battery stack management makes another leap forward · management system (bms) electronics, and...

6
S59, EN Battery Stack Management Makes another Leap Forward By Greg Zimmer Sr. Product Marketing Engineer, Signal Conditioning Products Linear Technology Corp. Any doubts about the viability of electric vehicles have long been put to rest. The primary question now is “how far, how wide and how deep will this new high-power battery technology penetrate?” Perhaps not surprisingly, no one really knows for sure. But it is interesting to consider the evolution of the battery management system (BMS) electronics, and specifically the multicell battery monitor electronics at its heart. Doing so may provide clues to the adoption rate of high voltage battery packs in applications ranging from battery backup systems to exoskeletons. Let’s consider the advances made in one family of products, Linear Technology’s LTC68xx, in terms of safety, accuracy, functionality and development tool support. In 2008, Linear Technology announced the first high performance multicell battery monitor, the LTC6802. Among its key features, this part included the ability to measure up to 12 Li-Ion cells with 0.25% maximum total measurement error within 13ms. The key capability of these multicell battery monitors is that many can be connected in series, enabling synchronized monitoring of every cell in very long, high voltage battery strings (Figure 1). Since that time, Linear Technology has followed up with the LTC6803, LTC6804 and now, its most advanced multicell battery monitor, the LTC6811. All four of these parts serve the same basic function: they measure the voltage on each battery cell of 12 series-connected cells. The evolution of this family tracks continuous improvements in functional safety, measurement accuracy and integrated functionality. Figure 1. Simplified Description of the Multicell Battery Monitor

Upload: others

Post on 04-Nov-2019

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Battery Stack Management Makes another Leap Forward · management system (BMS) electronics, and specifically the multicell battery monitor electronics at its heart. Doing so may provide

S59, EN

BatteryStackManagementMakesanotherLeapForward

ByGregZimmerSr.ProductMarketingEngineer,SignalConditioningProducts

LinearTechnologyCorp.

Anydoubtsabouttheviabilityofelectricvehicleshavelongbeenputtorest.Theprimaryquestionnowis“howfar,howwideandhowdeepwillthisnewhigh-powerbatterytechnologypenetrate?”Perhapsnotsurprisingly,noonereallyknowsforsure.Butitisinterestingtoconsidertheevolutionofthebatterymanagementsystem(BMS)electronics,andspecificallythemulticellbatterymonitorelectronicsatitsheart.Doingsomayprovidecluestotheadoptionrateofhighvoltagebatterypacksinapplicationsrangingfrombatterybackupsystemstoexoskeletons.Let’sconsidertheadvancesmadeinonefamilyofproducts,LinearTechnology’sLTC68xx,intermsofsafety,accuracy,functionalityanddevelopmenttoolsupport.

In2008,LinearTechnologyannouncedthefirsthighperformancemulticellbatterymonitor,theLTC6802.Amongitskeyfeatures,thispartincludedtheabilitytomeasureupto12Li-Ioncellswith0.25%maximumtotalmeasurementerrorwithin13ms.Thekeycapabilityofthesemulticellbatterymonitorsisthatmanycanbeconnectedinseries,enablingsynchronizedmonitoringofeverycellinverylong,highvoltagebatterystrings(Figure1).Sincethattime,LinearTechnologyhasfollowedupwiththeLTC6803,LTC6804andnow,itsmostadvancedmulticellbatterymonitor,theLTC6811.Allfourofthesepartsservethesamebasicfunction:theymeasurethevoltageoneachbatterycellof12series-connectedcells.Theevolutionofthisfamilytrackscontinuousimprovementsinfunctionalsafety,measurementaccuracyandintegratedfunctionality.

Figure1.SimplifiedDescriptionoftheMulticellBatteryMonitor

Page 2: Battery Stack Management Makes another Leap Forward · management system (BMS) electronics, and specifically the multicell battery monitor electronics at its heart. Doing so may provide

Themostdramaticprogressofthebatterymonitorelectronicsisthedevelopmentoffunctionalsafety,asdefinedbytheISO26262standard.Inessence,ISO26262systematicallyaddressespotentialhazardsinanautomobilethatcouldbecausedbythemalfunctioningbehaviorofelectronicandelectricalsystems.AlthoughtheISO26262standardinvolvesnearlyeveryphaseofproductdevelopmentanduse,thesystemdesignermustfocusonhowtocontinuouslyconfirmtheproperoperationofeveryelementthatcouldimpactsafety.Themulticellbatterymonitorplaysacentralroleinthistask,sinceincorrectvoltagesonthebatterycellsarethefirstindicatorsofapotentialproblem.Thispresentsasignificantdesignchallenge.

BuiltintotheDNAofLinearTechnologyisthedeterminationtopursuetoughanalogelectronicproblems,andautomotiveelectronicsarenoexception.Themulticellbatterymonitorsillustratetheachievementofhighreliability,highstability,andhighmeasurementaccuracy,withtheexpectationofyearsofoperationinanenvironmentofhighvoltages,extremetemperatures,hotpluggingandelectricalnoise.TheISO26262standardgoesonestepfurtherbyrequiring,amongotherthings,ananalysisofpotentialfailuresandtheirremedies.Acommonmethodwithinelectronicstorecognizeandremedypotentialfailuresistoincludeself-testcapabilityandredundancy.EvenbeforethepublicationoftheISO26262,LinearTechnologyrecognizedtheimportanceoffunctionalsafetyandincludedself-testcapabilityandinternalredundancyintheLTC6802.Eachnewgenerationofmulticellbatterymonitorsaddedandrefinedthiscapability.Thelatestdevice,theLTC6811,continuesthisprogression,withimprovementstoincreaseitsinternaldiagnosticcoverage.Thesefunctionsincludeadditionalredundantmeasurementpaths,improvedsynchronizationbetweeninputsignals,andimprovedself-testaccuracy.Theresultisquicker,simplerandmoreefficientself-teststohelpdesignersachievetheirISO26262goals.Evenfornon-automotiveapplications,thesefeaturesgivethedesignerconfidenceforwhateverhighreliabilityapplicationsthattheytarget.

TheLinearTechnologypartshavesteadilyimprovedandinnovatedincellmeasurementaccuracy.Pursuingoutstandingaccuracyhasalwaysbeenakeydesigngoalbecausepotentialmeasurementerrortranslatestolesseffectivebatterymanagement,andultimatelylesspackcapacity,reliabilityand/orlife.Significanteffortwasmadetooptimizethebuilt-involtagereference,sinceitistheprimarydeterminantofmeasurementerror.ThefirstLinearTechnologymulticellbatterymonitorsincorporatedabandgapvoltagereference.Thiswastheconventionalchoice,sincebandgapreferencesaresmall,lowpowerandlowdropout.However,abandgapreferencecanbehavelikeastraingauge,convertingmechanicalstressfromPCBassembly,thermalvariations,humidity,andlong-termdriftintomeasurableerror.Toavoidthislimitation,Linearinitiatedauniqueapproachbyaddingadedicatedsub-surfaceZenervoltagereferencetothedesign.Thesereferencesofferoutstandingstability,overtemperature,timeandotheroperatingconditions.Theresult,availabletodayintheLTC6811,istheabilitytomeasureeverybatterycelltoworst-caseaccuracyofbetterthan1.2mV(Figure2).

Page 3: Battery Stack Management Makes another Leap Forward · management system (BMS) electronics, and specifically the multicell battery monitor electronics at its heart. Doing so may provide

Figure2.OutstandingTemperatureDriftPerformanceoftheBuriedZenerVoltageReference

Furthermore,theLinearTechnologypartsensureoutstandingmeasurementaccuracy,eveninthepresenceofnoise,byfilteringthenoiseoneachbatterycellvoltage.Thisisaccomplishedbyusingdelta-sigmaanalog-to-digitalconvertersratherthanthefastSARconverters,commonlyusedinalternativeapproaches.Onceagain,LinearTechnologychosetobreakfromthepack,despitetheclearspeedadvantageofSARconverterswhenmeasuringhundredsofindividualbatterycells.Thischoicewasmadebecausetheautomotiveenvironmentischock-fullofnoiseandtransientsfrommotors,solenoids,powerinverters,etc.Allofthisnoiseaffectsmeasurementaccuracy.Withadelta-sigmaconverter,theinputissampledmanytimesoverthecourseofaconversionandthenaveraged.Theresultisbuiltinlowpassfilteringtoeliminatenoiseasasourceofmeasurementerror,wherethecutofffrequencyisestablishedbythesamplerate.Forexample,theLTC6802usesa2ndorderdelta-sigmathatoperatesatafixed1ksamplepersecond.Theresultis36dBofrejectionto10kHzswitchingnoise(Figure3).Thetrade-offhowever,isthatmeasuring12cellswiththeLTC6802requires13msec,whichistooslowforsomeapplications.1Nonetheless,usingadelta-sigmaconverterhasremainedthemostpracticalmethodforachievingaccuratecellmeasurementinthenoisyrealworld.Forthisreason,Linearhascontinuouslyimproveditsdelta-sigmaapproach.Today,theLTC6811usesamuchfaster3rdorderdelta-sigmaADCwithprogrammablesampleratesand8selectablecutofffrequencies.Theresultisoutstandingnoisereductionand8programmablemeasurementrates(Figure4),enablingmeasurementofall12batterycellsasfastas290µsec.

1 Although the SAR ADC topology allows for faster data conversions, the usefulness of the resulting data is questionable in a noisy system. For the same amount of 10kHz noise rejection as the LTC6802, a 1M sample per sec SAR converter would require a single-pole RC filter on each cell, with a corner frequency of 160Hz (Figure 3). The 12-bit settling time of the RC filter is 8.4msec. Therefore, even though a SAR converter can sequence through 10 channels in 10µsec, scanning more than once every 8.4msec is pointless because of the response of the filter.

Page 4: Battery Stack Management Makes another Leap Forward · management system (BMS) electronics, and specifically the multicell battery monitor electronics at its heart. Doing so may provide

Figure3.LTC6802Delta-sigmaConvertervs.SARConverterwithRCCircuit.

Figure4.LTC6811DeltaSigmaConverter

Finally,itisinterestingtonotehowthefunctionalityofthemulticellbatterymonitorhasexpanded.Aspreviouslymentioned,theprimarytaskofamulticellbatterymonitoristoaccuratelymeasurecellvoltagesandcommunicatethisinformationtoahostprocessor.Furthermore,itisbestthatthemulticellbatterymonitornotincludeinternalsoftware,asthiscouldpresentapotentialconflictwiththesystem-levelbatterymanagement;thetaskofcollectingdatafromallofthecellsanddeterminingthestateofchargeorstateofhealthshouldbeaccomplishedbythemainBMSprocessor.However,themulticellbatterymonitorresidesatthemostcriticallocationinthebatterysystem,directlyconnectedtothecells.Here,itisinanidealpositiontomonitorotherbatterysensors,suchascurrentortemperature,andcloselycorrelatethesevaluestocellmeasurements.Forthisreason,themulticellbatterymonitorcanactasacentralhubbetweentheBMSmicroprocessorandperipheraldevices.

Forexample,theLTC6811offersveryflexiblegeneralpurposeI/Othatcanoperateasdigitalinputs,digitaloutputs,orasanaloginputs.Whenoperatedasanaloginputs,theLTC6811canmeasureanyvoltagefromV-to5Vwiththesamemeasurementaccuracyasthecellmeasurements.TheLTC6811canthensynchronizetheseexternalsignals,orthefull12-cellstackvoltage,tothecellvoltagemeasurements.Alternatively,thegeneralpurposeI/OcanbeusedinadigitalmodetocontrolI2CorSPIslavedevices.ThisenablestheLTC6811tocontrolmorecomplexfunctions,suchasmultiplexersforexpandedanaloginputsorEEPROMtostorecalibrationinformation.

TheLTC6811hasadvancedcellbalancingcapability.UsingtheSPImasterfeature,theLTC6811cancontrolLinearTechnology’sSPI-basedactivebalancingIC,theLTC3300.TheLTC6811includesinternalpassivebalancingFETSthatcandischargeindividualcells,ordirectlycontrollargerhigh-powerexternalFETs.TheLTC6811hastheabilitytoconfigureeachcelldischargepintooperatewithanindependentperiod.Thisenablesbalancingeachcelluniquelyoverlongperiods,whilethemulticellbatterymonitorisnotactive.Finally,eachpassivebalancingpincanbeusedasaserialinterface.ThisisparticularlyusefulforinterfacingtoLinearTechnology’sLT8584monolithicactivecellbalancers,whereactivebalancingcanbecontrolledandcurrentandtemperaturecanbemonitoredforeachindividualbatterycell.

Page 5: Battery Stack Management Makes another Leap Forward · management system (BMS) electronics, and specifically the multicell battery monitor electronics at its heart. Doing so may provide

Tointegrateallofthisfunctionalityandshortendevelopmenttime,theLTC6811isfullysupportedbyLinearTechnology’sLinduino™One(Figure5).TheLinduinoOneisanArduinoUnocompatiblemicrocontrollerboardthatisfullyUSBisolatedandconnectsdirectlytoanLTC6811demonstrationboard.Withanonboardbootloaderforquickin-circuitfirmwareupdates,thisplatformprovidesasimple,stablehardwaredevelopmentplatform.SinceArduinoisanopensourceplatform,BMSdesignershaveeasyaccesstothesimpleandpowerfulArduinointegrateddevelopmentenvironment(IDE).Alibraryofcode,calledthebmsSketchbook,providesLTC6811samplecodedesignedtocompileinanystandardCcompiler.Forexample,thebmsSketchbookincludesroutinestoreadandwriteconfiguration,readandwritecellvoltages,runself-tests,redundancytestsandcontrolthepassivebalancing.

Figure5.LinduinoDevelopmentSystem

Conclusion

Since2008,LinearTechnologyhasreleasedfourgenerationsofmulticellbatterymonitors.Thesafetyfeatures,accuracyandfunctionalityofthesedeviceshaveevolvedsignificantlyoverthisperiod,illustratingthegrowingimportanceoftheseICsinhighperformancebatterymanagement.Inaddition,newtoolssimplifyandstandardizetheirintegrationintobatterymanagementsystems,irrespectiveoftheendapplication.LinearTechnology’smostadvancedmulticellbatterymonitor,theLTC6811,asshowninFigure6,providesanimpressivesetoffeaturesforpracticallyanyhighvoltage,highpoweredbatterysystem.

Page 6: Battery Stack Management Makes another Leap Forward · management system (BMS) electronics, and specifically the multicell battery monitor electronics at its heart. Doing so may provide

Figure6.LinearTechnology’sLTC6811:A4thGenerationMulticellBatteryMonitor