeachsectorwithmultipleantennas.Thesebasestations

canbeconnectedtomultipleterminals,eachhavingmultiple

antennas.Eachconnectionbetweenaterminalandabase

stationismodeledwith6paths,whereeachpathcanhave

uniquecharacteristics.inordertokeepthecomputational

loadmanageableinsuchacomplexemulation,theSCM

systemlevelmodelusesa“drop”concept.Auserterminalis

placedor“dropped”indifferentlocationsinthenetworkand

theperformanceofthesystemisevaluatedineachposition.

Eachdropreflectsashortsnapshotofthefadingchannel.The

resultsgatheredfromallthedropsmirrortheoverallsystem

performance.

TheSCMsystem-levelmodelcanprovideresultsthat

aremuchclosertorealitythantheLTEconformancemodel.it

isagoodcandidateforbeyondconformancetestingpurposes

andisusedtodayforWCdMA,hSPA,WiMAXandLTEsystem-

levelevaluationandperformanceverification.however,the

SCMmodelhassomelimitationsthatmaymakeitunsuitable

forcertainscenariosofLTEtesting.

originally,theSCMmodelwasspecifiedforsystems

operatinginthe2Ghzrange.however,LTEoffersmuch

moreflexibilitywithregardtotheoperatingfrequency

bandcomparedtotheWCdMA/hSPAsystems.Thecurrent

specificationsenableLTEdeploymentinanyoftheiMT-2000

frequencybands,rangingfrom700Mhzupto2.7Ghzand

beyond.ArequirementforLTEproductsisthatthesame

levelofRFperformanceisprovidedinallbands.Since

manyofthephenomenathataffectsignalpropagationare

operatingfrequencydependent,themodelusedinbeyond

conformancetestingforLTEshouldtakeintoaccountthefull

rangeofpossibledeployments.

TheSCMmodelwasspecifiedforchannelbandwidths

upto5Mhz.LTEenablesscalingthechannelbandwidthupto

20Mhz.Withincreasingbandwidththeeffectsoffrequency

selectivefadingareenhanced.duetotheabove-mentioned

reasons,theSCMmodelmightnotprovidetruthfulresults

forLTE.Thustherearesomejustifiedconcernswithusingthe

SCMmodelforalltypesofLTEtesting.

SCME Model4.2.2

inordertoaddresssomeoftheshortcomingsofSCMthe

pan-EuropeanWirelessWorldinitiativenewRadio(WinnER)

projectproposedanextensiontotheoriginalSCMmodel[5].

ThisnewmodelbecameknownastheSCMExtended(SCME).

TheSCMEmodelisintendedforBeyond3G(B3G)system

testing.

TheSCMEduplicatesmostoftheworkdoneforthe

originalSCM,butchangessomeofthepathcharacteristicsto

produceamorerealisticmodelforB3Gsystems.TheSCME

modelallowsdistributingeachSCMpathinto3–4distinct

“mid-paths”thathaveslightlydifferentpowersanddelays.

ifalloftheoriginal6pathsoftheSCMaremodeledwith3

mid-pathstheresultingmodelwillhave18paths."Thispath

distributionproducesanimprovedfrequencycorrelation

comparedtotheoriginalSCMmodel.newcontributionsin

theSCMEmodelincludeextendingtheoperatingfrequency

rangefrom2Ghzupto6Ghz,aswellasartificiallyexpanding

thechannelbandwidthfrom5Mhzupto100Mhz.These

parametersaremorealignedwiththeparametersthatLTE

willuse.SincetheSCMEmodelprovidesgoodcorrelationto

realLTEnetworkscenarios,itcanbeusedinperformance

testingtofindtherealperformancelimitsofLTEterminaland

basestationproducts.

LTE Evaluation Model4.2.3

AsLTEwasdevelopeditbecameapparentthatanLTE-specific

channelmodelwasneededinordertoevaluatetheuser

terminalandtheLTEbasestationperformancerequirements,

radioresourcemanagementrequirements,aswellasother

systemconcepts.ThismodelbecameknownastheLTE

Evaluationmodel.

TheSCMEmodelwasinitiallyproposedtobeusedas

theLTEEvaluationmodel.however,itwaslaterdecidedthat

theSCMEmodelwouldnotbeuseddirectly,butasimplified

versionofitwouldbecreatedforLTEEvaluationpurposes.

ThefirstsimplificationcamewiththedecisiontousetheSCME

TappeddelayLine(TdL)model–whichhadinitiallybeen

createdforcalibrationandcomparisonpurposesonly–as

themodelforperformingsystemlevelemulation.Themore

preciseandrealisticSCMEmodel,basedonastochasticdrop

concept,wasdiscarded.Secondly,theMiMocharacteristics

weresimplifiedbydescribingthembycorrelationmatrices,

insteadofdirectionalpropagationparameters.

BEYOND CONFORMANCE TESTING IN 3GPP LTE 15

WiNNER Models4.2.4

TheWinnERgroupwascreatedtodefinekeyconcepts

neededforaB3Gwirelesscommunicationsystem.WinnER

hasmanyongoingresearchactivitiesonvariousB3Gtopics.

onemajortaskWinnERhasadoptedistheinvestigationofra-

diopropagationconditionsandthedevelopmentofadvanced

radiochannelmodels.inadditiontocreatingtheSCMEmodel

WinnERhascomeupwithotheradvancedmodelsaswell.

ThechannelmodelcreationwithintheWinnER

projectswasfromthestartdividedintothreephases.ineach

phaseamoreaccuratechannelmodelisproducedastheend

deliverable.Theoutcomeofthisapproachhasbeen3models:

WinnERi,WinnERiiandWinnER+(stillunderdevelopment).

TheWinnERchannelmodeltimelineisillustratedinFigure11.

AkeyfeatureoftheWinnERmodelsisthatthey

arebasedonbothradiochannelmeasurementsanddata

obtainedfromliterature.Forexample,unliketheSCME

model,whichartificiallyexpandsthemodelto100Mhz,the

WinnERmodelisbasedonreal100Mhzchannelmeasure-

ments.TheWinnERmodelsalsoprovidemoreflexibility

fortestingbyspecifyingmorescenariosthantheSCM/

SCMEmodels.TheWinnERiimodelincludes13different

scenarios,whichareobtainedbyadjustingthechannelmodel

parameters.Themodelincludespolarizationandsupports

multi-user,multi-cell,andmulti-hopnetworks.Becauseofthe

levelofdetailincludedintheWinnERmodelstheyrepresent

thereal-liferadiochannelwithunprecedentedaccuracy.For

eachscenario,therearebothGSCMforsimulationpurposes

andreduced-variabilityClustereddelayLine(CdL)modelsfor

calibrationpurposes,mostofthemhavingbothLine-of-Sight

(LoS)andnon-LoS(nLoS)features.

ThechannelmodelingworkaspartoftheWinnER

projectisaimednotonlyforWinnERinternalpurposes.The

developedchannelmodelsaregenericenoughtoalsobe

usedinotherprojectsandinstandardizationactivities[6]–[7].

AnexampleofthisisthattheWinnERiimodelhashad

considerableinfluenceonthedefinitionoftheiMT-Advanced

channelmodels.TheWinnERmodelswillmostlikelyplaya

partintheLTE-Advancedchannelmodelsaswell.

iMT-Advanced Channel Models4.2.5

TheiMT-Advancedchannelmodel(primarymodule)for

theevaluationofiMT-Advancedcandidateradiointerface

technologiesisbasedontheWinnERiichannelmodel,but

channelmodelparameterswereadjustedbasedonseveral

contributionsfromdifferentcountries.inaddition,some

simplificationsweremade.Therearefourmandatorychan-

nelmodels,namelyurbanmacro-cell(uMa),urbanmicro-cell

(uMi),indoorhotspot(inh),andruralmacro-cell(RMa),and

oneoptionalsuburbanmacro-cell(SMa).Amoredetailed

descriptionofthemodelsisavailableontheiTuwebsite[8].

Figure11.WinnERprojecttimeline.

SCM

SCME

WiNNER i

WiNNER ii

WiNNER+

d5.4

d1.1.2

WINNER I WINNER II WINNER+

2003 2004 2005 2006 2007 2008 2009 Year

BEYOND CONFORMANCE TESTING IN 3GPP LTE16

Comparison of GSCM Models4.2.6

Afeatureandanumericalcomparisonofthegeometry-based

stochasticchannelmodelsintroducedinthisWhitePaperare

illustratedinTable1andinTable2,respectively.Thecom-

parisonshowsthattheSCME,WinnERiiandiMT-Advanced

modelsarewellsuitableforLTEandLTE-Advancedbeyond

conformancetesting.

Figure12. Channelmodelevolution

2003 2004 2005 2006 2007 2008 Year

SCM

SCMEWiNNER i

WiNNER iiWiNNER+Reality

802.11n

LTE Evaluation

WiMAX Conformance

LTE Conformance

iMT-A LTE-A

Table1.FeaturecomparisonofGSCMs.

Feature SCM SCME WINNER I WINNER II IMT-Advanced

Bandwidth>_100Mhz no yes yes yes yes

indoorscenarios no no yes yes yes

outdoor-to-indoorscenario no no no yes yes

AoA/Aodelevation no no yes yes no

intra-clusterdelayspread no yes no yes yes

TdL/CdLmodelbasedonthegenericmodel no yes yes yes yes

Cross-correlationbetweenLSPs yes yes yes yes yes

Timeevolutionofmodelparameters no yes no yes no

Table2.numericalcomparisonofGSCMs.

Parameter Unit SCM SCME WINNER I WINNER II IMT-Advanced

Max.bandwidth Mhz 5 100* 100** 100** 100**

Frequencyrange Ghz 2 2–5 2–6 2–6 2–6***

no.ofscenarios 3 3 7 12 5

no.ofclusters 6 6 8-24 8-20 10-20

no.ofmid-pathspercluster 1 3–4 1 1–3 1–3

no.ofsub-pathspercluster 20 20 10 20 20

no.oftaps 6 18–24 8–24 12–24 14–24

enodeBanglespread ° 5–19 5–18 3–38 3–58 6–42

uEanglespread ° 68 62–68 10–53 16–55 30–74

RMSdelayspread ns 160–660 231–841 2–235 16–630 20–365

Shadowfadingstandarddeviation dB 4–10 4–10 1–8 3–8 3–8

*artificialextensionfrom5Mhzbandwidth**basedon100Mhzmeasurements***Ruralmacro-cell0.45–6Ghz.

Theevolutionofthevariouschannelmodels

introducedinthisWhitePaperisillustratedinFigure12.The

SCMrepresentsthefirstwidelyusedGSCMmodel,andSCME,

WinnERi,WinnERii,andWinnER+arebasedonthesame

principles,furtherevolvingthefeaturesandrealitysince

muchchannelmeasurementandpropagationresearchwas

donetoimprovethemodel.Thestandardizedmodelsare

oftensimplifiedtominimizethecomplexityandtomakethe

descriptionshorterinthespecifications.

BEYOND CONFORMANCE TESTING IN 3GPP LTE 17

SUMMARY5.

LTEconformancetestshelptoensurethatproductsconform

tothestandardanddonotcauseseriousproblemswhen

operatinginarealnetwork.however,LTEproductverification

withconformancetestingaloneisnotadequatetoassess

productquality.Beforemanufacturerslaunchtheirproducts

onthemarket,itisnecessarytoperformtestingbeyond

thebasicconformancelevelinordertoquantifythetrue

performanceoftheirproducts.

ThoseLTEproductmanufacturerswhochooseto

performLTElaboratorychannelemulationwithadvanced

channelmodels–forexampleSCM,SCMEortheWinnER

models–willgainacompetitiveadvantageintheLTEmarket.

BygoingbeyondconformancetestingtheLTEterminaland

basestationmanufacturerscanverifytheproductperfor-

mancethroughouttheproductdevelopmentcycle,aswellas

showtheexactproductcapabilitiestooperators.

Beyondconformancetestingalsoprovides

benefitsfromtheoperators’perspective.Theservicequality

experiencedbythesubscriberscangreatlyaffecttheend

userloyaltytotheoperator.inend-to-endservicedelivery,

theefficiencyoftheairinterfaceplaysacriticalrole.By

specifyingtheirowndetailedperformancetestscenariosthe

operatorscanfindthehighestqualitybasestationandmobile

terminalproductsandthereforeprovidebetterservicetoend

customers.

EB SOLUTiONS6.

EBisaglobaltechnologyleaderintesttoolsformeasuring,

modelingandemulatingwirelessenvironments.EBisactively

involvedinthedevelopmentanddefinitionofindustry

standardsforwirelesscommunicationsandutilizesthiswork

foritscustomersbydesigningandimplementingtheconfor-

manceandbeyondconformancetestingrequirementsinits

testingsolutions.TheEBPropsim™familyofradiochannel

emulatorsisusedintestingwirelessproductsthroughoutthe

entireproductdevelopmentcycle.

inpastyears,EBhasactivelycontributedspatial

channelmodelstoanumberofdifferentstandardssuchas

iTu-RiMT-Advanced,3GPP,iEEE802.16mandWiMAXForum.

EBhasactedasaleaderofachannelmodelworkpackagein

theEuropeanWirelessWorldinitiativenewRadio(WinnER)

projectandaschairmanofachannelmodeldraftinggroup

iniTu-RiMT.EVAL.Recently,WinnER-basedmodelswere

adoptedbyiTu,3GPPandiEEE.

EBPropsimradiochannelemulatorsenablethe

creationofreal-world-likewirelesscommunicationscenarios

allowingforalltheaspectsofaradiochanneltobeincluded

intheemulation,andthereforethetestingismorerealistic.

Thehighestperformanceavailableinthemarketforchannel

emulationand100percentrepeatabilityoftestscenarios

arethekeyfeaturesofEBPropsimproductsthatguarantee

realisticradiochannelemulationforwirelesscommunications

applications.

ForfurtherinformationvisittheEBwebsite:

www.elektrobit.com/what_we_deliver/wireless_test_tools/

applications/spatial_channel_modelingand

www.elektrobit.com/ebpropsim.

BEYOND CONFORMANCE TESTING IN 3GPP LTE18

REFERENCES7.

3GPPTS36.101,36.104[1]

3GPPTS36.141,36.521,36.508.36.509,36.523,36.903[2]

S.Sesia,i.Toufik,M.Baker(Editors),”LTE,TheuMTSLongTermEvolution–FromTheorytoPractice”,JohnWiley&[3]

Sons,2009.

3GPPTR25.996V6.1.0(2003-09),“Spatialchannelmodelformultipleinputmultipleoutput(MiMo)simulations,”[4]

Release6.

d.S.Baum,G.delGaldo,J.Salo,P.Kyösti,T.Rautiainen,M.Milojevic,andJ.hansen,“AninterimChannelModelfor[5]

Beyond-3GSystems,”inProc.iEEEVehicularTechnologyConferenceVTC’05-Spring,Stockholm,Sweden,May2005.

d.S.Baum,h.El-Sallabi,T.Jämsä,etal.,“Finalreportonlinklevelandsystemlevelchannelmodels”,WinnER[6]

deliverabled5.4,october2005,(http://www.ist-winner.org/)

P.Kyösti,J.Meinilä,L.hentiläetal.,“WinnERiiChannelModels”,iST-4-027756WinnERiideliverabled1.1.2,V1.2,[7]

February2008(http://www.istwinner.org/).

GuidelinesforevaluationofradiointerfacetechnologiesforiMT-Advanced,iTu-RReportM.2135,2008.Available[8]

onlineathttp://www.itu.int/iTu-R/index.asp?category=study-groups&rlink=rsg5-imt-advanced&lang=en.

BEYOND CONFORMANCE TESTING IN 3GPP LTE 19

FURTHER iNFORMATiON

EBGlobal HeadquarterTutkijantie 8Fi-90570 Oulu, FinlandTel: +358 40 344 2000Fax: +358 8 343 032Email: [email protected]: www.elektrobit.com/ebpropsim

EB Propsim Global Sales Network

Australia and New ZealandTeleResources Engineering (Aust) Pty LtdUnit 2a, 4 – 6 Aquatic driveFrenchs Forest, NSW 2086PO BOX 693, Brookvale, NSW 2100Tel: +612 9975 2230Fax: +612 9975 2240internet: www.teleres.com.au

ChinaEBBuilding A2, Beijing Guo Sheng Sci-Tech Park, No.1 Kang ding Street,BdA 100176, Beijing, ChinaTel: +86 10 6781 7020Fax: +86 10 6781 7009Email: [email protected]: www.elektrobit.com/ebpropsim

FinlandEBTutkijantie 8Fi-90570 Oulu, FinlandTel: +358 40 344 2000Fax: +358 8 343 032Email: [email protected]: www.elektrobit.com/ebpropsim

FranceMB Electronique106 Rue des Frères FarmanZi / BP 3178533 Buc Cedex, FranceTel. +33 1 39 67 67 67Fax: +33 1 39 67 67 67internet: www.mbelectronique.fr

Germany and AustriaGiGACOMP GmbHRichard-Wagner St. 3182049 Pullach, GermanyTel. +49 89 32208957Fax: +49 89 32208958internet: www.gigacomp.de

GreeceNet Technologies LtdAetideon 215561 Athens, GreeceTel: 30 210 652 3205Fax: 30 210 654 1172internet: www.nettechn.com

ItalyAmpercom S.r.l.via Torri Bianche, 10, Palazzo Betulla20059 vimercate (Mi), italyTel: +39 039 690 621Fax: +39 039 626 0037internet: www.ampercom.com

JapanEB8F, No. 2, AK Building2-8-14, ShibauraTokyo 108-0023, Tokyo, JapanTel: +81 (0)3 6436 4325Mob. +81 (0)90 2449 1546Fax: +81 (0)3 6436 4326Email: [email protected]: www.elektrobit.com/ebpropsim

KoreaComTel Technology incByucksan digital valley, iii-901, 212-13,Guro-dong, Guro-guSeoul 152-050, South KoreaTel: 82-2-8686-025/026Fax: 82-2-8686-029internet: www.comtel.kr

Spain and PortugalAyscomC/ Arte, 2128033, Madrid, SpainTel: (+34) 91 376 82 25Fax: (+34) 91 376 80 56 internet: www.ayscom.com

SwitzerlandExanovis AGMoosstrasse 3CH-3322 Schoenbuehl, SwitzerlandTel: +41 (0)31 850 25 25Fax: +41 (0)31 850 25 20internet: www.exanovis.ch

TaiwanESBi Technology inc.11F, Building B, No.201-22, dunhua N. Rd.,Songshan district, Taipei 105, TaiwanTel: +886-2-2547-2131Fax: +886-2-2545-4041internet: www.esbi.com.tw

United KingdomMobile Telecom international Ltd. 25 Old Millmeads HorshamWest Sussex RH12 2LP United KingdomTel: +44(0) 1403 276033Fax: +44(0) 1403 276033internet: www.mti-ltd.com

US and CanadaEB, US Headquarter22745 29th drive SE, Suite 200Bothell, Washington 98021, USATel: +1 425 686 3100Fax: +1 425 686 3102Email: [email protected]: www.elektrobit.com/ebpropsim

www.elektrobit.comwww.elektrobit.com