battery storage technology - insights from the field...controls & instrumentation for all major...

47
Copyright of Shell International 1 Battery Storage Technology - Insights from the Field Jon R. La Follett - Energy System Integration & Storage Program Lead, Shell New Energies Dustin J. Rogge - Microgrid Solutions Manager, Power, Black & Veatch

Upload: others

Post on 21-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Copyright of Shell International 1

Battery Storage Technology - Insights from the Field

Jon R. La Follett - Energy System Integration & Storage Program Lead, Shell New EnergiesDustin J. Rogge - Microgrid Solutions Manager, Power, Black & Veatch

Copyright of Shell International

Cautionary Note

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to Royal Dutch Shell plc and subsidiaries in general or to those who work for them. These terms are also used where no useful purpose is served by identifying the particular entity or entities. ‘‘Subsidiaries’’, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to entities over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to as “joint ventures” and “joint operations”, respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in an entity or unincorporated joint arrangement, after exclusion of all third-party interest.

This presentation contains forward-looking statements (within the meaning of the U.S. Private Securities Litigation Reform Act of 1995) concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “aim”, “ambition’, ‘‘anticipate’’, ‘‘believe’’, ‘‘could’’, ‘‘estimate’’, ‘‘expect’’, ‘‘goals’’, ‘‘intend’’, ‘‘may’’, ‘‘objectives’’, ‘‘outlook’’, ‘‘plan’’, ‘‘probably’’, ‘‘project’’, ‘‘risks’’, “schedule”, ‘‘seek’’, ‘‘should’’, ‘‘target’’, ‘‘will’’ and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this [report], including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. No assurance is provided that future dividend payments will match or exceed previous dividend payments. All forward-looking statements contained in this [report] are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2017 (available at www.shell.com/investor and www.sec.gov ). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, May 22, 2019. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.

Agenda

1. Safety Moment*

2. Battery Chemistries*

3. Shell Tech Center Houston Microgrid

4. Battery Use Cases

5. Takeaways and Challenges*

6. Questions?

3*Sections 1, 2, & 5 (B&V Sections) do not necessarily represent Shell's views

MS1

Slide 3

MS1 can we add something in here that says this is a B&V presentation on battery technolgoy with a case study from shell? that way we are not responsible for what is sain in Dustin's section...'Meadors, Lauren E SHLOIL-ERUP/U, 5/14/2019

Dustin J. Rogge, P.E. – Missouri, Oklahoma

4

EducationUniversity of Missouri‐Columbia; B.S. Computer Engineering, B.S. Electrical EngineeringKansas State University; M.S. Electrical Engineering

ExperienceMultiple large new combine cycle plants

Controls & Instrumentation for all major processes including Black Start Emergency Diesel GeneratorsPropose, Design, Procure, Field erection, Commissioning and Startup 

Industrial automation, robotics and process data acquisitionDesigned multiple factory assembly machines and lines, Integrated power distribution and robotic systemsCollected, stored and design assembly process database, data flows, storage solutions and presentationMaintained and troubleshooting of all automation and controls for facility

Microgrids, Arc Flash, Switchgear, Relaying and Control System RetrofitsMultiple Microgrids, DERs, and Backup Power Systems ProjectsDesigned multiple switchgear and protective relaying upgradesExtensive power system modeling and analysis

B&V Roles: Distributed Energy Resources – Microgrid Solutions ManagerMicrogrid Projects Execution including Operations and Maintenance of WHQ MicrogridMicrogrid Controls, Arc Flash and Freeze Protection Subject Matter Specialist

+1 913‐458‐[email protected]://www.linkedin.com/in/Dustin‐Rogge‐Microgrid/

Black & Veatch

5

11,000+ Professionals

110+ offices 

Six continents 

7,000 active projects worldwide.

$3.5 Billionin revenue in 2018. 

Safety Performance

0.35 Recordable Incident Rate  

0.08Lost Time Incident Rate

Power, Oil & Gas, Water, Telecommunications, Federal, Management Consulting, Atonix, Diode, Growth Accelerator Data Centers, NextGen Ag, HyperLoop, … 

Infrastructure Infographic

When we continue to Think •Plan •Act 

we will achieve Zero Injuries Today

Safety Moment ‐ Generators Standby generators can be handy during power outages. However, make sure your generator is installed with the proper isolation from the main utility circuits.The isolation helps prevent: •shocking or electrocuting a utility worker during power restoration•overheating the generator, which could cause an electrical fireThe most common isolation method is to install a double‐throw, double‐pole transfer switch.

Similarly, portable generators must also be isolated.Unless you follow code, a generator connected to an electrical outlet in your home or garage can create isolation risks above and the overloaded circuit is a fire risk in your home or garage.A safe temporary method is to use a heavy‐duty, outdoor‐rated power cord to connect the generator directly to the appliance(s).

Here are a few other tips to consider when using generators:•Avoid contact with bare wires and terminals. •Use a ground fault circuit interrupter (GFCI) in any damp or highly conductive area. •Ensure that the generator meets national and local electrical code requirements.

7

RDJ3

Slide 7

RDJ3 do you have a better safety slide?Rogge, Dustin J., 4/1/2019

Some Battery Chemistries

8

Sources: Manufacturers Literature and US DOE Energy Storage database

Vanadium based Sodium SulfurVanadium Redox Sodium Nickel ChlorideVanadium Redox Lithium basedVanadium Flow Graphite/Nickelate

Zinc based Graphite/Iron PhosphateZinc Iron Graphite/Manganese SpinelZinc air (hybrid cathode) Li‐Titanate/High Voltage NickelateZinc bromine Li Alloy/High Voltage Positive

Iron Chromium Li/SulfurLead Acid Li Metal/Li‐ion Polymer

Lead Acid Carbon Nickel Cadmium / Nickel Metal Hydride

Li Ion Batteries has have high energy and power densities

Dr. William Walker “Short Course on Lithium Ion Batteries”https://www.nasa.gov/mediacast/short‐course‐on‐lithium‐ion‐batteries‐fundamental‐concepts‐heating‐mechanisms‐and 9

Lithium Ion Batteries has seen continuous improvement

Battery costs trending downward, resembling solar PV“Learning curve” as installed capacity doubles, costs reduce ~20%

10

Battery Pricing Trend

1111

Black & Veatch12

Electric DriveTechnology

7%‐8% Year/Year BatteryPerformance Gains

Power Electronics20% More Efficient Well/Wheels

Silicon / Computing Power(Moore's Law)

>> Better Performance & Experience

Market Drivers – Technology & Performance

13

From “A Critical Review of Tradeoffs Between Centralized and Decentralized Resources” Burger etal, IEEE Power and Energy Magazine

Economies of Scale applies to Projects Too

14

From “A Critical Review of Tradeoffs Between Centralized and Decentralized Resources” Burger etal, IEEE Power and Energy Magazine

Locational Value of DERs to Grid Varies WidelyKey Take‐Away:

The “Locational Value” of DERs correlates with the level of adoption electrically near it.

Location can swing from a benefit to a system detriment.

Copyright of Shell International

Landing Page with video link – https://www.bv.com/our-work/shell-microgrid-doubles-research-lab-testing-new-energy-solutionsYouTube link to the video: https://www.youtube.com/watch?v=mjRjevdX4NA

Shell Technology Center Houston Microgrid

Energy System Integration & Storage

15

Copyright of Shell International

Jon R. La Follett, PhD

Leads the Energy System Integration & Storage (ESIS) research team in

the Shell New Energies Research & Technology department

Led the Shell Technology Center Houston Microgrid project from final

design through construction and operation. The microgrid now serves as

a key experimental test facility for the ESIS team.

He has been working in technology development at the intersection of

data science and experimental physics since 2010

Holds BS degrees in Physics and Computational Physics from Oregon

State University, and MS and PhD degrees in Physics from Washington

State University

16

[email protected]+1 281 544 9647

Copyright of Shell International

Copyright of Shell International

Where does Shell play?Market readiness & Technology Readiness Level

18

TRL 1

Cha

nnel

Pha

se

TRL 2 TRL 3 TRL 4 TRL 5 TRL 6 TRL 7 TRL 8 TRL 9

Basic principles observed and reported

Technology concept and/or application formulated

Analytical and experimental critical function and/or characteristic proof of concept

Component and/or validation in laboratory environment

Component and/or validation in relevant environment

System model or prototype demonstration in a relevant environment

System prototype demonstration in an operational environment

Actual system completed and qualified through test and demonstration

Actual system proven through successful operations

SHELL’S TECHNOLOGY PLATFORMS

RESEARCH & DEVELOPMENT

PROOF OF CONCEPT

COMMERCIALIZATION

DEPLOYMENT

R&D Universities Private Research orgs Public Research orgs National Labs

Pre-Seed and Seed funding

Series B funding Series C funding

Series A funding

Shell TechWorks

Typi

cal

Act

iviti

es

LRR & RC GameChanger Shell Ventures

Copyright of Shell International

BNEF: “Increased wind and solar generation results in more variable demand for other

energy sources to plug power supply gaps. In this environment, flexible power technologies

such as energy storage and gas generators will have an advantage. In addition,

certain types of demand response such as flexible electric vehicle charging and

variable industrial loads can respond quickly to conditions on the grid, or shift or

consume surplus renewable energy”

Key Trends

19

Rising renewable energy penetration

Decreasing cost of energy storage

Rising benefits of automation

(digitalization)

Nov 2017

MS3LFJRS

Slide 19

MS3 who is this quote from?Meadors, Lauren E SHLOIL-ERUP/U, 5/14/2019

LFJRS3 BNEF, its from the article in the pictureLa Follett, Jon R SIEP-PTX/C/L, 5/14/2019

Copyright of Shell International

Energy Storage

20

Copyright of Shell International

Energy Storage

21Footer

Copyright of Shell International

Demand Flexibility

22

Shift demand to when energy is available

Copyright of Shell International

Demand Flexibility

5/15/2019 23

BNEF - “Digitalization could enable existing assets, such as commercial loads, to provide demand response services. This is beneficial because: Little new investment needed the asset has already

been installed for another purpose Lower priced resources do not rely on DR services as

their main source of revenue”

RMI – “Using an hourly simulation of a future, highly-renewable Texas power system, we show how using demand flexibility in eight common end-use loads to shift demand into periods of high renewable availability can increase the value of renewable generation, raising revenues by 36% compared to a system with inflexible demand.”

Copyright of Shell International

ESIS Approach

24

Flexibility is becoming increasingly

critical for maintaining grid reliability as

renewable energy penetration grows.

ESIS seeks to provide Shell with world class expertise in leveraging flexibility, e.g. energy storage and

flexible demand, to optimize renewable

energy system integration through

internal research, external collaborations and pilot deployments.

Shell Ventures • Nature Based Solutions Digital Businesses City Solutions

Power

Consumer energyConnected energy

Energy accessPower trading & marketing

WindSolar and storage

New Fuels

BiofuelsHydrogen

Electric mobilityGas for transport

Copyright of Shell International

Energy System Integration and StorageOverview

25

Intermittent power output from renewables can create

challenges for balancing the grid

Demand flexibility and energy storage can enable

increased renewable penetration on the power grid

Energy System Integration Software and control technologies Technoeconomics Leverage demand flexibility and energy storage Mitigate renewable energy intermittency Mitigate impact of increasing electrification and variable power demand (e.g. electric vehicles) Increase the value of renewables Increase grid reliability

Copyright of Shell International

View of Onsite Energy Optimization Staircase

Level 0: Energy Efficiency

Level 1: Demand Management

Level 2: Generation or Energy Storage

Level 3 (Microgrid): Generation + Energy Storage

26

Increasing Capex

Incr

easi

ng R

even

ue/S

avin

gs

Peak demand management

Coincident demand management

Energy arbitrage

Ancillary services

Reduced grid consumption

Enhanced Level 1 benefits

Enhanced Level 2

benefits

Solar/wind firming and

conditioning

Reduced energy

consumption

Copyright of Shell International

STCH Microgrid Specifications Turnkey System (Black & Veatch)

North of shipping building at STCH

Specifications

Ground-mount solar PV - 300 kW AC

Li-ion battery – 250 kW / 1050 kWh

Load bank - 250 kVA

127 kW gas genset

Timeline

NTP Q1 2017

Design and procurement – Q1 to Q3 2017

Construction – Q3 to Q4 2017

Commissioning – Q4 2017

Li-ion battery commissioning – Q2 2018

27

Copyright of Shell International

Black & Veatch Microgrid Testing2017

28

Copyright of Shell International

Ramp-rate Control + Peak ShavingBattery Use Cases Battery Only Demand management Peak shaving Load shifting Demand response

Ancillary services Frequency regulation Fast frequency response

Genset Optimization via BESS

PV + Genset integration PV ramp rate control via BESS Increased self consumption of PV Power quality

Stacked use cases – what is practical?

29

Ramp-rate control + Peak

Shaving

Early evening to sunset

Copyright of Shell International

Shell Technology Center MicrogridLoad Following

30

Copyright of Shell International

Load Following Example

31

Copyright of Shell International

Load Following Example

32

Copyright of Shell International

Load Following Example

33

BESS

Copyright of Shell International

Load Following Example

34

BESSBESS

Copyright of Shell International

Load Following Example

35

BESSBESS

Copyright of Shell International

Load Following Example

BESSBESS

CONTEXT A

ND P

URPOSE

THINKING ABOUT THE “FUTURE” FOR ELECTRIC UTILITIES

Distributed, variable, sustainable resources

Secure, self‐healing, self‐optimizing grid

Consumers/businesses are both users and 

creators of energy (bi‐directional power 

distribution)

Energy‐efficient, self‐managing 

homes driven by consumer choice

Clean transportation, leveraging clean generation and storage of energy 

Self‐managing, demand responsive smart 

buildings

Unidirectional power distribution from centralized 

bulk generation

37

Summary of Lessons Learned• Consider Future Use Cases

• Anticipate Desire for Controls Changes

• Consider LTSA for More Complex Systems

• Consider Redundancy

• The best projects solve specific and multiple problems

• Structured properly, batteries are cost competitive

38

Acknowledgments• Shell 

• Dave Burns , Erik Daniel, Mike Fish, Jay Harikumaran, and Jamie Smith

• Black & Veatch• James McDaniels, Cory Rawlings, and Art Smith

39

MS4LS1

Slide 39

MS4 good practice to get their approval to use their namesMeadors, Lauren E SHLOIL-ERUP/U, 5/14/2019

LS1 I don't think they'll mind, but I'll check before I present

La Follett, Jon R SIEP-PTX/C/L, 5/14/2019

QUESTIONS?

40

“I was gratified to be ableto answer promptly, and I did. I said I didn’t know.” 

− Mark Twain (Samuel Langhorne Clemens)American author and humorist

1835‐1910

Microgrid Solutions Manager, Power – Renewable Energy – Distributed Energy11401 Lamar, Overland Park, KS 66211+1 913‐458‐[email protected]

linkedin.com/in/dustin‐rogge‐microgrid 

http://www.bv.com/markets/microgrids

Dustin J. Rogge, P.E. 20 June 2018

41

Microgrid solutions provided ~1,300 MWh of power per year to the Black & Veatch World Headquarters

Black & Veatch

Link to virtual microgrid tour: Black & Veatch Microgridhttps://www.youtube.com/watch?v=KBwKj5LKL0M&t=

42

Shell Technology Center Houston Microgrid

43

Landing Page with video link – https://www.bv.com/our‐work/shell‐microgrid‐doubles‐research‐lab‐testing‐new‐energy‐solutions

YouTube link to the video: https://www.youtube.com/watch?v=mjRjevdX4NA