assessing the environmental model based on a …845596/fulltext01.pdf · assessing the...

50
Assessing the environmental sustainability of an apparel supply chain -the development of a conceptual model based on a comparative study of preferred tools and actual practices Madeleine Barås Master of Science Thesis Stockholm /2015/

Upload: lythuan

Post on 09-Sep-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

                                                       

Assessing the environmental sustainability of an apparel supply

chain -the development of a conceptual

model based on a comparative study of preferred tools and actual

practices

M a d e l e i n e B a r å s

Master of Science Thesis Stockholm /2015/

   

   

Master of Science Thesis STOCKHOLM /2015/

Assessing the environmental sustainability of an apparel supply chain

-the development of a conceptual model based on a comparative study of preferred tools and actual practices

Supervisor: Rafael Laurenti Examiner: Monika Olsson

Madeleine Barås

PRESENTED AT

INDUSTRIAL ECOLOGY ROYAL INSTITUTE OF TECHNOLOGY

   

TRITA-IM-EX 2015:18 Industrial Ecology, Royal Institute of Technology www.ima.kth.se

 

  v  

Acknowledgements  Many   have   contributed   to   the   creation   of   this  master   thesis,   but   some   deserve   a   bit  more  attention.    First  of  all,   I  would   like  to  thank  my  supervisor  for  contributing  with  valuable  feedback  and  support  throughout  this  process.  I  have  deeply  appreciated  it  and  I  am  most  grateful  for  the  time  you  have  out  into  this  project.      Secondly,  thank  you  to  all  stakeholders  who  provided  valuable  feedback  and  Company  X  for  allowing  me  to  gain  insight  to  your  routines  and  processes.  Without  you,  this  thesis  would  not  have  been  possible  to  complete.      Lastly,   thank   you   to   my   boyfriend,   sister   and   sister   in   law,   for   putting   up   with   me,  particularly   in  the  end  of  this  process.   I   imagine  your  struggle  was  harder  than  mine  in  between  moments.              

   

 

  vi  

Abstract  The  apparel  and  textile  industry  is  one  of  the  largest  in  the  world  and  is  characterised  by  complex,   global   supply   chains,   water   and   chemical   intensive   processes   as   well   as  environmentally   harmful   raw   material   extraction   and   production.   Because   of   this,  environmental  sustainability  has  become  a  key  issue  for  the  businesses  in  recent  years.  With  this  in  mind,  and  considering  an  increasing  demand  for  textile  and  apparel  goods,  the  industry  is  in  urgent  need  of  improving  the  environmental  footprint  of  its  products.  However,   lack   of   transparency   and   available   data   throughout   apparel   supply   chains  decrease   chances   of   producing   accurate   sustainability   assessments,   which   in   turn  obstruct   improvement   measures.   Moreover,   companies   often   lack   the   in-­‐house  competence  required  to  manage  and  create  strategies  for  sustainability  assessments.      In  this  study  an  overview  of  an  apparel  supply  chain  is  provided,  highlighting  phases,  sub  phases,   input   and   environmental   indicators.   Appropriate   tools   for   assessing   the  environmental  sustainability  of  such  a  supply  chain  are  inventoried  and  examined.  Based  on   a   case   study,   a   literature   review   and   a   stakeholder   opinion   assessment,  misalignments  between  actual  practices  within  an  apparel  company  and  recommended  practices   of   the   researcher   and   stakeholder   communities   are   uncovered.   These  identified   misalignments   enabled   the   development   of   a   conceptual   model,   aiming   at  facilitating   the   process   of   developing   an   environmental   sustainability   assessment  strategy  within  an  apparel  company.      Key   words:   Apparel   industry,   environmental   sustainability   assessment,   environmental  footprints,  supply  chain  management    

   

 

  vii  

Sammanfattning  Klädindustrin,   en   av   världens   största   industrier,   är   ofta   hårt   kritiserad   för   sin   negativa  miljöpåverkan.   Kemikalie-­‐   och   vattenintensiva   produktionsprocesser   samt  resurskrävande   råmaterialtillverkning   orsakar   allvarliga   utsläpp   och   trycket   från  konsumenter  och   lagstiftare  är  hårt  för  att  säkerställa  att  textil-­‐  och  klädkonsumtionen  blir  mer  hållbar  för  både  människa  och  miljö.      Trots  att  problemen  är  erkända  och  att  forskare  kommit  långt  med  arbetet  om  hur  man  ska  utvärdera  hållbarheten  av  klädindustrins  produkter,   ligger  industrin  efter  vad  gäller  att   implementera   verktyg  och  utvärderingsprocesser   som  kan  bidra   till   en  mer  hållbar  produktion.   Ofta   används   extern   kompetens   för   att   tillgodose   vissa   behov,   men   den  interna   kompetensen   brister.   Utöver   detta   är   industrin   beroende   av   komplexa  leverantörskedjor   som   är   svåra   att   utvärdera   från   ett   miljömässigt  hållbarhetsperspektiv.  Komplexiteten  bidrar   till  minskad  transparens  och  problem  med  datainsamling.          Denna   studie   syftar   till   att   minska   gapet   mellan   forskare   och   industri   vad   gäller  hållbarhetsutvärderingar   av   leverantörskedjor   inom   klädindustrin.   Detta   är   tänkt   att  åstadkommas   genom   att   jämföra   processer   för  miljömässig   hållbarhetsutvärdering   på  ett  globalt  klädföretag  med  processer  och  verktyg  som  rekommenderas  av  forskare  och  intressenter.   Metoder   som   applicerats   för   att   åstadkomma   detta   är   en   fallstudie,   en  intressentanalys  samt  en  litteraturstudie.      Genom   att   applicera   de   olika   metoderna   ovan   har   rekommendationer   gällande   olika  processer  och  verktyg   identifierats,  vilket   resulterade   i  att   fem  olika   footprint-­‐metoder  kunde  lyftas  fram  som  specifikt  applicerbara  inom  klädindustrin.  Vidare  tillfrågades  olika  intressenter  om  dessa  metoder,  för  att  på  så  vis  kunna  identifiera  eventuella  skillnader  i  rekommendationer  mellan   forskare   och   intressenter.   Den  mest   signifikanta   skillnaden  utgjordes   av   vilka   faser   av   leverantörskedjan   som  ansågs  mest   komplex   att   utvärdera.  Forskare  anser  att  tillverkningsfasen  är   förhållandevis  okomplex,  medan   intressenterna  lyfte   fram   den   fasen   som   en   av   de   mest   komplexa.   Det   framkom   även   att  fallstudieföretaget   inte   applicerade   de   rekommenderade   footprint-­‐metoderna   i   någon  större  utsträckning  eller  enligt  en  tydlig  strategi.      Med  bakgrund  av  detta  utvecklades  en  modell  med  syfte  att  underlätta  för  företag  inom  klädbranschen   att   utvärdera   sina   leverantörskedjor   från   ett   miljömässigt  hållbarhetsperspektiv.   Modellen   är   uppdelad   i   fyra   steg   och   möjliggör   för   företag   att  utföra  en  riskbedömning  över  de  olika  faserna  i  leverantörskedjan,  samt  prioritera  vilka  faser  som  kräver  vidare  åtgärder.  Prioriteringen  gör  det  därefter  möjligt  för  företag  att  konkretisera  vilka  kompetensbehov  som  finns  och  huruvida  dessa  ska  kompletteras  med  extern   kompetens.  Med  bakgrund  av  detta  är   förhoppningen  att  modellen   ska  minska  kunskapsgapet  mellan   industri  och   forskare,  genom  att   tillåta   företag  att  stegvis  bygga  upp  sin  kompetens  inom  området  och  således  ta  mer  ansvar  för  sin  leverantörskedja.    

   

 

  viii  

Table  of  Contents  

   

1   Introduction  .................................................................................................................  1  1.1   Background  to  the  problem  area  ...............................................................................  1  1.2   Aim  and  objectives  ..........................................................................................................  3  

2   Methodology  .................................................................................................................  4  2.1   Applied  methods  for  data  collection  and  analysis  ...............................................  5  2.1.1   Case  study  and  product  selection  ......................................................................................  5  2.1.2   Literature  study  ........................................................................................................................  6  2.1.3   Stakeholder  opinion  assessment  .......................................................................................  6  

2.2   Method  for  analysis  and  development  of  the  conceptual  model  .....................  7  2.2.1   Identifying  misalignments  between  researchers  and  company  ..........................  7  2.2.2   Analysis  of  Stakeholder  opinion  assessment  ...............................................................  7  

2.3   System  boundaries  and  delimitations  ......................................................................  8  3   Literature  review  ........................................................................................................  9  3.1   The  apparel  supply  chain  and  its  environmental  indicators  ............................  9  3.2   Evaluating  the  environmental  sustainability  of  a  textile  product  ................  12  3.2.1   Various  footprints  and  their  distinctions  ....................................................................  13  

4   Results  .........................................................................................................................  17  4.1   Highlights  from  the  stakeholder  opinion  assessment  ......................................  17  4.2   Findings  from  the  case  study  .....................................................................................  18  4.2.1   The  supply  chain  of  the  cotton  shirt  ..............................................................................  18  

4.3   Main  findings  from  the  literature  review  ..............................................................  19  4.3.1   Supply  chain  phases  and  compatible  assessment  tools  ........................................  19  

5   Analysis  .......................................................................................................................  23  5.1   The  applicability  of  identified  footprints  in  the  apparel  supply  chain  .......  23  5.2    Comparing  Company  X  applications  with  preferred  methods  ......................  24  5.3   A  conceptual  model  for  developing  assessment  strategies  ............................  26  

6   Conclusion  ..................................................................................................................  28  

7   Recommendations  for  further  studies  .............................................................  30  References  ........................................................................................................................  31  

Appendices  ...........................................................................................................................  i  Appendix  1  –  Checklist  for  case  study  interview  ..............................................................  i  Appendix  2  –  Questionnaire  of  stakeholder  opinion  assessment  ..............................  ii  Appendix  3  –  Responses  of  stakeholder  opinion  assessment  .................................  viii  

 

 

  1  

1 Introduction  

1.1 Background  to  the  problem  area    

The   textile   and   apparel   (clothing)   industry   is   recurrently   criticised   for   being  environmentally   and   socially   unsustainable.   Media,   the   researcher   community   and  NGO’s  frequently  highlight  poor  working  conditions  and  unethical  treatment  of  animals,  as   well   as   problems   of   environmental   pollution   from   refinement   and   manufacturing  processes  (Paraschiv  et.  al,  2015;  Allwood  et  al.,  2006;  Greenpeace,  2011).  According  to  Allwood   et   al.   (2006)   the  most   significant   environmental   issues   of   the   textile   industry  include  energy  use,   toxic  chemical  use,   release  of  polluted  wastewater  and  production  of   solid   wastes.   Thiry   (2011)   and   Paraschiv   et   al.   (2015)   state   that   the   production   of  apparel   goods   requires   large   quantities   of   fresh   water   and   energy,   and   that  approximately  30-­‐35  percent  of  the  global  chemical  use  pass  through  the  textile  industry  every   year.   This   causes   severe   pollution   when   released   into   receiving   environments  (Thiry,   2011).   Furthermore,   the   textile   industry   is   estimated   to   be   the   fifth   largest  contributor   to   greenhouse   gases   (GHG)   in   the   US   (WWF,   2013)   and   accounts   for   2-­‐3  percent  of  GHG  emissions  in  Sweden  from  a  consumption  perspective  (Naturvårdsverket  &  Kemikalieinspektionen,  2010).      Moreover,  from  a  global  exporting  perspective,  and  considering  expected  development  of   the   textile   industry   in   terms  of  growth,   forecasts  generally  point   towards   increasing  levels  of  production  and  consumption   (Morris,   2011).   In  a   vast   study  by   the  European  Commission,  which   investigated   the  12  most   significant  consumption  categories   in   the  world  from  an  environmental   impact  perspective,  the   ‘clothing  and  footwear’  category  was   named   the   fourth   most   significant   (after   ‘food   and   beverage   consumption’,  ‘transport’   and   ‘housing’)   (Tukker,   2006).   The   study  was   based   on   seven   independent  studies   which   all   compared   the   12   categories   according   to   parameters   such   as   GWP,  eutrophication,   Eco   toxicity   and   expenditure;   All   seven   studies   ranked   ‘clothing   and  footwear’  on  fourth  place.      In   addition,   in   the   report   “International   Trade   statistics   2014”   the   World   Trade  Organization   (2014)  estimated   the  global   export  of   ‘clothing’   in  2013   to  be  worth  460  billion  USD,  which   is  an   increase  of  9  percept  compared  to  2010.  Hence,   the   ’clothing’  category   is   the   second   largest   export   category   in   the   world,   only   out-­‐rivalled   by  ‘integrated   circuits   and   electronic   components’.   In   the   category   of   ‘other   textiles’  (estimated   to   be  worth   306   billion  USD),   an   increase   of   8   percent  was   noticed   (WTO,  2014).  And  with  a  growing  global  population  and  middle  class,   forecasts   regarding   the  textile   and   apparel   industry   all   point   in   one   direction;   the   demand   for   clothing   and  footwear   will   increase   (Morris,   2011).   According   to   Morris   (2011)   the   global   fibre  consumption  will   correspond   to   89.3  million   tonnes   in   2020   compared   to   72.5  million  tonnes  in  2010  (an  increase  of  16.8  million  tonnes).      The  above-­‐mentioned  challenges  and  circumstances  emphasize  the  fact  that  in  order  to  satisfy   the   textile   demand   of   a   larger   share   of   people   with   less   impact,   the   need   for  more  sustainable  solutions  is  not  possible  to  exaggerate  (Muthu,  2014).  But  in  order  to  decrease  negative  impact,  researchers  and  companies  must  understand  what  causes  the  environmental   burdens  of   a   product   or   process.  Obtaining   this   knowledge  will   benefit  

 

  2  

society   and,   from   an   industry   perspective,   increasing   the   knowledge   regarding  environmental  footprints  can  entail  some  desirable  effects.  For  example,   it  can  allow  a  company   to   highlight   wasteful   and   possibly   harmful   processes.   This   in   turn   enables  pinpointed   investments   towards   this  problem  area,  which  can   result   in:  more  efficient  processes,   less   waste,   decreased   pollution   and   increased   control   over   product   flows.  Possessing  this  knowledge  can  also  facilitate  communication  with  stakeholders,  increase  transparency  in  the  supply  chain  and  decrease  vulnerability  from  possible  threats  (such  as  hazardous  leakages  etc.)  (Muthu,  2014).      However,   the  environmental   burdens  of   products   in   the   apparel   and   textile   industries  have   been   proven   difficult   to   estimate,   mostly   due   to   lack   of   relevant   data   and   of  transparency   in   textile   supply   chains   (Chapman,   2010;   Muthu   2014).   The   scientific  community   has   a   rather   clear   idea   of   what   indicators   to   evaluate,   as   well   as   what  methods   to  use   for  assessments   (Muthu,  2014;  Čuček  et  al.,  2012;  Herva  et  al.,  2011).  Yet,  the  commercial  and  industrial  community  have  just  started  to  grasp  the  advantages  of  assessing  the  environmental  sustainability  of  their  business,  and  many  companies  lack  the   competence   required   to   perform   such   assessments   (Muthu,   2014).   Consequently,  there   is   reason  to  suspect  that  there   is  not  yet  an  alignment  between  researchers  and  practitioners  in  terms  of  performing  sustainability  assessments.      Thus,  the  purpose  of  this  study   is  to  decrease  misalignment  between  the  research  and  apparel   industry   in   terms   of   environmental   sustainability   assessments   of   an   apparel  supply   chain.   This   is   to   be   achieved   by   investigating   sustainability   assessment   tools  recommended  by   the   research  community  and  stakeholders   for  application  within   the  apparel   industry.  The  findings  are  thereafter  cross-­‐referenced  with  strategies  and  tools  applied  within  an  apparel  company.  Based  on  the  cross-­‐reference  analysis,  a  conceptual  model  aimed  at  facilitating  the  development  of  strategies  regarding  the  environmental  sustainability  assessment  of  an  apparel  supply  chain  is  developed.        

 

  3  

1.2 Aim  and  objectives  

The  aim  of  this  study  is  to  produce  a  conceptual  model  for  developing  strategies  on  how  to  assess  the  environmental  sustainability  of  an  apparel  supply  chain.  In  order  to  attain  this  aim,  the  following  four  objectives  are  set:        

1. Determine   one   product   and   its   respective   supply   chain   within   an   apparel  company  for  further  analysis.    

 2. Identify   which   methods   and   tools   are   suitable   to   assess   the   environmental  

sustainability  of  such  a  supply  chain.      

3. Investigate   how   the   findings   from   objective   two   are   approached   within   the  apparel   company,   highlighting   possible   misalignments   between   the   apparel  industry  and  research  community.    

 4. Based   on   objective   three,   develop   a   conceptual   model   for   conducting  

environmental  sustainability  assessment  strategies  for  apparel  supply  chains.    

   

 

  4  

2 Methodology  Several  methods  were  utilized  in  order  to  best  answer  the  objectives  of  this  study.  The  process  chart  below  (figure  1)  illustrates  the  main  steps  of  the  overall  thesis  process,  as  well  as  the  tools  applied  in  each  step.  A  thorough  presentation  of  the  various  methods  and   tools   is   provided   in   sections   2.1   and   2.2.   The   methods   applied   enabled   the  identification   of   preferred   and   recommended   tools   for   assessing   the   environmental  sustainability  of  a  textile  product.  Furthermore,  the  methods  allowed  for  the  analysis  of  practices   and   routines   for   assessing   sustainability   within   an   apparel   company.   The  methodology   chapter   is   concluded   with   a   discussion   on   the   system   boundaries   and  delimitations  of  the  study  in  section  2.3.  

   

 

   

Figure  1  –  process  chart  of  thesis  process  and  applied  methods      

Development  of  conceptual  model  

A  four  step  model  for  sustainability  assessment  • Based  on  Lindings  from  data  collection  and  analysis  

Data  analysis  

Scoring  of  stakeholder  opinions  • IdentiLication  of  mean  values  and  preferred  practices  

Cross  reference  of  assessment  tools  • IdentiLication  of  misalignments  between  preferred  

and  applied  practices      

Data  Collection  

Literature  study  • Review  of  scientiLic  journals  

Case  study  • Interviews  

Stakeholder  opinion  assessment  • Questionnaire  

 

  5  

2.1 Applied  methods  for  data  collection  and  analysis  

2.1.1 Case  study  and  product  selection  

A  case  study  was  performed  at  a  global  apparel  company,  hereafter  named  as  ‘Company  X’.  Company  X  sells  a  wide  range  of  products  comprising  underwear,  apparel   (clothes),  accessories   and   interior   design   products.   The  main   offer,   apparel,   is   divided   into   four  main  categories:  1.  Men,  2.  Women,  3.  Kids,  and,  4.  Accessories.  In  categories  one,  two  and   three,  products   range   from  footwear  and  outerwear   to  shirts  and  pants.  Category  four  includes  belts,  scarves  and  bags.    The  case  study  consisted  of  semi-­‐structured  interviews  with  employees  at  the  company,  the  CSR  manager  and  the  Project  manager  of  logistics.  The  aims  of  this  case  study  were  twofold:   (i)   to   identify   a   product   suitable   for   further   investigation;   and   (ii)   to   collect  information  regarding  the  supply  chain  setup  of  that  product.  One  objective  was  also  to  gather  data  on  processes  and  regulations  about  sustainability  assessments,  which  would  allow  for  an  analysis  of  how  the  company  regulates  and  assesses  parameters  concerning  environmental  sustainability.      The   interviews   were   conducted   using   a   checklist,   which   covered   various   topics   for  discussion,  as  well  as   some  questions   for   initiating  a  certain   topic.  The  questions  were  concentrated  on  processes  regarding  sustainability  evaluation  of  products,  supply  chain  management,   product   composition   and   the   supply   chain   structure   of   the   selected  product.   The   checklist   and   interview   questions   can   be   found   in   appendix   1.   By  constructing  the  interview  in  this  manner,  the  interviewees  were  given  the  possibility  to  describe  the  supply  chain  setup  without  having  to  be  limited  by  closed  questions.  Hence,  the   interview   process   was   of   an   adaptive   nature   where   irrelevant   questions   were  excluded  and  new  questions  were  added  spontaneously.    A   total  of   three  meetings  were   realized.  The   first  meeting  was   focused  on   introducing  the   project   and   determining   which   product   to   analyse.   The   remaining   two   meetings  were  centred  on  conducting  interviews  according  to  the  checklist.  From  the  introductory  meeting  it  was  concluded  that  the  product  of  choice  had  to  fulfil  three  requirements:      

• Be  of  significance  to  the  company  in  terms  of  sales  volume.  A  product  without  a  significant  demand  from  consumers,  risks  being  eliminated  from  the  assortment  range  in  future  collections,  which  would  decrease  the  relevancy  of  this  study.    

 • Have   stable   future   material   availability   and   demand.   It   would   be   of   little  

significance  to  analyse  a  product  made  of  a  material  with  uncertain  prospects  of  availability   and   demand,   due   to   the   risks   of   the   product   being   excluded   from  future  collections.  

 • Preferably  be  available  in  collections  for  both  men  and  women  (the  main  target  

groups).        

 

  6  

Considering  the  requirements  for  selecting  the  product  of  interest,  category  one  (Men)  and  two  (Women)  were  concluded  to  be  the  most  relevant.  These  categories  represent  the  largest  shares  of  the  company’s  total  turnover  and  include  many  key  garments.  The  key  garments  are  unlikely  to  be  excluded  from  collections  and  are  considered  to  have  a  secure   material   availability   (Company   X   –   Appendix   1,   2015).   In   order   to   delimit   the  selection   further,   all   products   that   were   not   offered   to   both   men   and   women   were  excluded,  resulting   in  the  selection  of  a  cotton  shirt  and   its  respective  supply  chain  for  further  analysis.    

2.1.2 Literature  study  

The   investigated   literature  was   focused  on   routines,   tools   and  processes   for   assessing  environmental   sustainability   regarding   textile   and   apparel   products.   Also,   the   general  structures  and  environmental   indicators  of  apparel  supply  chains  were  investigated.  By  highlighting   recommendations  and  preferred  methods   for  assessing   the  environmental  sustainability  of  supply  chains,  a  scientific  context  could  be  provided  for  the  thesis.  This  also  supplied  a  review  of  state  of  the  art  tools  and  up  to  date  practices.  Information  was  found  using  scientific  databases  such  as  Google  scholar,  KTHB  primo  and  Science  direct.  Search  strings  included:  “environmental  sustainability  analysis  of  textile  products”,  “LCA  case  studies  of  textile  products”,  “Environmental  analysis  of  apparel  products”,  “apparel  supply   chains”,   “Sustainable   apparel   supply   chains”,   “Environmental   footprints   in   the  apparel   industry”   and   “Footprints   and   textile   products”.   Also,   websites   of   branch  organisations,   NGO’s,   government   agencies   and   stakeholders   of   the   apparel   industry  were  utilized  as  sources  for  material.    

2.1.3 Stakeholder  opinion  assessment  

‘Stakeholders’   can   be   defined   as   individuals   and   organisations   that   are   either   able   to  influence,   or   can   be   influenced   by,   a   decision   (Kordas,   2014).   According   to   Quist   and  Vergragt   (2006)   there   are   four   societal   groups   usually   considered   in   a   stakeholder  analysis;   companies,   research   bodies,   government   and   public   interest   groups   and   the  public.   Assessing   stakeholder   opinions   can   provide   industry   specific   insights   and  knowledge,  as  well  as  acknowledgement  and  validation  to  a  concerned  topic  (Quist  and  Vergragt,   2006).   Regarding   this   thesis,   it   was   considered   valuable   to   capture   possible  misalignments   between   stakeholders   and   researchers   concerning   sustainability  assessments,  since  stakeholders  may  influence  internal  practices  of  companies  and  can  provide  for  new  insights  regarding  the  suitability  of  various  assessment  methods  (Quist  and  Vergragt,  2006)    The  stakeholder  opinions  assessment  (SOA)  process  involved  several  steps  including:  (i)  determining  key  stakeholder  groups  and  at  least  one  representative  from  each  group  (ii)  formulation   and   revision   of   written   questions   including:   (iia)   questions   formulated   in  such   a  way   that   the   answer   could   be   ranked   1-­‐3,  where   1   corresponded   to   the  most  important   or   highly   ranked   alternative,   and   thus   be  quantitatively   evaluated   and,   (iib)  questions  formulated  in  such  a  way  that  the  answer  could  be  chosen  from  a  number  of  different   given   alternatives,   followed   by   a   possibility   for   the   respondent   to   further  describe   his/her   opinion   in   written   text,   and   therafter   be   qualitatively   evaluated,   (iii)  

 

  7  

distribution   of   the   questions   by   e-­‐mail   to   the   representatives   of   the   key   stakeholder  group,  and  finally,  (iv)  processing  of  answers.      Based   on   the   societal   groups   identified   by   Quist   and   Vergragt   (2006),   the   following  stakeholder  groups  were  identified:    

• Consumers  • Producers  • NGO’s  • Policy  makers  (political  institution)  and/or  Governmental  Organizations  • Branch  organizations  • Research  institutes  • Consultancy  companies  

 One   representative   from   each   stakeholder   group   was   selected,   resulting   in   a   total   of  seven  respondents.  All  respondents  but  one  responded  within  the  given  time  limit  and  hence,   the  results  of   the  SOA  are  based  on  the  answer  of  six   respondents.  Two  of   the  selected   respondents   asked   to  be  anonymous  and   thus,   in  order   to   reduce   the   risk  of  readers   being   able   to   deduce   which   respondent   answered   in   a   certain   way,   all  respondents   were   treated   anonymously.   The   questions   revolved   around   preferred  method   and   important   aspects   to   consider   when   assessing   the   environmental  sustainability   of   textile   products,   identified   in   the   literature   review.   It   was   found   that  some  methods   could  be  deemed  more   suitable   than  others  when   considering   apparel  products,  which  affected  the  selection  of  alternatives  available  to  the  respondents  in  the  questionnaire.  The  complete  questionnaire  can  be  found  in  appendix  2.      

2.2 Method  for  analysis  and  development  of  the  conceptual  model  

2.2.1 Identifying  misalignments  between  researchers  and  company  

In  order   to  compare   the  preferred  practices  among   researchers  and  stakeholders  with  actual  practices  of  Company  X,  a  cross-­‐referencing  approach  was  utilized.  The  purpose  of   this   approach   was   to   i)   identify   and   compare   general   supply   chain   phases   of   the  apparel  industry  with  the  actual  supply  chain  structure  of  Company  X  ii)  determine  what  tools   for   environmental   sustainability   assessment   are   compatible   for   evaluating   the  identified   supply   chain   phases   and   iii)   determine   if   any   of   these   tools   are   applied   by  Company  X.  The  cross-­‐referencing  process  made   it  possible   to  highlight  misalignments  between  preferred  practices  and  actual  practices,  which   in   turn  realized  the  possibility  of  developing  a   conceptual  model   for   environmental   sustainability   assessments  within  an  apparel  supply  chain.      

2.2.2 Analysis  of  Stakeholder  opinion  assessment  

Regarding  the  questions  where  respondents  were  asked  to  rank  their  alternatives  from  1  to   3,   the   responses   were   analysed   using   a   point   system.   A   score   of   1   (i.e.   the   top  preference  of   the   respondent)   equalled   five   points,   score   2   equalled   three  points   and  score  3  equalled  one  point.  However,   in  order  to  balance  the  scoring  according  to  how  

 

  8  

often  an  alternative  was  chosen,   the   total   score  of  one  alternative  was  divided  by   the  number  of  respondents  choosing  the  named  alternative,  allowing  for  the   identification  of  a  mean  value.  By  doing   this,   the   risk  of  overestimating  an  alternative  was   reduced.  The  scoring  process  and  calculations  can  be  found  in  appendix  3.      

2.3 System  boundaries  and  delimitations  

Company  X   is  a  global  apparel  company  with  markets  and  suppliers  all  over  the  world.  The   supply   chain   structure   is   complex,   as   is   typical   for   the   industry   (Muthu,   2014).  Therefore,   setting   the   geographical   system   boundary   of   this   study   to   include   only  European   suppliers   and   markets   would   be   problematic,   since   products   are   often  produced   in   one   part   of   the   world,   yet   sold   in   another.   Consequently,   setting   a  geographical   boundary   would   risk   eliminating   some   part   of   the   supply   chain   of   the  selected  product.  With  this  in  mind,  the  system  boundary  for  this  study  was  determined  according  to  the  product  chosen  for  analysis  with  no  regard  to  geographical  limitations.  This  allowed  for  a  more  detailed  and  realistic  study.      Moreover,  in  order  to  delimit  the  scope  and  manage  the  timeline  of  this  thesis  project,  the   identified   supply   chain   of   Company   X   is   based   on  one   of   their   product   flows   (the  cotton  shirt).  As  mentioned  previously,  Company  X  offers  a  wide  range  of  products  and  these  are  not  all  managed  the  same  way,  from  a  supply  chain  and  logistics  perspective.  Therefore,   including   only   one   product   could   possibly   make   it   difficult   to   draw  conclusions   regarding   the   entire   supply   chain   of   Company   X,   and   for   other   apparel  supply  chains  as  well.  However,   from  Company  X’s  perspective,  the  supply  chain  setup  of   the   shirt   is   a   relatively   new   concept   that   is   likely   to   be   applied   for   other   products.  Thus,   it   is  of   interest   to  subject   the  supply  chain  structure  of   the  shirt   to  sustainability  assessments   in  order  to  produce  material   for  future  decision-­‐making.   In  addition,  from  the   literature   review,   it   was   determined   that   even   though   products   are   treated  differently   in   terms   of   logistics   and   lead   times,   the   supply   chain   phases   do   not   vary  much,   which   enables   the   possibility   of   drawing   general   conclusion   for   the   apparel  industry.      Another  limitation,  or  weakness,  of  the  study  is  that  of  the  questionnaire  sent  out  to  the  various  stakeholders.  Since  the  stakeholder  groups  included  a  range  of  respondents  with  various   professional   backgrounds,   the   knowledge   regarding   assessing   environmental  impacts  of  textile  products  varies.  Because  of  this,  the  questions  were  of  a  general  and  high-­‐level  format.  Thus,  there  was  room  for  subjective  interpretation  in  some  questions.  However,  all  respondents  were  given  the  option  to  further  explain  their  answers,  which  some   did.   Yet,   a   recommendation  would   be   to   conduct   follow   up-­‐interviews  with   the  respondents  (if  further  studies  were  to  be  conducted).  This  would  allow  for  a  review  of  answers   with   the   respondents   in   person,   and   a   possibility   to   further   investigate   the  motivations   behind   the   responses.   That   would   be   useful   if   one   wishes   to   analyse  variations  in  stakeholder  opinions  and  the  reasons  for  these  differences  of  opinion.        

   

 

  9  

3 Literature  review  In  this  section,  all   findings  from  the   literature  review  are  presented,  beginning  with  an  overview   of   a   general   apparel   supply   chain   and   environmental   indicators.   This   is  followed  by   a   section   concerning   processes   and   tools   for   assessing   the   environmental  sustainability  of  apparel  supply  chains.  The  main  findings  are  thereafter  summarised  in  section  4.3.    

3.1 The  apparel  supply  chain  and  its  environmental  indicators  

In  a  study  by  Caniato  et  al.   (2012),   the  connection  between  supply  chain  management  and   environmental   management   was   addressed.   Supply   chain   management   concerns  the  planning  and  structuring  of  activities  and  processes  required  to  provide  a  customer  with  a  product.  This  includes  sourcing  of  materials,  procurements,  managing  partner  and  supplier  relationships,  as  well  as  logistics  services  (Canadian  Supply  Chain  Sector  Council,  2015).   Caniato   et   al.,   (2012)   highlight   that   because   supply   chain   officers   have   insight  regarding  company  structures,  supplier  agreements  and  product  components,  they  are  also  suitable  for  managing  the  environmental  sustainability  of  a  company.      However,  the  apparel  supply  chain  is  often  complex,  with  various  suppliers,  agents  and  wholesalers   involved.  This   is  particularly   the   case   for   companies   that  use   independent  subcontractors  for  manufacturing,  since  such  contractors  often  produce  a  wide  range  of  products  for  several  different  buyers  (Styles  et  al.,  2012).  In  those  cases,  even  if  data  is  available,   determining   the   environmental   impact   per   product   (impact   allocation)   is   an  issue.  Moreover,  companies  that  buy  finished  goods  often  experience  difficulties  trying  to  trace  various  inputs  and  raw  materials  beyond  the  main  manufacturer  (Muthu,  2014;  Caniato   et   al.,   2012;   Styles   et   al.,   2012).   Yet,   such   companies   are   still   often   held  responsible  for  the  environmental  impact  of  their  overall  supply  chain,  even  that  of  their  subcontractors  and  including  2nd  and  3rd  tier  suppliers  (Caniato,  2012).      In   addition,   the   environmental   impacts   of   consumers’   activities,   and   how   consumers  choose  to  dispose  of  a  product,  are  usually  very  problematic  to  assess.  This   is  because  these  activities  depend  on  various  factors  that  are  beyond  the  control  of  manufacturers  and  retailers,  such  as  washing  habits  of  consumers  and  possible  options  for  disposal   in  various   countries.   For   example,   some   countries   only   use   incineration   as   end-­‐of-­‐life  treatment,  whereas  other  countries  might  offer  infrastructure  for  collection  of  reusable  products  and  recycling  of  materials  (Muthu,  2014;  Caniato  et  al.,  2012).      The   complexity   of   apparel   supply   chains   causes   lack   of   transparency   and   restricts   the  possibilities  of  obtaining  valuable  data.  This  in  turn  can  risk  undermining  the  result  of  a  sustainability  assessment   (Muthu,  2014).  However,  despite   the   lack  of   transparency   in  individual  cases,  the  general  phases  of  a  textile  supply  chain,  as  well  as  general   inputs,  are   known   and   can   be   summarized   according   to   Table   1.   The   table   conveys   six  main  phases   of   an   apparel   supply   chain   including:   Raw   material   harvesting,   raw   material  processing,  manufacturing,  transport  and  distribution,  use  and  waste.  The  main  phases  are   further   allocated   into   sub   phases   (processes)   that   together   constitute   a   cradle-­‐to-­‐grave  perspective   (Muthu,  2014;  Herva  et  al.,  2011;  Gardetti  &  Torres,  2013).  The   sub  phases   vary   depending   on   the   raw  material   and   the   processes   required   to   produce   a  finished   fabric.   Moreover,   the   process   inputs   can   occur   in   several   of   the   various   sub  

 

  10  

phases.   For   example,   transports   are   utilized   between   subcontractors,   not   only   from  manufacturer  to  customer,  and  packaging  is  usually  required  for  all  types  of  transports.  Thus,  the  process  inputs  are  not  presented  in  any  particular  order  of  appearance.      Table  1  –  A  general  apparel  supply  chain  structure,  its  sub  phases  and  process  inputs    

(Herva  et  al.,  2011;  Muthu,  2014;  Gardetti  &  Torres,  2013)  

 

 

 

Supply  chain  phase   Sub  phase  (Included  processes)   Process  inputs  

1.  Raw  material  harvesting  phase  

Raw  material  preparation    Direct  and  indirect  land  usage  for  fibre  production,  production  facilities  and  landfills        Pesticides,  fertilizers,  chemicals  and  other  additives        Water  for  processing  and  cooling        Machines  and  inventories  in  manufacturing  facilities          Packaging  materials        Energy  for  production  and  transportation          

 2.  Raw  material  processing  phase  

Raw  material  to  fibre  conversion  

Yarn  preparation  

Grey  fabric  preparation  

Finished  fabric  preparation  

3.  Manufacturing  phase   Apparel  manufacturing,  including  cutting,  sewing  and  washing  

4.  Transport  and  distribution  phase  

Boat,  air,  train  or  truck  transports  to  warehouse  or  retailer  

5.  Use  phase   Wearing  and  washing  habits  of  consumers  

 6.  Waste  phase  

Recycling    

Reuse  

Landfill/Incineration  

 

  11  

Moreover,  some  key  environmental  indicators  associated  with  the  apparel  supply  chain  are   presented   in   Table   2.   As   is   the   case   regarding   process   inputs,   the   indicators   can  emerge  in  several  instances  throughout  the  supply  chain  (Muthu,  2014).  However,  with  general   phases,   processes,   inputs   and   indicators   identified,   there   is   a   possibility   to  pinpoint  which  tools  for  sustainability  assessment  are  appropriate  for  each  phase  of  the  supply  chain.  Hence,  mapping  the  supply  chain  of  a  product  and  investigating  where  the  most   significant   indicators   occur,   enables   companies   to   develop   more   advanced  sustainability  management  strategies  for  their  supply  chains  (Caniato  et  al,  2012;  Muthu,  2014).        

Table  2  -­‐  Environmental  indicators  of  a  textile  supply  chain  (Muthu,  2014)    

Indicator  

Treatment  and  discharge  of  effluents    

Extraction  of  raw  materials  -­‐  sources  and  production  methods    

Production  of  chemicals,  other  materials  and  auxiliaries  for  production  and  manufacturing  

Energy  production  processes  and  utilisations  -­‐  sources  and  quantities  

Water  sources,  quantities  and  processes  for  cooling  and/or  heating  

Over  consumption  and  production    

Emissions  to  air,  water  and  land  

Production  of  solid  waste  and  disposal  

Transportation  of  materials,  semi-­‐finished  and  finished  goods  

     

 

  12  

3.2 Evaluating  the  environmental  sustainability  of  a  textile  product  

‘Sustainability’  is  a  wide  concept,  and  adding  the  term  ‘environmental’  before  it  achieves  rather   little   in   terms   of   delimitation   and   elimination   of   subjective   interpretations.  However,  some  significant  points  regarding  evaluating  environmental  sustainability  at  a  corporate   level,   brought   forward   by   Herva   et   al.   (2011),   facilitate   in   underlining   the  focus   of   this   study.   Firstly,   environmental   sustainability   indicators   can   be   divided   into  four  categories.  Those  are  (i)  Indicators  of  Energy  and  Material  Flows,  (ii)  Indicators  with  a  Territorial  Dimension,  (iii)  Indicators  of  LCA  (Life  Cycle  Assessment),  and  (iv)  indicators  of  Environmental  Risk  Assessment   (Herva  et  al.,  2011).  Secondly,   these   four  categories  comprise   the   main   contributors   affecting   the   sustainability   of   a   textile   product   (or  process),   which   correspond   well   with   the   environmental   indicators   of   textile   supply  chains  presented  in  Table  2.  The  contributors  include:      

• Energy  use  per  unit  of  economic  value-­‐added    • Type  of  energy  source  and  intensity  of  the  source  • Material  use  (or  resource  depletion)  • Fertilizers  or  pesticides  used  • Chemical  use  • Freshwater  use  • Packaging  material  use  • Waste  and  pollutants  generated  into  air,  soil  and  water  • Land  use  and  yield  of  the  land  • Environmental  impacts  of  products,  processes  and  services  (including  transports)  • An  analysis  of  risk  to  human  health  and  the  environment  

 (Herva  et  al.  2011;  Muthu  2014)  

 As   a   way   of   managing   and   assessing   the   many   factors   affecting   the   environmental  sustainability  of  a  product,   various   footprint  methods  have  emerged.  One  of   the  most  common,  the  ecological   footprint,  was  developed  by  Rees   in  1992  (Čuček  et  al.,  2011).  Other  footprints  include  the  water  footprint  (developed  by  Hoekstra  and  Hung  in  2002)  and   the  carbon   footprint,  which  was  defined  by  Høgevold   in  2003  and  developed  as  a  continuation   of   the   Global  Warming   Potential   (GWP).   Those   three   footprints,   i.e.   the  ecological,  carbon  and  water  footprints,  together  form  the  “footprint  family”  (Čuček  et  al.,  2012;  Galli  et  al.  2012).      The   United   States   Environmental   Protection   Agency   (EPA)   (2014)   adds   the   material  footprint   and   nitrogen   footprint   to   the   group   of   most   common   footprints   and  collectively   names   them   ‘environmental   footprints’.   This   is   further   defined   as   “an  accounting   tool   that   measures   human   demand   on   ecosystem   services   required   to  support   a   certain   level,   and   type   of,   consumption   by   an   individual,   product,   or  population”   (EPA,  2014).  This  definition   is   somewhat  narrow  based  on  how  diversified  various   footprints   are.   Depending   on   the   purpose   of   the   analysis   and   considering   the  eleven  contributors  stated  above,  some  footprints  are  more  appropriate  than  others  for  assessing  a  certain  environmental  indicator  (Čuček  et  al.,  2012,  Herva  et  al.,  2011;  Galli  et  al.,  2012;  Muthu  2014).      

 

  13  

Considering   the   four   categories   of   environmental   sustainability   indicators   brought  forward   by   Herva   et   al.   (2011)   (presented   above),   indicators   can   include   a   territorial  dimension,   have   a   substance   flow   or   risk   assessment   approach   or   include   a   life   cycle  perspective.  Moreover,  the  result  of  a  footprint  analysis  can  be  either  a  form  of  life  cycle  assessment  (LCA),  although  not  as  comprehensive  as  a  traditional  LCA,  focused  on  a  set  indicator   (e.g.,   carbon   dioxide   or   energy   emissions).   Or,   it   can   be   a   specific   analysis  delimited  by  a  geographical  system  boundary,  e.g.  the  ecological  footprint  of  a  town  or  factory.      Regarding   footprints   defined   by   a   geographical   system   boundary   (e.g.   ecological,  material  and  to  some  extent  water  footprints)  the  data  is  often  aggregated  and  based  on  statistics  of  that  particular  area.  This  data  can  be  found  in  various  databases  provided  by  organisations   such   as   United   Nations   International   Energy   Agency   and   the  Intergovernmental   Panel  on  Climate  Change   (Herva  et   al.,   2011).   Concerning   footprint  analysis   based   on   set   indicators,   the   data   can   consist   of   observations   and   data  collections  performed  by   the   researcher,   but   also   available   LCA  databases   (EPA,   2014;  Herva  et  al.,  2011;  Čuček  et  al.,  2012).   It   is  worth  noting   that  no  particular  software   is  promoted   for   evaluating   footprints,   but   that   there   are   a   number   of   options   available  (EPA,  2014).      Because  of  the  relatively  rapid  development  of  numerous  footprints  in  the  past  decades,  there  was  a  need   to   single  out   those  appropriate   for  evaluating  production  processes,  products   and   supply   chains   of   the   apparel   industry.   Based   on   the   four   categories   of  environmental   sustainability   indicators   stated   by   Herva   et   al.   (2011),   the   selected  footprints  cover  the  assessment  of  all  four  categories.  Distinctions,  limitations,  strengths  and   other   variations   between   relevant   footprints   are   accounted   for   in   section   3.2.1  below.      

3.2.1 Various  footprints  and  their  distinctions  

Ecological  footprint  

The   ecological   footprint   takes   planetary   (or   other   geographical)   boundaries   in  consideration   and   defines   how   much   bio   capacity   is   required   in   order   to   support   a  certain   activity   (consumption)   (Galli   et   al.,   2012;   EPA   2014).   Thus,   the   tool   allows   for  analyses   and   comparison   between   different   societal   lifestyles   and   their   impact   on  ecological  systems  (Chambers  et.al,  2014).  Results  are  expressed  in  global  hectares  (i.e.  the  ecological  production  estimated  for  an  area)  or  physical  hectares.  An  example  of  an  application  of  the  ecological  footprint  analysis  is  the  “Living  planet  report”  produced  by  the  WWF  (2014)  stating  that  current  global  human  activities  require  1,5  planets  in  terms  of  resources.  Moreover,  Muthu  (2014)  argues  that  the  ecological  footprint  is  suitable  for  application  within  the  textile  industry.    The   tool   is   often   promoted   since   it   combines   several   indicators   that   are   normally  investigated  individually,  such  as  land  use  and  consumption  of  natural  resources  (Galli  et  al.,   2012).   Another   positive   aspect   is   that   the   data   derives   from   various   sources   and  databases   that   are   continuously   updated.   Additionally,   the   footprint   allows   for  benchmarking   between   regions   and   has   proven   to   be   a   valuable   tool   for   public  communications,   contributing   to   its   popularity   (Galli   et   al,   2012).   Critique   against   the  

 

  14  

ecological   footprint   includes   issues  with  data  aggregation  and   the  use  of  assumptions,  poor   data   collection   (for   some   regions)   and   difficulties   of   setting   system   boundaries  (EPA,  2014).  Moreover,  the  ecological  footprint  includes  regenerative  capacities,  but  not  non-­‐regenerative   (such   as   abiotic   environments),   and   only   gives   an   instant   (or  yesterday’s)  picture  of  a  situation;  i.e.  it  does  not  consider  technological  advancements  and  future  scenarios  (Moffatt,  2000;  Galli  et  al.,  2012).      

Carbon  footprint  

The  carbon  footprint,  considered  by  EPA  (2014)  as   the  most  developed  of  all   footprint  methodologies,   is   centred   on   the   investigation   of   greenhouse   gas   (GHG)   emissions   of  e.g.  a  city,  product  or  production  process   (EPA,  2014;  Herva  et  al.,  2011).  According  to  Galli  et  al.,   (2012),   the  sum  of  all  emissions   related   to  a  country’s  consumption  equals  the  carbon  footprint  of  named  country  (including  imports  but  not  exports).  The  footprint  comprises  both  direct  and  indirect  GHG  emissions  and  it  is  usually  expressed  in  terms  of  a  single  unit   indicator,  such  as  kg  when  considering  only  carbon  emissions.  However,   if  several  GHG  emissions  are  included  in  the  analysis,  the  result  is  expressed  as  CO2e  (the  mass  of  CO2  equivalent),  e.g.,  CO2e  per  dollar  or  production  unit.      The   CO2e   is   calculated   by  multiplying   the   emissions   of   each   greenhouse   gas   by   their  respective   100   year   global   warming   potential   (GWP),   where   GWP   represents   the  quantities  of  GHGs  that  contribute  to  global  warming  and  climate  change  (Herva  et  al.,  2012).    The  most  significant  greenhouse  gases,  defined  in  the  Kyoto  protocol,  are  CO2,  CH4,   N2O,   HFC,   PFC,   and   SF6   (Galli   et   al.,   2012).   Because   carbon   footprints   comprise  both  direct  and   indirect  emissions,   the  results  are  categorized  according  to  scope  one,  two   and   three.   Scope   one   concerns   direct   GHG   emissions   from   fuel   combustion   in  vehicles  and  facilities.  Scope  two  and  three  deals  with  indirect  emissions  from  purchased  electricity  as  well  as  other   indirect  GHG  emissions   (such  as  waste  disposal,  outsourced  activities  and  business  travel)  (Muthu,  2014;  Galli  et  al.,  2012).      As  with  the  ecological  footprint,  Muthu  (2014)  deems  the  carbon  footprint  as  applicable  within   the   textile   industry.   However,   as   with   all   tools   there   are   weaknesses   and  concerning   the   carbon   footprint,   those   include   delimitations   in   ability   to   track   and  analyse  overall  human  impact  on  the  environment.  Also,  worth  noting  is  that  the  carbon  footprint   only   considers   human   demand,   in   contrary   to   the   ecological   footprint,   that  considers   both   human   demand   and   natural   supply.   Hence,   as   a   single   tool   it   is   not  sufficient  for  measuring  overall  environmental  sustainability,  but  that  is  perhaps  not  the  purpose  of  the  footprint  either.      Some   strengths   of   the   tool   include:   a   strong   communicative   tool,   consistency   with  standards   developed   for   economic   and   environmental   accounting   and   comprehensive  data   availability   (Galli   et   al.,   2012;   Muthu,   2014).   Another   footprint,   not   mentioned  previously  in  this  study,  is  the  energy  footprint.  This  is  often  associated  with  the  carbon  footprint   since   the   result   of   the   analysis   is   often   expressed   in   CO2e   (EPA,   2014).   The  analysis  estimates  total  energy  consumed  within  a  set  system  boundary  and  the  amount  of   GHG   emitted   as   an   effect   of   the   consumption   (Office   of   Energy   efficiency   and  renewable   energy,   2014).   In   this   study,   the   energy   footprint   is   considered   as  synonymous  with  the  carbon  footprint.      

 

  15  

 

Material  footprint  

A   material   footprint   analysis   is   defined   by   a   set   system   boundary   and   investigates  material   input   and   waste   generation   within   that   system   e.g.   within   a   region   or  production  facility.  The  result  is  often  expressed  as  estimations  of  direct  material   input  within  a  system  or  direct  material  consumption  (Bringezu  et.  al,  2003;  EPA,  2014).  There  are  numerous   indicators  and  tools  for  analysing  material   inputs  and  outputs,  however,  on   a   corporate   level,   Herva   et   al.,   (2011)   argues   that   a  material   flow   analysis   (MFA),  substance   flow   analysis   (SFA)   and   material   input   per   unit   service   (MPIS)   are   most  appropriate.  This   is  because  they  allow  for   the  consideration  of   indirect  material   flows  and  have  been  found  suitable  for  managing  sustainable  material  handling.      Analysing  inputs  and  outputs  of  a  manufacturing  procedure  allows  for  the  identification  of   wasteful   processes,   which   enables   for   implementation   of   reduction   measures.  However,   a   significant  weakness   is   the  poor  differentiation  between   various  materials  that  are  used   in  a  process,  e.g.   the  effect  of   including  one  kg  of  unhazardous  material  compared  to  one  kg  of  highly  hazardous  material  in  a  production  process.  Therefore,  the  material   footprint   is   not   appropriate   for   analysing   the   environmental   impact   of   a  product   in   terms   of   material   choice,   but   is   a   strong   tool   for   assessing   material  throughput,   quantities   and   waste.   Moreover,   the   material   footprint   can   be   weak   in  terms  of  data  collection  when  dealing  with   large  system  boundaries,  which  causes   the  use  of  assumptions  and  generic  data.      

Chemical  footprint  

Though   the   material   footprint   is   restricted   in   terms   of   assessing   the   potential  harmfulness   of   various   materials   and   producing   a   risk   assessment,   this   is   where   the  chemical  footprint  has  an  advantage.  The  purpose  of  the  chemical  footprint  is  to  give  an  indication   of   the   potential   risk   of   a   material,   substance   or   product.   It   takes   into  consideration   various   properties   of   a   substance   including:   human   and   ecological  hazardousness,  exposure  potential  throughout  the  life  cycle  of  the  substance,  as  well  as  an   inventory   of   the  materials   or   chemicals   consumed   (Čuček   et   al.,   2012).  Hence,   the  chemical   and  material   footprints   are   quite   complementary   to   each   other   and   suitable  for  integration  (Herva  et  al.,  2011).      The   system   boundary   and   scope   of   a   chemical   footprint   depends   on   the   desired  outcome.   It  can  vary   in  system  boundary  from  assessing  single  units  to  comprehensive  evaluations  of  a  company’s  total  offer.  Moreover,  it  can  include  a  complete  life  cycle  or  delimited  phases  of  a  production  process  (Hitchcock  et  al.,  2012).  The  flexible  nature  of  the   chemical   footprint   allows   for   application   within   numerous   industries,   and  considering   the   chemically   intensive   processes   of   the   apparel   industry,   the   chemical  footprint   is   arguably   a   significant   tool   for   assessing   the   sustainability   of   an   apparel  supply  chain.    However,  due  to  the   lack  of   transparency   in  apparel  supply  chains,  data  collection  is  problematic  (Muthu,  2014;  Hitchcock  et  al.,  2012).    

Water  footprint  

Lastly,   water   footprints  measure   total   volumes   of   freshwater   consumed   and   polluted  within  a  system  boundary  (both  direct  and  indirect  use)  (Čuček  et  al.,  2012;  EPA,  2014).  

 

  16  

It   can   be   an   indicator   of   required   volume   to   sustain   a   population   or   process   and   is  usually   categorized   according   to   internal   footprints   (consumption  within   an   area)   and  external   footprints   (consumption   outside   an   area).   The   result   of   a   water   footprint   is  usually  expressed  as  volumes  consumed  or  polluted  per  unit  of   time  or   functional  unit  (Galli   et   al.,   2011).   Furthermore,   water   is   classified   as   blue,   green   and   grey   water  depending  on  the  level  of  pollution,  where  blue  corresponds  to  fresh  water  from  surface  and   groundwater,   green   is   fresh   water   from   soil   deriving   from   rainwater   and   grey   is  polluted  water  or  the  amount  of  freshwater  required  to  dilute  contaminations  and  meet  water  quality  standards  (Čuček  et  al.,  2012;  EPA,  2014).      Strengths  of  the  water  footprint  include  a  deeper  understanding  for  water  management  and  wide  system  perspective,   since   it  accounts   for  both   internal  and  external  use  of  a  system.  Hence,   it   is   considered   as   a   complement   to   the   ecological   footprint   regarding  water  resources,  since  the  ecological  footprint   lacks   in  overall  system  perspectives.  For  example,   the   ecological   footprint   does   not   take   into   account   trade   routes   between  countries  (system  boundaries)  and  can  therefore  be  misleading  in  estimations  of  actual  resources  required  to  supply  a  certain  activity.      The  water  footprint  is  considered  to  be  a  form  of  substance  flow  analysis  and  thus  have  similar   weaknesses   to   other   footprints   of   that   type,   e.g.   material   footprints.   For  example,   the   water   footprint   does   not   estimate   environmental   impacts   of   the   water  consumption,  but  is  regarded  as  more  of  an  inventory  tool.  In  addition,  there  is  a  lack  of  reliable   data   (Herva   et   al.,   2011).   However,   the   water   footprint   is   considered   highly  relevant  for  the  apparel   industry  because  of  water   intensive  production  processes  that  require  assessment  and  improvement  (Muthu,  2014).          

   

 

  17  

4 Results  In   this  section,   the  main   findings   from  the  stakeholder  opinion  assessment,  case  study  and  literature  review  are  presented.  These  findings  are  further  discussed  in  section  5.  

4.1 Highlights  from  the  stakeholder  opinion  assessment  

The   stakeholder   opinion   assessment   provided   valuable   feedback   regarding   what  parameters  to  consider  when  analysing  the  environmental  footprint  of  a  textile  product.  All   stakeholders   but   one   responded   to   the   questionnaire,   meaning   that   a   total   of   six  questionnaires  were  collected  and  analysed.  For  a  complete  overview  of   responses,  as  well  as  ranking  of  answers,  see  appendix  3.  In  the  appendix,  some  questions  in  section  1  (questions   1-­‐5)   have   been   excluded   in   order   to   ensure   the   anonymity   of   the  stakeholders.  The  main  findings  can  be  summarised  accordingly:    All   of   the   respondents  believed   in  an   increase   in   textile   consumption  until   the  year  of  2020,  which  was  in  line  with  the  projections  described  in  the  introduction.  Furthermore,  the   materials   ranked   as   the   most   environmentally   unsustainable   (environmentally  intensive)   included  viscose,  cotton  and  fur.   It   is  known  that  cotton  production  requires  large   amounts   of   pesticides,   fertilizers   and   water,   as   well   as   chemicals   for   further  treatments   such  as  dyeing   (Muthu,   2014).   Furthermore,   fur   is   a   controversial  material  due  to  the  many  alarms  on  unfair  animal  treatment  within  production  facilities.      Viscose   is   not   as   criticised   as   cotton   or   fur   in   the  media.   Perhaps   this   is   because   it   is  usually  produced  using  wood  pulp,  which  is  considered  a  renewable  resource.  However,  it  is  not  uncommon  for  viscose  to  contain  cotton  fibres,  and  the  raw  material  refinement  process  is  chemically  intensive  (CIRFS,  2015).  Also,  the  cutting  of  trees  can  lead  to  severe  deforestation  (Green  choices,  2015).  Conclusively,  the  fact  that  cotton  is  considered  one  of   the   most   unsustainable   raw   materials   among   the   stakeholders   increases   the  relevancy  of  this  study.      Moreover,   regarding   the   apparel   supply   chain,   respondents   ranked   the   waste,  manufacturing   and   raw   material   processing   phases   as   the   most   unsustainable  (environmentally   intensive).  Concerning  assessments  of  environmental  sustainability  of  apparel   supply   chains,   the   stakeholders   considered   the   manufacturing,   harvesting,  waste  and  use  phases  as  the  most  complex  to  analyse.  Material  processing  came  close  to   top   three   as  well.  Only   ‘transportation’   did   not   receive   any   points   at   all,   indicating  that   assessing   the   transportation   and   distribution   phase   is   not   considered   as   complex  compared  to  other  phases      Considering  available   footprint   tools   for   sustainability  assessment  of  apparel  products,  the  ecological,  carbon  and  water  footprints  were  deemed  the  most  relevant  footprints.  Lastly,   when   asked   about   what   was   considered   most   important   in   order   to   ensure   a  reliable   result  when   assessing   the   environmental   sustainability   of   an   apparel   product,  the  respondents  ranked  ‘transparency  in  the  supply  chain’  as  the  single  most  important  factor.  This  alternative  was  given  highest  mark  by  all  respondents,  confirming  one  of  the  prerequisites  that  this  study  is  based  upon.  

 

  18  

4.2 Findings  from  the  case  study  

4.2.1 The  supply  chain  of  the  cotton  shirt  

Being  a  key  garment  within  Company  X,  the  shirt   is  not  as  vulnerable  to  fluctuations  in  demand,  compared  to  other  products  that  are  more  sensitive  to  fashion  trends.  Because  of  this,  it  is  possible  for  the  company  to  store  rather  large  quantities  of  the  shirt  and  ship  on   demand.   Hence,   the   supply   chain   of   the   shirt   is   relatively   stable   and   can   be  considered  an  ‘lean’  supply  chain,  compared  to  other  apparel  supply  chains  that  require  a   higher   responsiveness   to   fluctuating   trends,   and   thus   are   defined   as   ‘agile’   supply  chains   (Muthu,   2014;   Company   X   –   Appendix   1,   2015;   Mason-­‐Jones   et   al.,   2010).  Moreover,  Company  X  does  not  own  any  factories,  but  buys  the  shirt  in  a  finished  state  from  an  independent  supplier.      The   shirt   is   composed   of   100   percent   cotton   and   is   produced   by   an   apparel   supplier  located   in  China.   It   is   the  supplier’s  responsibility  to  manage  the  sourcing  of  materials.  After   manufacturing,   the   shirt   is   shipped   by   boat   to   Europe,   where   it   is   stored   in   a  distribution  centre.  From  the  distribution  centre,  the  shirt  can  be  shipped  to  markets  all  over   the  world.   The  method  of   shipment   from   the  DC  varies  depending  on  where   the  receiving  country  is  located.  Regarding  unsold  garments,  Company  X  includes  outlets  in  their   business   model,   and   products   that   are   not   sold   via   first   hand   retailers   and  wholesalers  are   transferred   to   the  outlet  markets.  Garments   that  are  deemed   to  have  lost   their  market  value  are  transferred  to  the  second  hand  market.  This   is  coordinated  by  a  charity  organisation  that  collects  the  unsold  garments  (CSR  responsible  and  Project  Manager  of  Logistics  2015  at  Company  X,  2015).  There  is  however,  no  preferred  method  of   disposal   for   garments   that   are   no   longer  wearable,   considering   the  many   receiving  markets  of  Company  X.      Regarding   environmental   assessments,   Company   X   relies   on   external   competence   for  conducting  these.  There  is  no  set  strategy  or  plan  for  which  part  of  the  supply  chain  is  to  be  subjected  to  an  assessment,  or  when  to  perform  assessments.  Historic  assessments  include   carbon   footprint   analysis   and   assessments   of   chemical   use,   although   not  specifically   concerning   the   cotton   shirt   or   an   entire   supply   chain.   Moreover,   the  company  relies  on  supplier  agreements  and  internal  codes  of  conducts  for  ensuring  that  suppliers  oblige  to  local  laws  and  regulations  regarding  indicators  such  as  chemical  use.  In   addition,   Company   X   utilises   partnerships   in   organisations   such   as   BSCI   that  coordinates  and  facilitates  audits  of  suppliers  regarding  working  conditions,  and  to  some  extent  environmental  indicators.        

 

  19  

4.3 Main  findings  from  the  literature  review  

4.3.1 Supply  chain  phases  and  compatible  assessment  tools  

As   presented   in   the   literature   review,   an   apparel   supply   chain   is   comprised   of   some  general   features,   which   include   main   phases,   sub-­‐processes,   process   inputs   and  environmental  indicators.  These  features  are  explained  further  and  summarised  in  Table  3  below.  Worth  noting  is  that  phases  1  and  2  are  considered  challenging  to  estimate  in  terms  of   environmental   sustainability   due   to   lack  of   transparency,   specifically   in   cases  where  independent  subcontractors  are  utilized  (Muthu,  2014).  In  addition,  phases  5  and  6  are  complex  to  assess  because  waste  generation  and  material  recycling  is  dependent  on  infrastructures  for  waste  management  that  vary  for  each  country  (market).  Hence,  in  order   to   perform   an   accurate   assessment,   a   company   must   know   how   much   of   the  products  are  landfilled,  incinerated  or  recycled  in  each  market  (Muthu,  2014;  Caniato  et  al.,  2012).    With   this   in  mind,   phases   3   and   4   are   regarded   the  most   promising   ones   in   terms   of  collecting  data  and  performing  comprehensive  sustainability  assessments.  Furthermore,  several  of  the  identified  environmental  indicators  and  process  inputs  can  emerge  more  than   once   in   the   various   processes   throughout   the   supply   chain.   It   is   therefore  problematic  to  appoint  a  certain  phase  of  the  supply  chain  as  the  main  source.  However,  since  the  footprints  investigated  have  flexible  system  boundaries  and  are  not  exclusively  applicable   to   either   one   of   the   supply   chain   phases,   the   problem   of   allocating   the  indicators  is  not  considered  to  be  an  issue  of  great  significance  for  this  study.                                                        

 

  20  

Table  3  -­‐  A  textile  supply  chain,  its  processes  and  respective  environmental  indicators    

Supply  chain  phase   Sub  phase  (Included  processes)  

Process  inputs   Environmental  indicators  

1.  Raw  material  harvesting  phase  

Raw  material  preparation  

Direct  and  indirect  land  usage  for  fibre  production,  production  facilities  and  landfills      Pesticides,  fertilizers,  chemicals  and  other  additives      Water  for  processing  and  cooling      Machines  and  inventories  in  manufacturing  facilities        Packaging  materials      Energy  for  production  and  transportation    

Extraction  of  raw  materials  -­‐  sources  and  production  methods      Over  consumption  and  production      Production  of  chemicals,  other  materials  and  auxiliaries  for  production  and  manufacturing    Energy  production  processes  -­‐  sources  and  quantities    Water  sources,  quantities  and  processes  for  cooling  and/or  heating    Emissions  to  air,  water  and  land    Treatment  and  discharge  of  effluents      Production  of  solid  waste  and  disposal    Transportation  of  materials,  semi-­‐finished  and  finished  goods  

2.  Raw  material  processing  phase  

Raw  material  to  fibre  conversion  

Yarn  preparation  

Grey  fabric  preparation  

Finished  fabric  preparation  

3.  Manufacturing  phase  

Apparel  manufacturing,  including  cutting,  sewing  and  washing  

4.  Transport  and  distribution  phase  

Boat,  air,  train  or  truck  transports  to  warehouse  or  retailer  

5.  Use  phase   Wearing  and  washing  habits  of  consumers  

6.  Waste  phase   Recycling    

Reuse  

Landfill/Incineration  

   

 

  21  

 Moreover,   in   Table   4,   an   overview   of   the   main   highlights   regarding   purpose,   system  boundaries,   as   well   as   strengths   and   weaknesses   of   the   various   footprint   tools   is  provided.  It  was  found  that  a  common  weakness  for  all  tools  were  lack  of  reliable  data  and  hence,  the  use  of  generic  data  and  assumptions.  As  argued  in  the  introduction  and  the   literature   review,   this   is   an   effect   of   the   lack   of   transparency   in   apparel   supply  chains.  In  addition,  when  considered  separately  as  tools  for  assessing  the  environmental  sustainability   of   a   supply   chain,   none   of   the   footprints   offer   a   comprehensive   enough  scope  to  cover  all  of  the   identified  environmental   indicators.  Yet,  when   integrated  and  applied  within  a  well-­‐defined  system  boundary,  the  footprints  offer  several  possibilities  for   sustainability   assessments   of   an   apparel   supply   chain.   The   applicability   of   each  footprint  is  further  analysed  in  section  5.1.          

 

  22  

Table  4  –  The  determined  assessment  tools  and  their  main  attributes    

Footprint/  Applications  

Ecological  footprint  

Carbon  footprint  

Material  footprint  

Water  footprint  

Chemical  footprint  

System  boundary  

Product  and  regional  level  

Product  and  regional  level  

Product  level   Product  and  regional  level  

Product  and  regional  level  

Purpose  

Estimate  the  resources  required,  as  well  as  the  effect  on  bio  capacity,  to  supply  the  overall  demand  of  customers  

Estimate  the  total  carbon  footprint  of  all  processes  necessary  to  produce  and  transport  the  product  

Estimate  the  environmental  impact  of  material  choices  and  amount  of  raw  materials  used  

Estimate  the  environmental  impact  of  water  usage  within  raw  material  processing  and  manufacturing  

Estimate  the  environmental  impact  of  chemical  use  and  how  this  corresponds  to  the  choice  of  raw  material    

Strengths  

Strong  communi-­‐cative  tool    Considers  both  demand  and  supply    

Strong  communi-­‐cative  tool    Available  data    Consistency  with  standards  

Allows  for  identification  of  wasteful  processes  and  reduction  measures  

Allows  for  identification  of  wasteful  processes  and  reduction  measures  Complement  to  the  ecological  footprint    Considers  both  internal  and  external  consumption  

Considers  the  environmental  impact  of  the  consumption    Highly  relevant  for  the  apparel  industry  

Weaknesses  

Difficulties  of  determining  system  boundaries    Lack  of  data  for  some  regions  

Narrow  scope    Lack  of  data    

Does  not  consider  environmental  impact  of  the  consumption    Lack  of  data  

Does  not  consider  environmental  impact  of  the  consumption    Lack  of  data  

Lack  of  data  

 

 

     

 

  23  

5 Analysis  In  this  section  the  applicability  of  the  identified  footprints  in  the  apparel  supply  chain  is  determined.    This  is  followed  by  a  brief  analysis  of  misalignments  between  Company  X’s  applied  methods  and  preferred  methods  of  stakeholders  and  research  community.  The  section   is   concluded   with   a   suggestion   for   a   conceptual   model   aimed   at   decreasing  misalignments   and   facilitating   strategy   management   regarding   environmental  sustainability  assessment  of  apparel  supply  chains.    

5.1 The   applicability   of   identified   footprints   in   the   apparel   supply  chain  

As  presented  in  Table  3,  the  scope  and  system  boundary  of  the  different  footprint  tools  identified   in   the   literature   review   varies.   This   affects   the   functionality   of   the   footprint  and  limits  the  application  possibilities  in  an  apparel  supply  chain.  However,  based  on  the  recognized   environmental   indicators   and   the   review   of   various   footprints   presented  previously,   a   schedule   showing   potential   applications   of   the   various   footprint   tools  throughout  the  supply  chain  phases  was  produced,  presented  in  Table  6.      Firstly,  the  ecological  and  carbon  footprint  tools  are  considered  compatible  for  assessing  the  overall  supply  chain  (phases  1-­‐6).  This   is  because  they  are  suitable  for  dealing  with  large  and  complex  system  boundaries,  which  is  the  case  in  the  apparel  supply  chain.  One  could   argue   that   the   ecological   footprint   is   not   suitable   for   covering   phase   6   (waste  phase),   but   only   phase   1-­‐5,   since   it   is   generally   the   use   phase   (5)   that   dictates   the  demand   for   raw  material.  However,   since   the  waste  management   affects   the  demand  for   raw  material   (e.g.   during   increased   recycling  of  materials),   it   is   concluded   that   the  ecological   footprint   should   also   include   phase   6.   Assessing   the   waste   phase   does,  however,  entail  the  use  of  assumptions  and  generic  data.    The  material  footprint  is  considered  to  be  more  restricted  in  terms  of  system  boundary,  compared   to   the   ecological   and   carbon   footprints.   This   is   because   the  material   inputs  related   to   the   product   and   resulting   in   product   altering,   or   material   inputs   in   direct  relation  to  managing  of   the  product  such  as  packaging,  usually  cease  to  exist  after   the  product  has  reached  the  market.  It  is  possible,  though,  to  estimate  material  inputs  in  the  use   phase   regarding   e.g.   washing   detergents,   but   this   is   again   very   dependent   on  customer  habits  and  origin.  Moreover,  the  water  footprint  is  restricted  to  phases  1  to  3.,  where  the  water  input  is  significant  and  thus,  where  the  potential  for  minimizing  the  use  of  freshwater  is  the  largest.      Conclusively,   as   a   complement   to   the   material   and   water   footprints,   the   chemical  footprint   is   considered   suitable   for   phases   1   to   3   as   well.   The   chemical   footprint   is  similar   to   the   material   footprint   from   the   perspective   that   it   includes   an   inventory  assessment  of  material  and  chemical  inputs,  but  different  in  the  sense  that  it  allows  for  a  risk  assessment  of  a  chemical’s  potential  harm  to  humans  and  the  environment.      

   

   

 

  24  

Table  6  –  Overview  of  relevant  footprint  tools  and  their  applicability  within  an  apparel  supply  chain.  

 

Footprint/  Supply  chain  phase  

Ecological  footprint  

Carbon  footprint  

Material  footprint  

Water  footprint  

Chemical  footprint  

1.  Raw  material  harvesting   X   X   X   X   X  

2.  Raw  material  processing   X   X   X   X   X  

3.  Manufacturing  phase   X   X   X   X   X  

4.  Transport  and  distribution  phase  

X   X   X      

5.  Use  phase   X   X        

6.  Waste  phase   X   X        

   

5.2  Comparing  Company  X  applications  with  preferred  methods  

Compared   to   the   general   phases   of   an   apparel   supply   chain,   the   supply   chain   of  Company  X  corresponds  rather  well,  as  can  be  concluded  from  Table  4.  However,  since  the   company   utilises   a   subcontractor   for   production   of   the   shirt   and   sourcing   of   raw  materials,   there   is   limited   control   and   insight   to   tier   2   and   tier   3   suppliers,   i.e.   raw  material  providers  and  raw  material  processors  (corresponding  to  supply  chain  phases  1  and  2).  As  illustrated  in  Table  4,  the  darker  grey  shades  of  the  supply  chain  of  Company  X  indicate  which  phases  Company  X  has  limited  insight  to  and  hence,  limited  control  over.  The  manufacturing   and   transport   phases   (in   light   grey)   are   those   that   Company  X  has  insight   to,  and  thus   in   theory,  are  able  to   influence,  either  via  supplier  agreements   for  regulating   business   terms,   or   internal   management   processes.   The   table   clearly  illustrates  the  issues  of  poor  transparency  in  the  supply  chain.    

 

 

 

 

 

  25  

Table  4  –  The  supply  chain  structure  of  Company  X  

 

Supply  chain  phase  

Raw  material  harvesting  

Raw  material  processing  

Manufact-­‐uring  

Transport  and  distribution  

Use   Waste  

Manage-­‐  ment  structure  

Tier  2  and  3  suppliers  

Tier  2  and  3  suppliers  

Tier  1  supplier  

Company  X   N/A   N/A  

   Compared   to   the   footprint  methods   deemed   suitable   for   assessing   the   environmental  sustainability   of   an   apparel   supply   chain,   Company  X   is   not   applying   any   of   them   in   a  strategic   matter.   As   concluded   from   the   case   study,   carbon   footprints   and   chemical  analysis   have   been   performed   historically,   but   not   frequently   and   not   regarding   the  supply  chain  of  the  cotton  shirt.    Moreover,  historical  assessments  have  been  performed  by   external   professionals   and   not   by   Company   X   itself,   indicating   that   the   in-­‐house  competence  for  managing  the  sustainability  of  the  supply  chain  requires  reinforcement.  Competence   is   a   crucial   aspect   for   companies   in   terms   of   staying   competitive,   and  considering   the   fact   that   sustainability   assessments   are   a   relatively   new   area   of  expertise  for  commercial  industries,  it  is  not  surprising  to  find  that  this  is  also  the  case  at  Company  X.  With  this  in  mind,  it  can  be  concluded  that  there  are  obvious  misalignments  between  preferred  tools  and  actual  practices  in  the  case  of  Company  X.    Considering   what   was   regarded   important   to   assess   from   a   stakeholder   perspective,  phases  2,  3  and  6  were  ranked  as  the  most  environmentally   intensive  phases,  whereas  phases  1,  3,  5  and  6  were  ranked  as  the  most  complex  phases  to  assess.    In  addition,  the  ecological,   carbon   and  water   footprints  were   regarded   as   the  most   relevant   footprint  methods   for   assessing   the   environmental   sustainability   of   an   apparel   supply   chain.  Based   on   this,   it   can   be   concluded   that   Company   X   is   not   in   coherence   with   their  stakeholders  in  terms  of  assessing  sustainability.      Some  differences  between  stakeholder  opinions  and  those  of  the  researcher  community  include   which   phases   are   considered   the   most   complex   to   evaluate,   where   the  manufacturing   phase   (phase   3)   is   considered   less   complex   by   researchers   but   was  ranked  top  three  in  terms  of  complexity  by  stakeholders.  This  is  an  interesting  finding  as  it   might   indicate   that   stakeholders   experience   actual   practices   for   performing  assessments  within  this  phase  as  complex,  or  that  researchers  have  overestimated  the  potential   of   such   assessments.   It   can   also   be   an   indicator   of   a   greater   lack   of  transparency  than  previously  expected   for   this  phase.  Since  apparel  companies  usually  either  own  their  factories  or  have  a  supply  chain  setup  that  allows  them  to  regulate  tier  1   suppliers   (manufacturers)   via   agreements   and   policies,   transparency   issues   are   not  considered  to  be  as  complex  in  this  phase,  compared  to  phases  such  as  the  waste  phase  or  the  material  harvesting  phase.          

 

  26  

5.3 A  conceptual  model  for  developing  assessment  strategies  

The   analysis   of   applied   practices   and   preferred   methods   above   indicates   that   some  factors   regarding   the   assessment   of   an   apparel   supply   chain   require   comprehensive  strategies.  These  include  increased  transparency,  creating  inventories  of  material  inputs  and  outputs,  risk  assessments  and  creating  an  in-­‐house  competence  bank.  Based  on  this,  as  well  as  the  review  of  various  footprint  methods,  a  conceptual  model   for  developing  strategies   for  environmental  sustainability  assessments  of  an  apparel  supply  chain  was  developed.  The  model  is  presented  in  figure  2.      The  model   includes   four   steps  where   the   first   three   steps   comprise   an   analysis   of   the  supply   chain   including:   inputs,   outputs,   environmental   indicators   and   transparency  issues.   By   performing   the   first   three   steps,   a   company   can   produce   a   risk   assessment  including:   a)   an   analysis   of   where   transparency   is   limited   concerning   processes,   input  and  outputs  and  b)  an  investigation  of  significant  weaknesses  in  terms  of  environmental  harmfulness.   This   in   turn   allows   a   company   to   rank   the   various   phases   and   sub-­‐processes  based  on  the  above-­‐mentioned  risks,  and  with  respect  to  individual  challenges  and  prerequisites  of  the  company  in  question.  Moreover,  ranking  the  phases  permits  the  creation   of   a   prioritisation   scheme   between   them,   allowing   a   company   to   plan   and  allocate  resources  (human  and  financial  resources)  more  efficiently.      Conclusively,   the   fourth   step   involves   determining   an   actual   strategy   for   sustainability  assessment  of   the  weakest  parts  of   the  supply  chain   (identified   in   the  previous  steps),  possibly  by  applying  the  footprint  methods  identified  for  the  various  supply  chain  phases  in   this   study.   Thus,   a   structured   approach   for   sustainability   assessment   and   resource  allocation   is   developed,   depending   on   where   the   need   is   currently   the   greatest.    Thereafter,   should   in-­‐house   competence   be   deemed   insufficient   after   having   set   the  strategy  and  allocated   the   resources,   it   can  be  complemented  with  external  expertise.  By   approaching   sustainability   assessments   according   to   the   model,   a   business   can  gradually   improve   in-­‐house   competence   regarding   sustainability   assessments,   and  misalignments  between  research  community  and  industry  can  be  decreased.        

 

  27  

     Figure  2  –  Conceptual  model  for  determining  strategies  for  environmental  sustainability  

assessments  

     

 

  28  

6 Conclusion  Based   on   the   objectives   set   up   in   the   initial   phase   of   this   study,   the   following   can   be  concluded:    

Objective  1  -­‐  Determine  one  product  and  its  respective  supply  chain  within  an  apparel  company  for  further  analysis.  

The  product  chosen  for  analysis  was  a  cotton  shirt.  The  shirt   is  a  significant  product   in  terms  of  sales  volume,  market  share  and  material  availability  for  Company  X.  According  to   findings   from  the   literature   review,   the   supply   chain   structure  of   the  cotton  shirt   is  comparable  to  the  structure  of  a  general  apparel  supply  chain.  The  phases  of  the  supply  chain   include:   Raw   material   harvesting,   raw   material   processing,   manufacturing,  transport  and  distribution,  use  and  waste.    

Objective   2   -­‐   Determine   which   methods   and   tools   are   suitable   to   assess   the  environmental  sustainability  of  such  a  supply  chain.    

Several  tools  and  methods  for  evaluating  the  environmental  sustainability  of  an  apparel  supply   chain   have   been   investigated.   Based   on   an   extensive   literature   review   and   a  stakeholder  opinion  assessment,   it   is  concluded  that  appropriate  tools  for  assessing  an  apparel  supply  chain  include:    

• Ecological  footprint  • Carbon  footprint  • Material  footprint  • Chemical  footprint    • Water  footprint  

 When  considered  separately,   these  tools  are   limited  and  are  not  suitable   for  assessing  the  overall  environmental  sustainability  of  an  apparel  supply  chain,  but  if  integrated  and  applied  in  a  complementary  manner,  they  cover  all  phases  of  the  supply  chain.      

Objective  3   -­‐   Investigate  how  the   findings   from  objective   two  are  approached  within  the   apparel   company,   highlighting   possible   misalignments   between   the   apparel  industry  and  research  community.    

Results   indicate   that   the   tools   identified   in   objective   2   are   not   utilized   strategically   in  Company  X.  The  company  relies  on  external  competence  for  assessing  sustainability,  but  in  regards  to  the  supply  chain  of  the  cotton  shirt,  there  is  no  strategy  for  what  to  assess  and  when   to   assess   it.   An   example   of   an   earlier   sustainability   tool   applied  within   the  company   is   that   of   a   carbon   footprint   analysis.   That  was,   however,   not   performed   in  relation   to   the   cotton   shirt.   With   this   in   mind,   it   can   be   concluded   that   there   is   a  misalignment  between  Company  X  and  the  researcher  and  stakeholder  communities  in  terms  of  assessing  the  environmental  sustainability  of  an  apparel  supply  chain.      

 

  29  

Objective   4   -­‐   Based   on   objective   three,   develop   a   conceptual   model   for   conducting  environmental  sustainability  assessment  strategies  of  an  apparel  supply  chain.  

By  analysing  and  highlighting  the  misalignments  between  Company  X  and  the  researcher  and   stakeholder   communities,   it   could   be   concluded   that   increased   transparency,  inventories   of   material   inputs   and   outputs,   risk   assessments   as   well   as   in-­‐house  competence   are   significant   factors  when   assessing   the   environmental   sustainability   of  apparel  supply  chains.  Therefore,  based  on  these  factors,  a  conceptual  model  aimed  at  facilitating  the  development  of  sustainability  assessment  strategies  was  designed.      The  aim  of   this  study  was  to  produce  a  conceptual  model   for  developing  strategies  on  how   to   assess   the   environmental   sustainability   of   an   apparel   supply   chain.   This   was  based   on   a   purpose   of   trying   to   achieve   a   decrease   in   the   misalignment   between  researchers   and   apparel   industry   in   terms   of   conducting   environmental   sustainability  assessments.   Divided   into   four   steps,   the   model   introduces   a   practical   approach   for  generating   a   risk   assessment   and   a   prioritisation   scheme,   which   allows   for   resource  allocation   and   competence   reinforcement   regarding   sustainability   assessments   within  an   apparel   company.   Hence,   the  misalignments   between   researchers   and   the   apparel  industry  can  hopefully  be  decreased.      

   

 

  30  

7 Recommendations  for  further  studies      A   finding   of   this   study   that   did   not   correlate   to   the   identified   objectives   included   the  complexity   of   determining   who   is   responsible   for   the   environmental   indicators   of   a  supply   chain   when   there   are   various   companies   involved   in   the   production.   Is   it   the  company   buying   the   product,   the   manufacturer   or   the   even   the   consumer   that   is  responsible   for   the   possible   environmentally   harmful   effects   of   consumption?   By  determining   relationships   between   companies   and   encouraging   cooperation,  transparency  can  increase,  allowing  for  improved  sustainability  of  apparel  supply  chains.  It   is   therefore   recommended   that   relationships  between  companies   in  complex   supply  chains  be  further  analysed  and  suggestions  for  improved  cooperation  are  developed.      Moreover,   it   was   found   that   stakeholders   considered   the   manufacturing   phase   as  complex   in   terms  of   sustainability  assessments,  whereas   the   same  phase  was  deemed  not   as   complex  by   researchers.   This   should  be   further   investigated   in  order   to  delimit  the  possibility  of  it  being  a  coincidence.      

 

   

 

  31  

References    

Allwood,  J.M.  et  al.,  2006.  Well  Dressed?  The  Present  and  Future  Sustainability  of  Clothing  and  Textiles  in  the  United  Kingdom,  Cambridge.  Available  at:  http://www.ifm.eng.cam.ac.uk/uploads/Resources/Other_Reports/UK_textiles.pdf  [Accessed  April  21,  2015].    Bringezu,  S.,  Schütz,  H.,  &  Moll,  S.  (2003).  Rationale  for  and  interpretation  of  economy-­‐wide  materials  flow  analysis  and  derived  indicators.  Journal  of  Industrial  Ecology,  7(2),  43-­‐64.    Canadian  Supply  Chain  Sector  Council,  2015.  SUPPLY  CHAIN  DEFINITIONS.  Available  at:  http://www.supplychaincanada.org/en/supply-­‐chain  [Accessed  April  26,  2015].    Caniato,  F.  et  al.,  2012.  Environmental  sustainability  in  fashion  supply  chains:  An  exploratory  case  based  research.  International  Journal  of  Production  Economics,  135(2),  pp.659–670.  Available  at:  http://www.sciencedirect.com/science/article/pii/S0925527311002659  [Accessed  December  18,  2014].    Chambers,  N.,  Simmons,  C.,  &  Wackernagel,  M.  (2014).  Sharing  nature's  interest:  ecological  footprints  as  an  indicator  of  sustainability.  Routledge.    Chapman,  A.  (2010).  Mistra  Future  Fashion–Review  of  Life  Cycle  Assessments  of  Clothing.  Aylesbury:  Oakdene  Hollins  Research  &  Consulting.    CIRFS:   European   Man-­‐Made   Fibres   Association,   2015.   Viscose.   Man   made   fibres.  Available   at:   http://www.cirfs.org/manmadefibres/fibrerange/Viscose.aspx   [Accessed  May  29,  2015].    Čuček,  L.,  Klemeš,  J.J.  &  Kravanja,  Z.,  2012.  A  Review  of  Footprint  analysis  tools  for  monitoring  impacts  on  sustainability.  Journal  of  Cleaner  Production,  34,  pp.9–20.  Available  at:  http://www.sciencedirect.com/science/article/pii/S0959652612001126  [Accessed  Feb  13,  2015].    Galli,  A.,  Wiedmann,  T.,  Ercin,  E.,  Knoblauch,  D.,  Ewing,  B.,  &  Giljum,  S.  (2012).  Integrating  ecological,  carbon  and  water  footprint  into  a  “footprint  family”  of  indicators:  definition  and  role  in  tracking  human  pressure  on  the  planet.  Ecological  Indicators,  16,  100-­‐112.  Available  at:  http://www.sciencedirect.com/science/article/pii/S1470160X11001889  [Accessed  March  23,  2015].    Gardetti,  M.A.  &  Torres,  A.L.  eds.,  2013.  Sustainability  in  Fashion  and  Textiles:  Values,  Design,  Production  and  Consumption.  In  Sustainability  in  Fashion  and  Textiles:  Values,  Design,  Production  and  Consumption.  Greenleaf  Publishing  Limited,  pp.  1–20.  Available  at:  http://www.greenleaf-­‐publishing.com/content/pdfs/fashion_intro.pdf  [Accessed  April  21,  2015].    

 

  32  

Greenpeace,  2011.  Dirty  Laundry,  Available  at:  http://www.greenpeace.org/international/Global/international/publications/toxics/Water  2011/dirty-­‐laundry-­‐12pages.pdf  [Accessed  May  21,  2015].    Green  Choices,  Green  Choices   -­‐   Environmental   impacts  of   clothing.  2015.  Available  at:  http://www.greenchoices.org/green-­‐living/clothes/environmental-­‐impacts   [Accessed  June  8,  2015].    Herva,  M.  et  al.,  2011.  Review  of  corporate  environmental  indicators.  Journal  of  Cleaner  Production,  19(15),  pp.1687–1699.  Available  at:  http://www.sciencedirect.com/science/article/pii/S0959652611001892  [Accessed  April  17,  2015].    Hitchcock,  K.,  Panko,  J.  &  Scott,  P.,  2012.  Incorporating  chemical  footprint  reporting  into  social  responsibility  reporting.   Integrated  Environmental  Assessment  and  Management,  8(2),   pp.386–388.   Available   at:   http://www.ncbi.nlm.nih.gov/pubmed/22431357  [Accessed  April  20,  2015].    Kordas,  O.,  2014.  Transdisciplinary  research  (TdR).  Stakeholder  analysis  (Online  via  KTH  intranet  Bilda)  Department  of  sustainable  development,  environmental  science  and  engineering  Industrial  ecology.  Available  at:  https://bilda.kth.se/courseId/11398/node.do?id=22377262&ts=1410165896101&u=2071328892  [Accessed  March  21,  2015].    Moffatt,  I.  (2000).  Ecological  footprints  and  sustainable  development.  Ecological  economics,  32(3),  359-­‐362.    Morris,  D.,  2011.  The  Fibres,  Textiles  and  Textile  Manufacturing  Industries,  1970  –  2020:  Some  Observations.  In  80th  International  Wool  Textile  Organisation  Congress.  Hangzhou,  People’s  Republic  of  China:  CIRFS.  Available  at:  http://www.iwto.org/uploaded/events/2011_hangzhou/02_Morris_Paper_on_The_Fibers_textiles_and_textile_manufacturing_industries_1970-­‐2020.pdf  [Accessed  February  13,  2015].    Mason-­‐Jones,  R.,  Naylor,  B.  &  Towill,  D.R.,  2010.  Lean,  agile  or  leagile?  Matching  your  supply  chain  to  the  marketplace.  International  Journal  of  Production  Research,  38(17),  pp.4061–4070.  Available  at:  http://www.tandfonline.com/doi/abs/10.1080/00207540050204920  [Accessed  May  27,  2015].    Muthu,  S.  S.  (2014).  Assessing  the  environmental  impact  of  textiles  and  the  clothing  supply  chain.  Elsevier.    Naturvårdsverket  &  Kemikalieinspektionen,  2010.  Den  svenska  konsumtionens  globala  miljöpåverkan,  Available  at:  http://www.naturvardsverket.se/Miljoarbete-­‐i-­‐samhallet/Miljoarbete-­‐i-­‐Sverige/Uppdelat-­‐efter-­‐omrade/Avfall/Avfallsforebyggande-­‐program/Textil/#  [Accessed  May  12,  2015].    

 

  33  

Office  of  Energy  efficiency  and  renewable  energy,  2014.  MANUFACTURING  ENERGY  AND  CARBON  FOOTPRINTS  (2010  MECS).  Available  at:  http://energy.gov/eere/amo/manufacturing-­‐energy-­‐and-­‐carbon-­‐footprints-­‐2010-­‐mecs  [Accessed  March  12,  2015].    Paraschiv,  D.,  Tudor,  C.  &  Petrariu,  Ra.,  2015.  The  Textile  Industry  and  Sustainable  Development:  A  Holt–Winters  Forecasting  Investigation  for  the  Eastern  European  Area.  Sustainability,  7,  pp.1280–1291.  Available  at:  file:///Users/kontrollanvandare/Downloads/sustainability-­‐07-­‐01280.pdf  [Accessed  March  21,  2015].    Quist,  J.  &  Vergragt,  P.,  2006.  Past  and  future  of  backcasting:  The  shift  to  stakeholder  participation  and  a  proposal  for  a  methodological  framework.  Futures,  38(9),  pp.1027–1045.  Available  at:  https://bilda.kth.se/courseId/11398/node.do?id=22379139&ts=1410186439597&u=20713288  2  [Accessed  May  20,  2015].    Styles,  D.,  Schoenberger,  H.  &  Galvez-­‐Martos,  J.-­‐L.,  2012.  Environmental  improvement  of  product  supply  chains:  proposed  best  practice  techniques,  quantitative  indicators  and  benchmarks  of  excellence  for  retailers.  Journal  of  environmental  management,  110,  pp.135–50.  Available  at:  http://www.sciencedirect.com/science/article/pii/S0301479712002800  [Accessed  March  9,  2015].    Thiry,  M.C.,  2011.  Staying  alive:  Making  textiles  sustainable.  AATCC  Review,  11  (6),  pp.  26–32.  Available  at:  http://www.aatcc.org/media/read/documents/sustain1111.pdf  [Accessed  February  13,  2015].    Tukker,  A.,  2006.  Environmental  Impact  of  Products  (EIPRO),  Available  at:  http://ec.europa.eu/environment/ipp/pdf/eipro_report.pdf.  [Accessed  February  13,  2015].    United  States  Environmental  Protection  Agency,  2014.  Environmental  Footprint  Analysis  |  Sustainability  Analytics  |  Research  |  US  EPA.  Available  at:  http://www.epa.gov/sustainability/analytics/environmental-­‐footprint.htm  [Accessed  February  12,  2015].    World  Trade  Organization,  2014.  International  Trade  Statistics  2014,  Available  at:  http://www.wto.org/english/res_e/statis_e/its2014_e/its2014_e.pdf  [Accessed  February  14,  2015].    WWF,  2014.  Living  Planet  report  2014,  Available  at:  file:///Users/kontrollanvandare/Downloads/wwf_lpr2014_low_res.pdf  [Accessed  May  1,  2015].    

 

  i  

Appendices  

Appendix  1  –  Checklist  for  case  study  interview  

 1. Can  you  describe  the  supply  chain  setup  of  the  chosen  product?  

 2. What  is  the  composition  of  the  chosen  product?  

 3. How  many  suppliers  are  involved  in  the  production  of  the  shirt  (1-­‐tier  suppliers)?  

 4. Which  parts  of  the  supply  chain  are  handled  by  the  tier-­‐1  supplier  (e.g.  cutting,  

sewing,  dying,  raw  material  production  etc.)?    

5. How  many  sub-­‐suppliers  are  involved  with  the  production?      

6. What  are  the  roles  of  these  suppliers  (e.g.  raw  material  producer,  raw  material  processer)?  

 7. How  are  terms  and  conditions  regarding  product  requirements  regulated  with  

the  tier-­‐1  suppliers?  Are  there  any  external  agents  involved?    

8. Do  you  consider  environmental  sustainability  when  choosing  supplier?    

9. Do  you  have  agreements,  policies  or  other  documents  for  regulating  sustainability?  

 10. How  are  environmental  sustainability  requirements  communicated  and  

regulated  with  the  supplier?    

11. How  are  environmental  sustainability  requirements  evaluated?    

12. Who  is  responsible  for  making  sure  the  requirements  are  evaluated?    

13. Do  you  apply  environmental  footprints  when  evaluating  the  sustainability  of    a. products  in  general?    b. this  product  in  particular?  

 14. Do  you  involve  external  partners/programs  in  your  work  with  environmental  

sustainability?  

 

  ii  

Appendix  2  –  Questionnaire  of  stakeholder  opinion  assessment  

General Information

I am writing a master thesis about environmental sustainability analysis of

textile products for the department of Industrial Ecology at KTH. I would like

your help to perform a stakeholder opinion assessment about what

parameters that are important to consider for such an analysis. In order to

achieve this, I have produced this questionnaire with a total of 15 questions

for you to answer. It will take approximately 5-10 minutes to complete.

If you do not recognize some of the technical terms in the questionnaire, or for

some other reason cannot answer a question, please answer “other” where

possible.

Your answers will be treated with the utmost respect. If you wish for you, or

the organization you are representing, to be anonymous in the report, please

mark the box below with an X.

 

  iii  

A. Questions about the interviewee Question 1. What is your professional role/position? Question 2. What age are you? Mark the most suitable interval with an X.

< 30 years 30 - 40 years 40-50 years 50 - 60 years Over 60 years

Question 3. Which entity do you belong to? Mark the most suitable option with an X.

Research institute /University

Interest organization of apparel industry

Non Governmental Organization/ or similar

Private person/consumer

Employee at case study company

Other

Question 4. How do you consider your knowledge about sustainable development? Mark the most suitable option with an X.

Very poor Poor Intermediate Good Very good

1 2 3 4 5 6 7 8 9 10

 

  iv  

Question 5. How would you rank your personal lifestyle in terms of sustainability? Mark the most suitable option with an X.

Totally unsustainable

Unsustainable Intermediate Sustainable Very sustainable

1 2 3 4 5 6 7 8 9 10 B. General questions Question 6. How do you think global textile consumption will develop until 2020? Please mark one option with an x.

Decrease Stabilize (neither decrease nor increase)

Increase

Question 7. Which materials do you consider the most unsustainable (environmentally intensive)? Please mark your top 3 choices with 1, 2 and 3, where 1 represents the most unsustainable.

Cotton Wool (all types of wool)

Polyester Viscose Silk Fur (all types of fur)

Other

Question 8. Which parts of the apparel supply chain do you consider the most unsustainable (environmentally intensive)? Please mark your top 3 choices with 1, 2 and 3, where 1 represents the most unsustainable.

Waste management (after use)

Use phase

Transport

Manufacturing (cutting and sewing)

Raw material processing

Raw material harvest-ing

Other

 

  v  

Question 9. Which sectors do you think will have the biggest influence in achieving a more sustainable apparel industry? Please mark your top 3 choices with 1, 2 and 3, where 1 represents the option with the biggest influence.

Political sector

Private companies

Non Governmental Organization/ or similar

Research institutes and/or Universities

Consumers Other

C. Questions related to the thesis work Question 10. When analyzing the overall sustainability of a textile product, do you consider the economic, social or environmental sustainability to be of greatest importance? Please mark one option with an x.

Economic Social Environmental Neither, they are all equally important

No opinion

Question 11. Regarding the environmental sustainability of a textile product, which footprint do you consider the most relevant to analyze? Please mark your top 3 choices with 1, 2 and 3, where 1 represents the most relevant.

Material footprint

Water footprint

Carbon footprint

Energy footprint

Ecological footprint

Other/no opinion

If you chose ‘other’, please state which one:

 

  vi  

Question 12. Regarding the environmental sustainability of a textile product, which supply chain phase do you consider the most important to analyze? Please mark your top 3 choices with 1, 2 and 3, where 1 represents the most important.

Waste phase (after use)

Use phase

Transport

Manufacturing (cutting and sewing)

Raw material processing

Raw material harvesting

All options are equally important

Other/no opinion

If you chose ‘other’, please state which one: Question 13. Regarding the environmental sustainability of a textile product, which supply chain phase do you consider the most difficult to analyze in terms of obtaining information? Please mark your top 3 choices with 1, 2 and 3, where 1 represents the most difficult.

Waste phase (after use)

Use phase

Trans-port

Manu-facturing (cutting and sewing)

Raw material process-ing

Raw material harvest-ing

All options are equally important

Other/no opinion

If you chose ‘other’, please state which one:

 

  vii  

Question 14. When analyzing the environmental sustainability of a textile product, which factors do you consider most important in order to secure a reliable result? Please mark your top 3 choices with 1, 2 and 3, where 1 represents the most important.

Accessible databases for comparison of data (such as Life Cycle Assessment databases, i.e. GABI)

Collecting your own data and minimizing assumpt-ions

Using standards for analysis, such as ISO or Global Reporting Initiative

Transparency in the supply chain

Certifications and markings

Other/no opinion

If you chose ‘other’, please state which one: Finally, if you have any thoughts or comments connected to the questions above, please feel free to add them below. Thank you for your contribution.        

 

  viii  

Appendix  3  –  Responses  of  stakeholder  opinion  assessment  

 

Section(1(*(Questions(about(the(respondent Frequency Total.score Mean.valueQ2

<"30"years""""

30"*"40"years

40*50"years

50"*"60"years

Over"60"years

Q3Q4

Very"poor 0

Poor 0

Intermediate 5

Good 31

Very"Good 9

Q5Totally"unsustainable 0

Unsustainable 0

Intermediate 11

Sustainable 29

Very"sustainable 0

Section(2(*(General(questions(about(textile(industry

Q6Decrease

Stabilise

Increase

Q7Cotton" 4 14 3,5Wool 3 9 3,0

Polyester 3 3 1,0

Viscose 2 8 4,0Silk 1 3 3,0

Fur 3 10 3,3Other 0 0

Q8Waste"management 1 3 3,0

Use"phase 4 10 2,5

Transport 0 0 0,0

Manufacturing 3 13 4,3Raw"material"processing 6 20 3,3Raw"material"harvesting 3 5 1,7

Other 1 3 3,0Q9

Political"sector 6 16 2,7Private"companies 6 18 3,0

NGO 0 0 0,0

Research"institute/University 0 0 0,0

Consumers 6 20 3,3Other 0 0 0,0

 

  ix  

   

Section(3(*(Questions(related(to(thesis(workQ10

Economic 0 0 0,0Social 0 0 0,0

Environmental 3 15 5,0All2are2equally2important 3 15 5,0

No2opinion 0 0 0,0Q11

Material2footprint 2 4 2,0Water2footprint 4 10 2,5Carbon2footprint 2 8 4,0Energy2footprint 3 5 1,7

Ecological2footprint 4 18 4,5Other/no2opinion 1 5 5,0

Q12Waste2phase 4 12 3,0

Use2phase 3 5 1,7Transport 1 3 3,0

Manufacturing 3 11 3,7Raw2material2processing 6 20 3,3Raw2material2harvesting 1 3 3,0

All2options2are2equally2important 0 0 0,0Other/no2opinion 0 0 0,0

Q13Waste2phase 3 9 3,0

Use2phase 3 9 3,0Transport 0 0 0,0

Manufacturing 4 14 3,5Raw2material2processing 6 16 2,7Raw2material2harvesting 2 6 3,0

All2options2are2equally2important 0 0 0,0Other/no2opinion 0 0 0,0

Q14Accessible2databases 5 13 2,6

Collecting2your2own2data 5 9 1,8Using2standards 1 3 3,0Transparency 5 25 5,0

Certifications2and2other2markings 3 4 1,3Other/no2opinion 0 0 0,0

Q15-.-General-comments