berkeley, ca 94720university of california m.a. lieberman...

30
University of California, Berkeley PLASMA TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman Department of Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720 Plasma and discharge fundamentals Charged particle and energy balance Free radical balance FlccTutorial13Nov04 1

Upload: others

Post on 15-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

TUTORIAL ONPARTICLE AND ENERGY BALANCE IN DISCHARGES

M.A. Lieberman

Department of Electrical Engineering and Computer SciencesUniversity of California

Berkeley, CA 94720

• Plasma and discharge fundamentals• Charged particle and energy balance• Free radical balance

FlccTutorial13Nov04 1

Page 2: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

PLASMAS AND DISCHARGES

• Plasmas:A collection of freely moving charged particles which is,on the average, electrically neutral

• Discharges:Driven by voltage or current sourcesCharged particle collisions with neutrals are importantThere are boundaries at which surface losses are importantIonization of neutrals sustains the plasma

• Sizes: 30 cm – 1 m• Frequencies: DC to rf (13.56 MHz) to microwaves (2.45 GHz)

FlccTutorial13Nov04 2

Page 3: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

RELATIVE DENSITIES AND ENERGIES

• Bombarding ions accelerated to high energiesacross discharge sheaths

FlccTutorial13Nov04 3

Page 4: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

ELEMENTARY DISCHARGE BEHAVIOR

• Consider uniform density of electrons and ions ne and ni at timet = 0

• Warm electrons having low mass quickly drain to the wall, settingup sheaths

• Ions accelerated to walls; ion bombarding energy Ei = plasma-wallpotential Vp

FlccTutorial13Nov04 4

Page 5: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

CENTRAL PROBLEM IN DISCHARGE MODELING

• Given Vrf (or Irf or Prf), ω, gases, pressure, flow rates, dischargegeometry (R, l, etc), then

• Find plasma densities ne, ni, temperatures Te, Ti, ion bombardingenergies Ei, sheath thicknesses, neutral radical densities, potentials,currents, fluxes, etc

FlccTutorial13Nov04 5

Page 6: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

PLASMA AND DISCHARGE FUNDAMENTALS

FlccTutorial13Nov04 6

Page 7: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

AVERAGES OVER MAXWELLIAN DISTRIBUTION• Average electron energy

〈 12mv2〉 = 1

ne

∫d3v 1

2mv2fe(v) =32kTe

• Average electron speed

v̄e =1ne

∫d3v vfe(v) =

(8kTe

πm

)1/2

• Average electron flux lost to a wall

x

y

z Γe

Γe =∫ ∞

−∞dvx

∫ ∞

−∞dvy

∫ ∞

0

dvzvzfe(v) =14nev̄e [m−2-s−1]

• Average kinetic energy lost per electron lost to a wallEe = 2 Te

FlccTutorial13Nov04 7

Page 8: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

BOLTZMANN FACTOR FOR ELECTRONS

• If electric field and pressure gradient forces almost balance:

mnedue

dt= −eneE −∇pe ≈ 0

• Let E = −∇Φ and pe = nekTe:

∇Φ =kTe

e

∇ne

ne• Put kTe/e = Te (volts) and integrate to obtain:

ne(r) = ne0 eΦ(r)/Te

Φ

x

�x

ne

ne0

FlccTutorial13Nov04 8

Page 9: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

ELECTRON COLLISIONS WITH ARGON

• Maxwellian electrons collide with Ar atoms (density ng)dne

dt= νne = Kng ne

ν = collision frequency [s−1], K(Te) = rate coefficient [m3/s]• Electron-Ar collision processes

e + Ar −→ Ar+ + 2e (ionization)e + Ar −→ e + Ar∗ −→ e + Ar + photon (excitation)e + Ar −→ e + Ar (elastic scattering) e

ArAr

e

• Rate coefficient K(Te) is average of cross section σ [m2] for process,over Maxwellian distribution

K(Te) = 〈σv〉Maxwellian

FlccTutorial13Nov04 9

Page 10: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

ELECTRON-ARGON RATE COEFFICIENTS

FlccTutorial13Nov04 10

Page 11: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

ION COLLISIONS WITH ARGON

• Argon ions collide with Ar atomsAr+ + Ar −→ Ar+ + Ar (elastic scattering)Ar+ + Ar −→ Ar + Ar+ (charge transfer)

ArAr

Ar+Ar+

Ar

Ar

Ar+

Ar+

• Total cross section for room temperature ions σi ≈ 10−14 cm2

• Ion-neutral mean free path

λi =1

ngσi

• Practical formulaλi(cm) =

1330 p

, p in Torr

FlccTutorial13Nov04 11

Page 12: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

THREE ENERGY LOSS PROCESSES

1. Collisional energy Ec lost per electron-ion pair createdKizEc = KizEiz + KexEex + Kel(2m/M)(3Te/2)

=⇒ Ec(Te) (voltage units)Eiz, Eex, and (3m/M)Te are energies lost by an electrondue to an ionization, excitation, and elastic scattering collision

2. Electron kinetic energy lost to wallsEe = 2 Te

3. Ion kinetic energy lost to walls is mainly due to the dc potential V̄s

across the sheathEi ≈ V̄s

• Total energy lost per electron-ion pair lost to wallsET = Ec + Ee + Ei

FlccTutorial13Nov04 12

Page 13: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

COLLISIONAL ENERGY LOSSES

FlccTutorial13Nov04 13

Page 14: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

BOHM (ION LOSS) VELOCITY uB

Plasma Sheath Wall

Density ns

uB

• Due to formation of a “presheath”, ions arrive at the plasma-sheathedge with directed energy kTe/2

12Mu2

i =kTe

2• At the plasma-sheath edge (density ns), electron-ion pairs are lost

at the Bohm velocity

ui = uB =(

kTe

M

)1/2

FlccTutorial13Nov04 14

Page 15: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

ION ENERGY FOR LOW VOLTAGE SHEATHS

• Ei = energy entering sheath + energy gained traversing sheath• Ion energy entering sheath = Te/2 (voltage units)• Sheath voltage determined from particle conservation in the sheath

Plasma Sheath

+ −

Γi Γi

Γe

V̄s

Insulatingwall

Density ns

Γi = nsuB , Γe =14nsv̄e︸ ︷︷ ︸ e−V̄s/Te

with v̄e = (8eTe/πm)1/2 Random fluxat sheath edge

• The ion and electron fluxes must balance

V̄s =Te

2ln

(M

2πm

)or V̄s ≈ 4.7 Te for argon

• Accounting for the initial ion energy, Ei ≈ 5.2 Te

FlccTutorial13Nov04 15

Page 16: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

AMBIPOLAR DIFFUSION AT LOW PRESSURES• Plasma bulk is quasi-neutral (ne ≈ ni = n) and the electron and

ion loss fluxes are equal (Γe ≈ Γi ≈ Γ)• Fick’s law

Γ = −Da∇n• Density profile is relatively flat in the center and falls sharply near

the sheath edge

0x

ns

n0

Γwall Γwall

l/2−l/2

• The edge-to-center density ratio is

hl ≡ns

n0≈ 0.86

(3 + l/2λi)1/2

where λi = ion-neutral mean free path• Applies for pressures < 100 mTorr in argon

FlccTutorial13Nov04 16

Page 17: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

AMBIPOLAR DIFFUSION INLOW PRESSURE CYLINDRICAL DISCHARGE

R

l

Plasmane = ni = n0

ns = hl n0

ns = hR n0

• For a cylindrical plasma of length l and radius R, loss fluxes to axialand radial walls are

Γaxial = hln0uB , Γradial = hRn0uB

where the edge-to-center density ratios are

hl ≈0.86

(3 + l/2λi)1/2

, hR ≈ 0.8

(4 + R/λi)1/2

• Applies for pressures < 100 mTorr in argon

FlccTutorial13Nov04 17

Page 18: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

CHARGED PARTICLE AND ENERGY BALANCE

FlccTutorial13Nov04 18

Page 19: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

PARTICLE BALANCE AND Te

• Assume uniform cylindrical plasma absorbing power Pabs

R

l

PlasmaPabs

ne = ni = n0

• Particle balanceProduction due to ionization = loss to the walls

Kizngn0πR2l = (2πR2hln0 + 2πRlhRn0)uB

• Solve to obtainKiz(Te)uB(Te)

=1

ngdeff, deff =

12

Rl

Rhl + lhR

• Given ng and deff =⇒ electron temperature Te

• Te varies over a narrow range of 2–5 volts• Ion bombarding energy Ei = 5.2 Te

FlccTutorial13Nov04 19

Page 20: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

ELECTRON TEMPERATURE IN ARGON DISCHARGE

FlccTutorial13Nov04 20

Page 21: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

POWER BALANCE AND n0

• Assume low voltage sheaths at all surfacesET (Te) = Ec(Te)︸ ︷︷ ︸ + 2 Te︸︷︷︸ + 5.2 Te︸ ︷︷ ︸

Collisional Electron Ion• Power balance

Power in = power out

Pabs = (hln02πR2 + hRn02πRl) uB eET

• Solve to obtain

n0 =Pabs

uBAeffeET

whereAeff = 2πR2hl + 2πRlhR

is an effective area for particle loss• Plasma density n0 is proportional to the absorbed power Pabs

• Density n0 depends on pressure p through hl, hR, and Te

• Ion flux to endwall is Γi = hln0uB

FlccTutorial13Nov04 21

Page 22: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

PARTICLE AND POWER BALANCE

• Particle balance =⇒ electron temperature Te

(independent of plasma density)

• Power balance =⇒ plasma density n0

(once electron temperature Te is known)

FlccTutorial13Nov04 22

Page 23: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

EXAMPLE 1

• Let R = 0.15 m, l = 0.3 m, ng = 3.3 × 1019 m−3

(p = 1 mTorr at 300 K), and Pabs = 800 W• Assume low voltage sheaths at all surfaces• Find λi = 0.03 m. Then hl ≈ hR ≈ 0.3 and deff ≈ 0.17 m• From the Te versus ngdeff figure, Te ≈ 3.5 V• From the Ec versus Te figure, Ec ≈ 42 V. Adding Ee = 2Te ≈ 7 V

and Ei ≈ 5.2Te ≈ 18 V yields ET = 67 V• Find uB ≈ 2.9 × 103 m/s and find Aeff ≈ 0.13 m2

• Power balance yields n0 ≈ 2.0 × 1017 m−3

• Ion current density Jil = ehln0uB ≈ 2.9 mA/cm2

• Ion bombarding energy Ei ≈ 18 V

FlccTutorial13Nov04 23

Page 24: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

EXAMPLE 2

• Apply a strong dc magnetic field along the cylinder axis=⇒ particle loss to radial wall is inhibited

• For no radial loss, deff = l/2hl ≈ 0.5 m• From the Te versus ngdeff figure, Te ≈ 3.3 V• From the Ec versus Te figure, Ec ≈ 46 V. Adding Ee = 2Te ≈ 6.6 V

and Ei ≈ 5.2Te ≈ 17 V yields ET = 70 V• Find uB ≈ 2.8 × 103 m/s and find Aeff = 2πR2hl ≈ 0.043 m2

• Power balance yields n0 ≈ 5.8 × 1017 m−3

• Ion current density Jil = ehln0uB ≈ 7.8 mA/cm2

• Ion bombarding energy Ei ≈ 17 V=⇒ Significant increase in plasma density n0

FlccTutorial13Nov04 24

Page 25: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

FREE RADICAL BALANCE

FlccTutorial13Nov04 25

Page 26: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

ONE-DIMENSIONAL SLAB MODEL

• N2 discharge with low fractional ionization (ng ≈ nN2)• Determine Te:

Assume R l = plate separation. Then ion particle balance is2nisuBA ≈ KizngnilA

where nis = hlni. This yieldsKiz(Te)uB(Te)

≈ 2hl

ngl=⇒ Te

• Determine ni and Γis:The overall discharge power balance is

Pabs ≈ 2AeET nisuBThis yields

nis ≈ Pabs

2eET uBAand

Γis ≈ nisuB

• Determine ion bombarding energyEi = 5.2 Te

FlccTutorial13Nov04 26

Page 27: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

DISSOCIATION OF REACTIVE DIATOMIC GAS

• Example of nitrogen:

e + N2Kdiss−→ 2N + e

• Assume Kdiss and Kiz have Arrhenius formsKdiss = Kdiss0 e−Ediss/Te

Kiz = Kiz0 e−Eiz/Te

• Eliminating Te from these equations yieldsKdiss = C0K

Ediss/Eiziz

where C0 = Kdiss0/KEdiss/Eiziz0 .

• Using ion particle balance to eliminate Kiz yields

Kdiss = C0

(2hluB

ngl

)Ediss/Eiz

• In this form, Kdiss depends only weakly on Te.

FlccTutorial13Nov04 27

Page 28: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

FREE RADICAL BALANCE

• Assume low fractional dissociation and that the only loss of N atomsis due to a vacuum pump Sp (m3/s)

AldnN

dt= Al 2Kdissngni − SpnNS = 0

• Solving for the free radical density at the surface

nNS =2Alng

SpKdissni

• Using ni and Kdiss found previously yields

nNS = 2C0Pabs

eET Sp

(ngl

2hluB

)1−Ediss/Eiz

Typically, Ediss/Eiz ≈ 0.3–0.5.• The flux of N atoms is

ΓNS =14nNS v̄N

where v̄N = (8kTN/πMN)1/2

FlccTutorial13Nov04 28

Page 29: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

RECOMBINATION, REACTION AND LOADING EFFECT

• Recall that:

nNS = 2C0Pabs

eET Sp

(ngl

2hluB

)1−Ediss/Eiz

• Consider a recombination coefficient γrec for N atoms on the wallsand a reaction coefficient γreac for N atoms on a substrateFor M substrates:

Sp −→ Sp + γrec14v̄N2A + γreac

14v̄NMAsubs

• Note that nNS is reduced due to recombination and reaction losses• nNS depends on the number of wafers M, a loading effect

FlccTutorial13Nov04 29

Page 30: Berkeley, CA 94720University of California M.A. Lieberman ...cden.ucsd.edu/internal/Publications/Seminar/tutorial13...TUTORIAL ON PARTICLE AND ENERGY BALANCE IN DISCHARGES M.A. Lieberman

University of California, Berkeley PLASMA

CONCLUSIONS

• Neutral particles play a key role in ionization, energy loss, and dif-fusion processes in discharges

• The particle and energy balance relations are the key to the analysisof discharge equilibrium

• The charged particle balance determines the electron temperatureand ion bombarding energy to the substrate

• The energy balance determines the plasma density and ion flux tothe substrate

• The neutral radical balance determines the flux of radicals to thesurface

FlccTutorial13Nov04 30