arash ali-amini 1 massoud babaie-zadeh 1,2 christian jutten 2

42
“A fast method for Underdetermined Sparse Component Analysis (SCA) based on Iterative Detection-Estimation (IDE)” Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2 1- Sharif University of Technology, Tehran, IRAN 2- Laboratory of Images and Signals (LIS), CNRS, INPG, UJF, Grenoble, FRANCE

Upload: ananda

Post on 18-Mar-2016

51 views

Category:

Documents


0 download

DESCRIPTION

“A fast method for Underdetermined Sparse Component Analysis (SCA) based on Iterative Detection-Estimation (IDE)”. Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2 1- Sharif University of Technology, Tehran, IRAN - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

“A fast method for Underdetermined Sparse

Component Analysis (SCA) based on Iterative Detection-

Estimation (IDE)”Arash Ali-Amini1

Massoud BABAIE-ZADEH1,2

Christian Jutten2

1- Sharif University of Technology, Tehran, IRAN2- Laboratory of Images and Signals (LIS), CNRS, INPG, UJF, Grenoble, FRANCE

Page 2: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 2/42

Outline Introduction to Blind Source Separation Geometrical Interpretation Sparse Component Analysis (SCA), underdetermined case

Identifying mixing matrix Source restoration

Finding sparse solutions of an Underdetermined System of Linear Equations (USLE): Minimum L0 norm Matching Pursuit Minimum L1 norm or Basis Pursuit (Linear Programming) Iterative Detection-Estimation (IDE) - our method

Simulation results Conclusions and Perspectives

Page 3: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 3/42

Blind Source Separation (BSS) Source signals s1, s2, …, sM

Source vector: s=(s1, s2, …, sM)T

Observation vector: x=(x1, x2, …, xN)T

Mixing system x = As

Goal Finding a separating matrix y = Bx

A B s x y

Mixing matrix Separating matrix

Page 4: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 4/42

Blind Source Separation (cont.)

Assumption: N >=M (#sensors >= #sources) A is full-rank (invertible)

prior information: Statistical “Independence” of sources

Main idea: Find “B” to obtain “independent” outputs ( Independent Component Analysis=ICA)

A B s x y

Mixing matrix Separating matrix

Page 5: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 5/42

Blind Source Separation (cont.)

A B s x y

Mixing matrix Separating matrix

Separability Theorem [Comon 1994,Darmois 1953]: If at most 1 source is Gaussian: statistical independence of outputs source separation ( ICA: a method for BSS)

Indeterminacies: permutation, scale

A = [a1, a2, …, aM] , x=As

x = s1 a1 + s2 a2 + … + sM aM

Page 6: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 6/42

Geometrical Interpretation

11ba

Ax=As

Statistical Independence of s1 and s2, bounded PDF rectangular support for joint PDF of (s1,s2) rectangular scatter plot for (s1,s2)

Page 7: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 7/42

Sparse Sources

0 10 20 30 40 50 60 70 80 90 100-2

-1

0

1

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3-3

-2

-1

0

1

2

3

s-plane x-plane

2 sources, 2 sensors:

Page 8: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 8/42

Importance of Sparse Source Separation The sources may be not sparse in time, but

sparse in another domain (frequency, time-frequency, time-scale, etc.)

x=As T{x}=A T{s} T: a ‘sparsifying’ transform

Example. Speech signals are usually sparse in ‘time-frequency’ domain.

Page 9: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 9/42

Sparse sources (cont.)

3 sparse sources, 2 sensors

-3 -2 -1 0 1 2 3-3

-2

-1

0

1

2

3

Sparsity Source Separation, with more sensors than sources?

Page 10: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 10/42

Estimating the mixing matrix

A = [a1, a2, a3]

x = s1 a1 + s2 a2 + s3 a3

Mixing matrix is easily identified for sparse sources

Scale & Permutation indeterminacy

||ai||=1 -3 -2 -1 0 1 2 3-3

-2

-1

0

1

2

3

a1

a2a3

Page 11: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 11/42

Restoration of the sources

How to find the sources, after having found the mixing matrix (A)?

111 12 13 11 1 12 2 13 3 11

221 22 23 21 1 22 2 23 3 22

3

sa a a a s a s a s xx

s ora a a a s a s a s xx

s

2 equations, 3 unknowns infinitely many solutions!

Underdertermined SCA, underdetermined system of equations

Page 12: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 12/42

Identification vs Separation

#Sources <= #Sensors:Identifying A Source Separation

#Sources > #Sensors (underdetermined)Identifying A Source Separation

Two different problems: Identifying the mixing matrix (relatively easy) Restoring the sources (difficult)

Page 13: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 13/42

Is it possible, at all? A is known, at eash instant (n0), we should solve un underdetermined linear system of equations:

Infinite number of solutions s(n0) Is it possible to recover the sources?

11 1 0 12 2 0 13 3 0 1 00 0

21 1 0 22 2 0 23 3 0 2 0

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )a s n a s n a s n x n

n n ora s n a s n a s n x n

As x

Page 14: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 14/42

‘Sparse’ solution

si(n) sparse in time The vector s(n0) is most likely a ‘sparse vector’

A.s(n0) = x(n0) has infinitely many solutions, but not all of them are sparse!

Idea: For restoring the sources, take the sparsest solution (most likely solution)

Page 15: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 15/42

Example (2 equations, 4 unknowns)

0 5 2 2 60 1 1 0 0

, , , , ,1.5 3 0.75 0 32.5 0 0.75

020

2 10

1

2

3

4

1 2 1 1 41 1 2 2 2

ssss

Some of solutions:

Sparsest

Page 16: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 16/42

The idea of solving underdetermined SCAA s(n) = x(n) , n=0,1,…,T

Step 1 (identification): Estimate A (relatively easy)

Step 2 (source restoration): At each instant n0, find the sparsest solution of

A s(n0) = x(n0), n0=0,…,T

Main question: HOW to find the sparsest solution of an Underdetermined System of Linear Equations (USLE)?

Page 17: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 17/42

Another application of USLE: Atomic decomposition over an overcompelete dictionary Decomposing a signal x, as a linear combination of a set of fixed signals (atoms)

Terminology: Atoms: i , i=1,…,M Dictionary: { 1 , 2 ,…, M}

1

1

1 1

1

1 1

(1) (1)(1)(2) (2)Time (2)(3) (3)(3)

( ) ( )( )

M

M

M M

M

M M

xxx

N Nx N

x

Page 18: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 18/42

Atomic decomposition (cont.)

M=N Complete dictionary Unique set of coefficients Examples: Dirac dictionary, Fourier Dictionary

1

1

1 1

1

1 1

(1) (1)(1)(2) (2)Time (2)(3) (3)(3)

( ) ( )( )

M

M

M M

M

M M

xxx

N Nx N

x

1( )

0k

n kn

n k

Dirac Dictionary:

Page 19: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 19/42

Atomic decomposition (cont.)

M=N Complete dictionary Unique set of coefficients

Examples: Dirac dictionary, Fourier Dictionary

1

1

1 1

1

1 1

(1) (1)(1)(2) (2)Time (2)(3) (3)(3)

( ) ( )( )

M

M

M M

M

M M

xxx

N Nx N

x

2 2 22 ( 1)1, , , ,

Tk k k NN N N

k e e e

Fourier Dictionary:

Page 20: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 20/42

Atomic decomposition (cont.)

1 1 m m x

Matrix Form:

If just a few number of coefficient are non-zero The underlying structure is very well revealed

Example. signal has just a few non-zero samples in time its decomposition over the Dirac dictionary

reveals it Signals composed of a few pure frequencies its decomposition over the Fourier dictionary

reveals it How about a signals which is the sum of a pure frequency and a dirac?

1

1,..., m

m

x Φα

Page 21: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 21/42

Atomic decomposition (cont.)

Solution: consider a larger dictionary, containing both Dirac and Fourier atoms

M>N Overcomplete dictionary.

Problem: Non-uniqueness of (Non-unique representation) ( USLE)

However: we are looking for sparse solution

1

1 1 1,...,m m m

m

x Φα

Page 22: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 22/42

Sparse solution of USLE

Underdetermined SCAAtomic Decomposition

on over-complete dictionaries

Findind sparsest solution ofUSLE

Page 23: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 23/42

Uniqueness of sparse solution x=As, n equations, m unknowns, m>n

Question: Is the sparse solution unique?

Theorem (Donoho 2004): if there is a solution s with less than n/2 non-zero components, then it is unique with probability 1 (that is, for almost all A’s).

Page 24: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 24/42

How to find the sparsest solution A.s = x, n equations, m unknowns, m>n Goal: Finding the sparsest solution Note: at least m-n sources are zero.

Direct method: Set m-n (arbitrary) sources equal to zero Solve the remaining system of n equations and n unknowns Do above for all possible choices, and take sparsest answer.

Another name: Minimum L0 norm method L0 norm of s = number of non-zero components = |si|0

Page 25: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 25/42

Example

s1=s2=0 s=(0, 0, 1.5, 2.5)T L0=2 s1=s3=0 s=(0, 2, 0, 0)T L0=1 s1=s4=0 s=(0, 2, 0, 0)T L0=1 s2=s3=0 s=(2, 0, 0, 2)T L0=2 s2=s4=0 s=(10, 0, -6, 0)T L0=2 s3=s4=0 s=(0, 2, 0, 0)T L0=2 Minimum L0 norm solution s=(0, 2, 0, 0)T

1

2

3

4

1 2 1 1 41 1 2 2 2

different answers to be tested4

62

ssss

Page 26: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 26/42

Drawbacks of minimal norm L0

Highly (unacceptably) sensitive to noise Need for a combinatorial search:

Example. m=50, n=30,

diffetent cases should be tested separatelymn

13505 10 cases should be tested.

30

On our computer: Time for solving a 30 by 30 system of equation=2x10-4s

Total time (5x1013)(2x10-4) 300 years! Non-tractable

00 0

( ) Minimize s.t.ii

P s s x As

Page 27: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 27/42

faster methods?

Matching Pursuit [Mallat & Zhang, 1993]

Basis Pursuit (minimal L1 norm Linear Programming) [Chen, Donoho, Saunders, 1995]

Our method (IDE)

Page 28: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 28/42

Matching Pursuit (MP) [Mallat & Zhang, 1993]

Page 29: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 29/42

Properties of MP

Advantage: Very Fast

Drawback A very ‘greedy’ algorithm Mistake in a stage can never be corrected Not necessarily a sparse solution

x=s1a1+s2a2

a1

a2

a3

a5

a4

Page 30: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 30/42

Minimum L1 norm or Basis Pursuit [Chen, Donoho, Saunders, 1995]

Minimum norm L1 solution:

MAP estimator under a Laplacian prior

Recent theoretical support (Donoho, 2004): For ‘most’ ‘large’ underdetermined systems of linear equations,

the minimal L1 norm solution is also the sparsest solution

1 1( ) Minimize s.t.i

i

P s s x As

Page 31: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 31/42

Minimal L1 norm (cont.)

Minimal L1 norm solution may be found by Linear Programming (LP)

Fast algorithms for LP: Simplex Interior Point method

1 1( ) Minimize s.t.i

i

P s s x As

Page 32: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 32/42

Minimal L1 norm (cont.)

Advantages: Very good practical results Theoretical support

Drawback: Tractable, but still very time-consuming

Page 33: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 33/42

Iterative Detection-Estmation (IDE)- Our method Main Idea:

Step 1 (Detection): Detect which sources are ‘active’, and which are ‘non-active’

Step 2 (Estimation): Knowing active sources, estimate their values

Problem: Detecting the activity status of a source, requires the values of all other sources!

Our proposition: Iterative Detection-Estimation

Activity Detection Value Estimation

Page 34: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 34/42

IDE, Detection step Assumptions:

Mixture of Gaussian model for sparse sources: si active si~N(0,12)

si in-active si~N(0,02), 1>>0

0: probability of in-activity 1 Columns of A are normalized

Hypotheses:

Proposition: t=a1

Tx=s1+ Activity detection test: g1(s)=|t- |> depends on other sources use their previous estimates

Page 35: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 35/42

IDE, Estimation step Estimation equation:

Solution using Lagrange multipliers:

Closed-form solution See the paper

2(IDE) minimize s.t.inactive

ii I

s

x As

Page 36: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 36/42

IDE, summary

Detection Step (resulted from binary hypothesis testing, with a Mixture of Gaussian source model):

Estimation Step:

ˆ ˆ( , )

ˆ ˆ ˆ( , ) ( )

mT

i i j jj i

T

g s

or

x s a x a

g x s A x As s

2(IDE) minimize s.t.inactive

ii I

s

x As

Page 37: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 37/42

IDE, simulation resultsm=1024, n=0.4m=409

Page 38: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 38/42

IDE, simulation results (cont.) m=1024, n=0.4m=409

IDE is about two order of magnitudes faster than LP method (with interior point optimization).

Page 39: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 39/42

Speed/Complexity comparision

Page 40: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 40/42

IDE, simulation results: number of possible active sources

m=500, n=0.4m=200, averaged on 10 simulations

Page 41: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 41/42

Conclusion and Perspectives Two problems of Underdetermined SCA:

Identifying mixing matrix Restoring sources

Two applications of finding sparse solution of USLE’s: Source restoration in underdetermined SCA Atomic Decomposition on over-complete dictionaries

Methods: Minimum L0 norm (Combinatorial search) Minimum L1 norm or Basis Pursuit (Linear Programming) Matching Pursuit Iterative Detection-Estimation (IDE)

Perspectives: Better activity detection (removing thresholds?) Applications in other domains

Page 42: Arash Ali-Amini 1 Massoud BABAIE-ZADEH 1,2 Christian Jutten 2

MaxEnt2006, 8-13 July, Paris, France 42/42

Thank you very much for your attention