atom 20100909 d-wave unit cell overview i richard harris

54
Experimental Investigation of an Eight Qubit Unit Cell in a Superconducting Optimization Processor Part I: Hardware Design Richard Harris, Fabio Altomare, Andrew Berkley, Paul Bunyk, Suz Gildert, Mark Johnson, Eric Ladizinsky, Trevor Lanting and Elena Tolkacheva D-Wave Systems Inc. Burnaby, BC Canada September 2010 Primary Reference: Harris et al., Phys. Rev. B 82, 024511 (2010) Copyright, D-Wave Systems (2010) QA Processor Design September 2010 1 / 45

Upload: sudheer-reddy

Post on 19-Jan-2016

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Experimental Investigation of an Eight Qubit Unit Cell

in a Superconducting Optimization ProcessorPart I: Hardware Design

Richard Harris, Fabio Altomare, Andrew Berkley, Paul Bunyk,Suz Gildert, Mark Johnson, Eric Ladizinsky, Trevor Lanting

and Elena Tolkacheva

D-Wave Systems Inc.Burnaby, BC Canada

September 2010

Primary Reference: Harris et al., Phys. Rev. B 82, 024511 (2010)

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 1 / 45

Page 2: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Outline

1 Introduction to Quantum Annealing (QA)

2 Analog Components of a QA ProcessorQubits (Quantum Ising Spins)Interqubit CouplersPersistent Current CompensationInductance TunerReadoutSchematic Layout of Analog Components

3 Scalable Control and Readout Architecture

4 Summary

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 2 / 45

Page 3: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Introduction to Quantum Annealing (QA)

Outline

1 Introduction to Quantum Annealing (QA)

2 Analog Components of a QA ProcessorQubits (Quantum Ising Spins)Interqubit CouplersPersistent Current CompensationInductance TunerReadoutSchematic Layout of Analog Components

3 Scalable Control and Readout Architecture

4 Summary

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 3 / 45

Page 4: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Introduction to Quantum Annealing (QA)

Spin-1/2 in a Magnetic Field

An otherwise free spin-1/2 subjected to a magnetic field:

H=0 H=-gµBBσz

B=Bz

Spin-1/2

cc

c

c,

Energy eigenstates are coincident with the spin basis (| ↓〉,| ↑〉),independent of field orientation.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 4 / 45

Page 5: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Introduction to Quantum Annealing (QA)

Ising Spin in a Magnetic Field

Consider a spin-1/2 at the center of a tetragonal crystal unit cell. Crystalfield (symmetry) constrains spin to point along longest axis.

H=Hcf H=-gµB(Bllσz+Btσx)

Bll

cc

cc

,

Bt

Spin-1/2 in a

tetragonal crystal

α +β

cc

β −α

Field orientation matters:

For Bt ≫ B||, ground state is (| ↓〉 + | ↑〉)/√

2.

For Bt ≪ B||, ground state is either | ↓〉 or | ↑〉.Copyright, D-Wave Systems (2010) QA Processor Design September 2010 5 / 45

Page 6: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Introduction to Quantum Annealing (QA)

Ising Spin Glass (ISG)

A non-magnetic crystal with randomly distributed spin-1/2 dopants.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 6 / 45

Page 7: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Introduction to Quantum Annealing (QA)

Ising Spin Glass (ISG)

A non-magnetic crystal with randomly distributed spin-1/2 dopants.

J12

J23

J13

HISG =∑

i ,j>i

Jijσ(i)z σ

(j)z

Spin-spin interactions give rise to interactions Jij with random sign andmagnitude. Ground state is disordered (glassy).

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 6 / 45

Page 8: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Introduction to Quantum Annealing (QA)

Finding the Ground State via Quantum Annealing (QA)

Finding the ground state of an ISG is experimentally challenging. Oneapproach is to use Bt to perform quantum annealing (QA):

BtpJij/gµB

J12

J23

J13

HQSG ≈ −gµBBt

i

σ(i)x

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 7 / 45

Page 9: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Introduction to Quantum Annealing (QA)

Finding the Ground State via Quantum Annealing (QA)

Finding the ground state of an ISG is experimentally challenging. Oneapproach is to use Bt to perform quantum annealing (QA):

Bt ~ Jij/gµB

J12

J23

J13

HQSG =∑

i ,j>i

Jijσ(i)z σ

(j)z − gµBBt

i

σ(i)x

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 7 / 45

Page 10: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Introduction to Quantum Annealing (QA)

Finding the Ground State via Quantum Annealing (QA)

Finding the ground state of an ISG is experimentally challenging. Oneapproach is to use Bt to perform quantum annealing (QA):

Bt`Jij/gµB

J12

J23

J13

HQSG ≈∑

i ,j>i

Jijσ(i)z σ

(j)z

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 7 / 45

Page 11: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Introduction to Quantum Annealing (QA)

Finding the Ground State via Quantum Annealing (QA)

Finding the ground state of an ISG is experimentally challenging. Oneapproach is to use Bt to perform quantum annealing (QA):

Bt=0

J12

J23

J13

HISG =∑

i ,j>i

Jijσ(i)z σ

(j)z

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 7 / 45

Page 12: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Introduction to Quantum Annealing (QA)

Finding the Ground State via Quantum Annealing (QA)

Finding the ground state of an ISG is experimentally challenging. Oneapproach is to use Bt to perform quantum annealing (QA):

Bt=0

J12

J23

J13

For QA experiments on a bulk ISG (LiHox Y1−xF4) see Brooke et al.,Science 284, 779 (1999).

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 7 / 45

Page 13: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Introduction to Quantum Annealing (QA)

Application of Ising Spin Glass Physics

There are commercial applications, such as optimization and machine

learning, that involve solving problems of the form

E (~s) = −∑

i

hisi +∑

i ,j>i

Kijsi sj , (1)

where si = ±1 and −1 ≤ hi , Kij ≤ +1. The optimal solution ~sgs minimizes

E (~s). Substituting si → σ(i)z yields an ISG Hamiltonian

HISG(t)

E0(t)= −

i

hiσ(i)z +

i ,j>i

Kijσ(i)z σ

(j)z , (2)

where E0(t) has units of energy. Now |~sgs〉 is the ground state of an ISG.Applying a global transverse field ∝ Γ(t) allows one to implement QA:

HQSG(t)

E0(t)= −

i

hiσ(i)z +

i ,j>i

Kijσ(i)z σ

(j)z − Γ(t)

i

σ(i)x . (3)

See Farhi et al., Science 292, 472 (2001) for details.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 8 / 45

Page 14: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Introduction to Quantum Annealing (QA)

Why Implement QA?

Reason 1:

QA is a physically motivated method of harnessing quantum resources.Moreover, thermodynamics need not always thwart the intendedcomputation [see Amin et al. Phys. Rev. Lett. 100, 060503 (2008)].

Reason 2:

Valuable real-world optimization problems can be cast as an Ising spinglass. Why not build hardware that excels at solving such problems?

Reason 3:

Implementing QA is an excellent warmup exercise before implementingeven harder architectures. For example, universal adiabatic quantumcomputation [see Biamonte and Love, Phys. Rev. A 78, 012352 (2008)].

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 9 / 45

Page 15: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor

Outline

1 Introduction to Quantum Annealing (QA)

2 Analog Components of a QA ProcessorQubits (Quantum Ising Spins)Interqubit CouplersPersistent Current CompensationInductance TunerReadoutSchematic Layout of Analog Components

3 Scalable Control and Readout Architecture

4 Summary

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 10 / 45

Page 16: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor

Implementing a Programmable QSG

D-Wave builds programmable hardware whose low energy Hamiltonian

HQSG(t)

E0(t)= −

i

hiσ(i)z +

i ,j>i

Kijσ(i)z σ

(j)z − Γ(t)

i

σ(i)x

can be used for solving optimization problems. We have adopted atop-down approach in which the QSG architecture drives the design.

Specific ingredients that must be incorporated into the hardware:

Quantum Ising spins (qubits) that can be annealed (Γ).

Local biases on each spin (hi ).

Tunable couplings between spins (Kij ).

A means of unambiguously reading the final spin configuration |~s〉.

Additional constraints:

The design must be robust against realistic fabrication variations.

The design must be realistically scalable up to 1000’s of qubits.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 11 / 45

Page 17: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Qubits (Quantum Ising Spins)

Outline

1 Introduction to Quantum Annealing (QA)

2 Analog Components of a QA ProcessorQubits (Quantum Ising Spins)Interqubit CouplersPersistent Current CompensationInductance TunerReadoutSchematic Layout of Analog Components

3 Scalable Control and Readout Architecture

4 Summary

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 12 / 45

Page 18: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Qubits (Quantum Ising Spins)

rf-SQUID Flux Qubit

A Josephson junction of critical current Icin a superconducting loop of inductanceLbody . Loop is subjected to an externalflux bias Φx

q ≈ Φ0/2 (Φ0 ≡ h/2e ).

IcFq

x

jq

Lbodycc

c

Persistent current Ipq ∝ phase drop ϕq:

I pq ≡ Ic sin (ϕq) =

Φ0ϕq/2π − Φxq

Lbody

-3 -2 -1 0 1 2 30

5

10

15

20

Iq (mA)p

E/h

(G

Hz)

cc

Fq = F0/2x

-3 -2 -1 0 1 2 30

5

10

15

20

Iq (mA)p

E/h

(G

Hz)

cc

Fq t F0/2x

Bistable potential supports two countercirculating states | ↓〉 and | ↑〉.Copyright, D-Wave Systems (2010) QA Processor Design September 2010 13 / 45

Page 19: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Qubits (Quantum Ising Spins)

Flux Qubits as Quantum Ising Spins

Low energy Hamiltonian is that of a qubit or a quantum Ising spin:

Hq = −1

2[ǫqσz + ∆qσx ]

ǫq = 2∣

∣I pq

(

Φxq − Φ0/2

)

-3 -2 0 2 30

5

10

15

20

Iq (mA)p

E/h

(G

Hz)

eq

1eq

2+Dq2

Fq t F0/2x

-|Iq|p +|Iq|

p

Parameter Qubit Quantum Ising Spin

ǫq Bias Energy Longitudinal Field (×gµB)∆q Tunneling Energy Transverse Field (×gµB)∣

∣Ipq

∣ Persistent Current gµB

∣Ipq

∣ and ∆q are the defining properties of any flux qubit.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 14 / 45

Page 20: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Qubits (Quantum Ising Spins)

CCJJ Flux Qubit

We use a compound-compound Josephson junction (CCJJ) rf SQUID inour designs. One can define a net phase ϕq across the entire CCJJ:

I1 I2FL

x Fqx

jq

I3 I4FR

xFccjj

x

Lbody

Lccjj/2 Lccjj/2

Ic

Fqx

jq

Lbody@Ic=Fcn(FL,FR,Fccjj)

xx x

Key advantages of the CCJJ rf SQUID flux qubit:

The flux Φxccjj allows one to tune ∆q (transverse field).

The flux biases (ΦxL,Φx

R) can be used to mitigate the effects ofvariations in junction critical current, I1 6= I2 6= I3 6= I4.One can homogenize the net Ic(Φ

xL,Φx

R) between multiple CCJJ fluxqubits by carefully choosing (Φx

L,ΦxR).

See Harris et al. Phys. Rev. B, 81 134510 (2010) for details.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 15 / 45

Page 21: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Qubits (Quantum Ising Spins)

CCJJ Flux Qubit Parameters

The CCJJ flux qubit provides tunable ∆q(Φxccjj) [transverse field].

However,∣

∣Ipq

(

Φxccjj

)∣

∣[gµB ] is also altered by this control.

Hq = −1

2[ǫqσz + ∆qσx ] , ǫq = 2

∣I pq

(

Φxq − Φ0

q

)

−0.63 −0.625 −0.62 −0.615 −0.6110

5

106

107

108

109

1010

Φx

ccjj/Φ0

∆q/h

(Hz)

Bistable1QLZ

2QLZΦx

ccjj Locked

2QLZΦx

ccjj Unlocked

−0.65 −0.64 −0.63 −0.62 −0.61 −0.6 −0.590

0.25

0.5

0.75

1

1.25

1.5

Bistable Monostable

Φx

ccjj/Φ0

|Ip q|(

µA

) q0

q1

q2

q3

q4

q5

q6

q7

Living with this latter phenomenon adds complexity to implementing QAwith flux qubits [see Harris et al., Phys. Rev. B 82, 024511 (2010)].

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 16 / 45

Page 22: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Interqubit Couplers

Outline

1 Introduction to Quantum Annealing (QA)

2 Analog Components of a QA ProcessorQubits (Quantum Ising Spins)Interqubit CouplersPersistent Current CompensationInductance TunerReadoutSchematic Layout of Analog Components

3 Scalable Control and Readout Architecture

4 Summary

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 17 / 45

Page 23: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Interqubit Couplers

Interqubit Couplers

Mij

Coupler

{

Qubit i Qubit j

FcoxMco,l Mco,r

3 2 1 0 1 2 30

5

10

15

20

3 2 1 0 1 2 30

5

10

15

20

0 0.2 0.4 0.6−4

−2

0

2

+MAFM

−MAFM

Φxco/Φ0

Mij

(pH

)

A two-junction rf SQUID provides a sign and magnitude tunable mutualinductance

Mij = Mco,lMco,rχij (Φxco) ,

where χij (Φxco) represents a tunable linear magnetic susceptibility (units of

H−1). Maximum antiferromagnetic (AFM) coupling strength is denoted asMAFM. We generally restrict operation −MAFM . Mij ≤ MAFM.

See Harris et al. Phys. Rev. B, 80 052506 (2009) for details.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 18 / 45

Page 24: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Interqubit Couplers

A Network of Inductively Coupled Flux Qubits

Combining multiple qubits and couplers yields a QSG. The low energyHamiltonian for general bias conditions can be written as

H0(t) = −1

2

i

[

ǫi (t)σ(i)z + ∆q(t)σ

(i)x

]

+∑

i ,j>i

Jij(t)σ(i)z σ

(j)z . (4)

ǫi(t) ≡ 2∣

∣I pq (t)

(

Φxi (t) − Φ0

i

)

Jij ≡ Mij

∣I pq (t)

2

Eq. (4) has terms of the same symmetry as the QSG Hamiltonian:

H0(t)

E0(t)= −

i

hiσ(i)z +

i ,j>i

Kijσ(i)z σ

(j)z − Γ(t)

i

σ(i)x (5)

One then needs to choose a convenient E0(t) to map problem instances(hi , Kij) onto the hardware controls Φx

i (t) and Mij . Living with flux qubits(not ‘real’ quantum Ising spins) requires additional hardware . . .Copyright, D-Wave Systems (2010) QA Processor Design September 2010 19 / 45

Page 25: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Persistent Current Compensation

Outline

1 Introduction to Quantum Annealing (QA)

2 Analog Components of a QA ProcessorQubits (Quantum Ising Spins)Interqubit CouplersPersistent Current CompensationInductance TunerReadoutSchematic Layout of Analog Components

3 Scalable Control and Readout Architecture

4 Summary

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 20 / 45

Page 26: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Persistent Current Compensation

Mapping ISG Problems onto Hardware (1)

Let us complete the mapping of problem instance specifications ontohardware settings: (hi , Kij ) → (Φx

i (t), Mij). Define E0(t) ≡ MAFM|I pq (t)|2,

where MAFM is the maximum AFM interqubit coupling.

H0(t)

E0(t)= −

i

hiσ(i)z +

i ,j>i

Kijσ(i)z σ

(j)z − Γ(t)

i

σ(i)x (6a)

Simply solving for QSG parameters hi , Kij , and Γ(t) yields the following:

hi =ǫi(t)

2E0(t)=

Φxi (t) − Φ0

i

MAFM|I pq (t)| (6b)

Kij =Jij(t)

E0(t)=

MAFM(6c)

Γ(t) =∆q(t)

2E0(t)=

∆q(t)

2MAFM|I pq (t)|2 (6d)

Consider the forms of hi , Kij , and Γ(t) carefully . . .Copyright, D-Wave Systems (2010) QA Processor Design September 2010 21 / 45

Page 27: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Persistent Current Compensation

Mapping ISG Problems onto Hardware (2)

First, look at the transverse component that is meant to facilitate QA:

Γ(t) =∆q(t)

2E0(t)=

∆q(t)

2MAFM|I pq (t)|2

−0.63 −0.625 −0.62 −0.615 −0.6110

5

106

107

108

109

1010

Φx

ccjj/Φ0

∆q/h

(Hz)

Bistable1QLZ

2QLZΦx

ccjj Locked

2QLZΦx

ccjj Unlocked

−0.65 −0.64 −0.63 −0.62 −0.61 −0.6 −0.590

0.25

0.5

0.75

1

1.25

1.5

Bistable Monostable

Φx

ccjj/Φ0

|Ip q|(

µA

) q0

q1

q2

q3

q4

q5

q6

q7

Sweeping the flux bias Φxccjj from right to left in time t ensures that

Γ(t = 0) ≫ 1 and Γ(t = tf ) ≪ 1, thus implementing QA.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 22 / 45

Page 28: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Persistent Current Compensation

Mapping ISG Problems onto Hardware (3)

Next, look at the problem instance parameters:

Kij =Jij(t)

E0(t)=

MAFM

hi =ǫi(t)

2E0(t)=

Φxi (t) − Φ0

i

MAFM|I pq (t)|

−0.65 −0.64 −0.63 −0.62 −0.61 −0.6 −0.590

0.25

0.5

0.75

1

1.25

1.5

Bistable Monostable

Φx

ccjj/Φ0

|Ip q|(

µA

) q0

q1

q2

q3

q4

q5

q6

q7

The problem parameters hi and Kij are supposed to be time-independent.This comes out very naturally for Kij , but not so for hi .

There is an imbalance in hi since ǫi (t) ∝∣

∣Ipq (t)

∣ while Jij(t) ∝∣

∣Ipq (t)

2.

One needs to correct this with Φxi (t) − Φ0

i ∝∣

∣Ipq (t)

∣.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 23 / 45

Page 29: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Persistent Current Compensation

Persistent Current Compensator (IPC)

Flux bias needed to implement persistent current compensation on qubit i :

Φxi (t) = hi × MAFM|I p

q (t)| + Φ0i . (7)

Φ0i is a trivial static flux offset (more later). Supply the time-dependent

portion via an external current bias Ig (t) = α|I pq (t)| (where α ≫ 1)

through a tunable mutual inductance

Mi(ΦxIPC ) = hi MAFM/α (8)

Ig(t)Mi

{

IPC

FIPCx

Fqx

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

ΦxIp,i/Φ0

Mi(p

H)

+MAFM/α

−MAFM/α

M0

M1

M2

M3

M4

M5

M6

M7

For complete details, see Harris et al., Phys. Rev. B 82, 024511 (2010).

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 24 / 45

Page 30: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Inductance Tuner

Outline

1 Introduction to Quantum Annealing (QA)

2 Analog Components of a QA ProcessorQubits (Quantum Ising Spins)Interqubit CouplersPersistent Current CompensationInductance TunerReadoutSchematic Layout of Analog Components

3 Scalable Control and Readout Architecture

4 Summary

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 25 / 45

Page 31: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Inductance Tuner

Inductance Tuner

Interqubit couplers inductively load the qubits. Changing coupler χi will

change Lq, thus altering ∆q(Φxccjj) (transverse field) and

∣Ipq (Φx

ccjj)∣

∣(gµB).

χ1 χn

FLTFLTx

Mco,1 Mco,n

=LbodyLccjj/2 Lccjj/2

−0.4 −0.2 0 0.2 0.40

4

8

12

16

ΦxLT /Φ0

δLq

(pH

)

Provide an inductance tuner (LT) with which one can compensate Lq to

render ∆q(Φxccjj) and

∣Ipq (Φx

ccjj)∣

∣independent of coupler settings.

Lq = Lbody + Lccjj/4 +

n∑

i=1

M2co,iχi +

LLT

cos(

πΦxLT /Φ0

) (9)

See Harris et al. Phys. Rev. B, 81 134510 (2010) for details.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 26 / 45

Page 32: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Readout

Outline

1 Introduction to Quantum Annealing (QA)

2 Analog Components of a QA ProcessorQubits (Quantum Ising Spins)Interqubit CouplersPersistent Current CompensationInductance TunerReadoutSchematic Layout of Analog Components

3 Scalable Control and Readout Architecture

4 Summary

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 27 / 45

Page 33: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Readout

QFP-Enabled Readout

Qubits are localized into | ↓〉 or | ↑〉 by the QA algorithm (∆q → 0). Weuse a quantum flux parametron (QFP) as a type of preamplifier of thequbit’s final state to boost the fidelity to in excess of 99.99% in practice.

iro(t)

QFP

vro(t)

Qubit dc SQUID

Flatchx

Frox

c

c

Basic readout operation:1 QFP is annealed in the presence of | ↓〉 or | ↑〉 by ramping Φx

latch fromΦ0/2 to Φ0, thus latching QFP state into its own | ↓〉 or | ↑〉.

2 ‘Latched’ state of QFP is then read by a dc SQUID usingconventional switching measurement.

See Berkley et al., arXiv:0905.0891 (2009) for details.(accepted in Supercond. Sci. Technol.)

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 28 / 45

Page 34: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Schematic Layout of Analog Components

Outline

1 Introduction to Quantum Annealing (QA)

2 Analog Components of a QA ProcessorQubits (Quantum Ising Spins)Interqubit CouplersPersistent Current CompensationInductance TunerReadoutSchematic Layout of Analog Components

3 Scalable Control and Readout Architecture

4 Summary

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 29 / 45

Page 35: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Schematic Layout of Analog Components

Ingredients for a QA Processor

The complete qubit has a CCJJ, L tuner (LT),∣

∣Ipq

∣ compensator (IPC),and readout (RO). Each qubit is subjected to two time-dependent currentbiases, Ig (t) that provides the

∣Ipq

∣-compensation signal and ICCJJ thatprovides the annealing signal Φx

ccjj(t).

Fccjjx

Ig

CCJJ

LT

IPC

RO

CouplerQubit

Qubits need to be arranged on a lattice connected by couplers to form aQA processor . . .

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 30 / 45

Page 36: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Schematic Layout of Analog Components

Schematic Layout - Eight Qubit Unit Cell

q0

RO

CCJJ

LT

IPC

Take the CCJJ rf SQUID and stretch out its body.Replicate four vertical qubits q0 → q3 spaced evenly apart.Overlay four horizontal qubits q4 → q7.Overlay internal couplers (ICO) at intersections of qubit bodies.Overlay portions of external couplers (XCO) at extrema of qubits.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 31 / 45

Page 37: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Schematic Layout of Analog Components

Schematic Layout - Eight Qubit Unit Cell

q0 q1 q2 q3

RO

CCJJ

LT

IPC

Take the CCJJ rf SQUID and stretch out its body.Replicate four vertical qubits q0 → q3 spaced evenly apart.Overlay four horizontal qubits q4 → q7.Overlay internal couplers (ICO) at intersections of qubit bodies.Overlay portions of external couplers (XCO) at extrema of qubits.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 31 / 45

Page 38: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Schematic Layout of Analog Components

Schematic Layout - Eight Qubit Unit Cell

q0 q1 q2 q3q4

q5

q6

q7

RO

CCJJ

LT

IPC

Take the CCJJ rf SQUID and stretch out its body.Replicate four vertical qubits q0 → q3 spaced evenly apart.Overlay four horizontal qubits q4 → q7.Overlay internal couplers (ICO) at intersections of qubit bodies.Overlay portions of external couplers (XCO) at extrema of qubits.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 31 / 45

Page 39: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Schematic Layout of Analog Components

Schematic Layout - Eight Qubit Unit Cell

q0 q1 q2 q3q4

q5

q6

q7

RO

CCJJ

LT

ICO

IPC

Take the CCJJ rf SQUID and stretch out its body.Replicate four vertical qubits q0 → q3 spaced evenly apart.Overlay four horizontal qubits q4 → q7.Overlay internal couplers (ICO) at intersections of qubit bodies.Overlay portions of external couplers (XCO) at extrema of qubits.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 31 / 45

Page 40: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Schematic Layout of Analog Components

Schematic Layout - Eight Qubit Unit Cell

q0 q1 q2 q3q4

q5

q6

q7

RO

CCJJ

LT

ICO

XCO

XCOIPC

Take the CCJJ rf SQUID and stretch out its body.Replicate four vertical qubits q0 → q3 spaced evenly apart.Overlay four horizontal qubits q4 → q7.Overlay internal couplers (ICO) at intersections of qubit bodies.Overlay portions of external couplers (XCO) at extrema of qubits.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 31 / 45

Page 41: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Analog Components of a QA Processor Schematic Layout of Analog Components

Schematic Layout - Multiple Unit Cells

Larger processors are made by tiling the unit cell to the top, bottom, left,and right. Shown is a 128-qubit 352-coupler array.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 32 / 45

Page 42: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Scalable Control and Readout Architecture

Outline

1 Introduction to Quantum Annealing (QA)

2 Analog Components of a QA ProcessorQubits (Quantum Ising Spins)Interqubit CouplersPersistent Current CompensationInductance TunerReadoutSchematic Layout of Analog Components

3 Scalable Control and Readout Architecture

4 Summary

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 33 / 45

Page 43: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Scalable Control and Readout Architecture

Scalable Control and Readout Architecture

A 128-qubit processor requires 1632 control signals to operate. It is notpractical to rout one external bias per signal for many reasons:

Processor must be thermalized to a mixing chamber of a dilutionrefrigerator, limited heat load.

Processor active circuit size O(mm2), limited room for passing signalsonto chip (wirebonds).

Limited space on chip available for wiring channels. Crosstalk is aserious issue.

One needs to adopt more efficient strategies for controlling the processor:

Use programmable on-chip non-volatile memory to supplytime-independent biases.

Share currents for time-dependent biases among multiple devices(works with superconducting circuits).

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 34 / 45

Page 44: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Scalable Control and Readout Architecture

Control of Qubits and Couplers

Required signals:

5 static (but programmable) flux biases per qubit, 1 per coupler.

2 time-dependent current biases per qubit.

CCJJ Minor

DAC

CCJJ Minor

DAC

L Tuner

DAC

|Iq | Comp.

DAC

p

Qubit Flux

DAC

Coupler

DAC

Ig(t)

Iccjj(t)

Fccjjx Qubit

Coupler

We use programmable magnetic memory (PMM) to provide static fluxesand shared current biases to provide the time-dependent signals.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 35 / 45

Page 45: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Scalable Control and Readout Architecture

Programmable Magnetic Memory (PMM)

Static flux biases provided by digital-to-analog converters (DACs). Inputsto DACs store integer flux quanta (Φ0 ≡ h/2e). DACs are addressable byusing a demultiplexing circuit that routs single flux quanta (SFQ). Memoryis non-volatile and demultiplexing circuit is ‘quiet’ when not in use.

See Johnson et al., Supercond. Sci. Technol. 23, 065004 (2010).Copyright, D-Wave Systems (2010) QA Processor Design September 2010 36 / 45

Page 46: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Scalable Control and Readout Architecture

Global Analog Bias Lines

Sharing of current bias lines between multiple qubits provides a significantreduction in the number of external biases needed to run the processor.

Annealing Bias Iccjj(t)

Iccjj(t)

CCJJ

Qubit 1

CCJJ

Qubit 2

CCJJ

Qubit n∣

∣Ipq

∣-Compensation Bias Ig (t) = α∣

∣Ipq (t)

Ig(t)

Body

Qubit 1

Body

Qubit 2

Body

Qubit n

M1 M2 Mn

See Johnson et al., Supercond. Sci. Technol. 23, 065004 (2010).

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 37 / 45

Page 47: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Scalable Control and Readout Architecture

XY Addressable Readout

Use a single common QFP latch across entire chip. Share dc SQUIDcurrent (flux) biases as columns (rows).

c

c

c

c

c

c

c

c

Current Bias

Column 1

Current Bias

Column 2

Flux Bias

Row 1

Flux Bias

Row 2

QFP Latch

RO11 RO12

RO21 RO22

See Berkley et al., arXiv:0905.0891 for details.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 38 / 45

Page 48: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Scalable Control and Readout Architecture

Complete Eight Qubit Unit Cell

q0 q1 q2 q3q4

q5

q6

q7

RO

CCJJ

LT

ICO

XCO

XCOIPC

q0

q1

q2 q3q4

100 mm

q5

q6

q7

Complete unit cell with PMM circuitry.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 39 / 45

Page 49: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Scalable Control and Readout Architecture

Complete Multiple Unit Cells

Complete 128-qubit chip with PMM circuitry.

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 40 / 45

Page 50: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Scalable Control and Readout Architecture

A Scalable QA Processor Architecture

How well does the architecture scale?

Element Count

Qubits 128Couplers 352QFPs 128dc SQUIDs 128PMM 992

A 128-qubit processor requires only 84 differential external biases tocalibrate and operate (compare with the initial estimate of 1632).

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 41 / 45

Page 51: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Scalable Control and Readout Architecture

Not Covered in this Presentation . . .

There are many other parts neededto realize a functional QA processor:

Circuit Design and Layout

Fabrication

Cryogenics

Wiring/Filtering

Magnetic Shielding

Room TemperatureElectronics

Calibration Methods

Software

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 42 / 45

Page 52: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Summary

Outline

1 Introduction to Quantum Annealing (QA)

2 Analog Components of a QA ProcessorQubits (Quantum Ising Spins)Interqubit CouplersPersistent Current CompensationInductance TunerReadoutSchematic Layout of Analog Components

3 Scalable Control and Readout Architecture

4 Summary

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 43 / 45

Page 53: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Summary

Summary

Key conclusions thusfar:

An architecture that enables quantum annealing of a lattice ofcoupled flux qubits has been described.

A scalable control and readout architecture has been developed.

Prototype processors based upon this design have been fabricated.

Does it work? This is the topic of Part II . . .

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 44 / 45

Page 54: ATOM 20100909 D-wave Unit Cell Overview i Richard Harris

Summary

Useful References

Qubits

Harris et al. Phys. Rev. B, 81 134510 (2010).

Couplers

Harris et al. Phys. Rev. B, 80 052506 (2009).

Scalable Control Circuitry

Johnson et al., Supercond. Sci. Technol. 23, 065004 (2010).

XY-Addressable Readout

Berkley et al., arXiv:0905.0891 (2009).(accepted in Supercond. Sci. Technol.)

Unit Cell Architecture

Harris et al., Phys. Rev. B 82, 024511 (2010).

Copyright, D-Wave Systems (2010) QA Processor Design September 2010 45 / 45