application of thermodynamics and molecular simulation in chemical engineering problems

Upload: hanee-farzana-hizaddin

Post on 07-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    1/103

     Application ofthermodynamics and

     Molecular simulation in Green Separation processDr.R.Anantharaj

    Department of Chemical Engineering

    National Institute of Technology Tiruchirappalli

    Tiruchirappalli-620015

    Tamil NaduINDI!

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    2/103

    My Home

    GreenSolvent

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    3/103

    Over view

    Introduction "olecular #imulation Constituent

    Ionic $i%uids

    #eparation Techni%ues

     !pplications

    #ummary

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    4/103

    What is thermodynamics?

    Thermo = energy

    Dynamics = motion

    Thermodynamics = the motion of energy

    Thermodynamics = the comparison of states to determine

    their relative stability.

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    5/103

    Denition of a “state” in terms ofenery

    !"Σ#e$ i%epi&

    'inetic enery

    (otential enery

    )nternal enery*

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    6/103

    Why st+dy thermodynamics in ,hemical

    -nineerin?

    Thermodynamics is the basis for understanding a chemical response to changes in

    temperature, pressure, and composition. Thus the critical link between processing

    and microstructure requires a knowledge of the relevant thermodynamics principles.

    (roperties

    (rocessin

    Str+ct+re

     Atomic,rystal . Molec+lar

    Grain str+ct+re(hase distri/+tion

    DefectsMechanica

    l,hemical-lectrical

    Manetic0hermal

    0emperat+re(ress+re . stress 1ol+me . strain

    ,hemical composition

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    7/103

    Why Molec+lar sim+lation2? "olecular simulation is primarily a tool  for

    calculating the energy of a gi&en molecular

    structure'

    To define the chemical engineering  pro(lem

    )ell as one in&ol&ing a structure-energyrelationship'

    Identifying correlations (et)een chemical

    structures and properties #toring and searching for data  on chemical

    entities

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    8/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    9/103

    Molec+lar Sim+lation2?

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    10/103

    Di3erence 4etween MS 5 -6

    "olecular #imulation E,perimentE,periment"olecular #imulation E,periment

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    11/103

    Molec+lar Sim+lation,onstit+ent Molecular Mechanics (MM)  a chemist3s 

    model It3s descri(es the energy of a molecule in terms

    of a simple function which accounts for deformation from

    “ideal”   (ond distances and angles as )ell as and for

    non(onded &an der 4aals and Coulom(ic interactions'

    Quantum Mechanics (QM)  a physicist3s 

    model It3s descri(es the energy of a molecule in terms

    of interactions among nuclei and electrons as given by

    the Schrödinger equation'

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    12/103

    Schematic Diaram of MM

    ∑∑∑   ++=anglesdihedral 

    anglesbonds

    twisting dihedral bending angle stretcing bond  E 1

    ∑∑   +=atomsof  

     Pairsatomsof  

     Pairs

      forceCoulombic  forceWaalsder Van E 2

    21   E  E  E    += 21   E  E  E    += 21   E  E  E    +=

    ∑∑∑   ++=ang lesdihedral 

    anglesbonds

    twisting dihedral bending angle stretcing bond  E 1

    21   E  E  E    +=

    ∑∑   +=atomsof  

     Pairsatomsof  

     Pairs

      forceCoulombic  forceWaalsder Van E 2

    ∑∑∑   ++=anglesdihedral 

    anglesbonds

    twisting dihedral bending angle stretcing bond  E 1

    21   E  E  E    +=

    ∑∑   +=atomsof  

     Pairsatomsof  

     Pairs

      forceCoulombic  forceWaalsder Van E 2

    ∑∑∑   ++=ang lesdihedral 

    anglesbonds

    twisting dihedral bending angle stretcing bond  E 1

    21   E  E  E    +=

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    13/103

    Limitations of Molecular Mechanics

    MM Description Basedon the Bonding

    Pattern of Product 

    MM Description Basedon the Bonding

    Pattern of Reactant

    Correct description

    The bond-breaking and bond-forming cannot be described.

    A B C A B C

    Reactant Product

    A B C

    Transition State

    Progress of Reaction

    nerg!

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    14/103

    Quantum Mechanics

    (QM)

    The #chrdinger e%uation plays the role ofNe)tons la)s and conser&ation of energy inclassical mechanics

    It is a )a&e e%uation  in terms of the )a&e

    function )hich predicts analytically andprecisely the pro(a(ility of e&ents oroutcome'

    The #chrdinger e%uation gi&es the%uanti.ed energies of the system  and gi&esthe form of the )a&e function so that otherproperties may (e calculated'

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    15/103

    Schr7diner -8+ation

    Computational Chemistry 5510

    Spring 2006 Hai Lin

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    16/103

    "uantum Mechanics

    MacroscopicMicroscopic

    Quantum mechanics is the law governing the behavior of nuclei and electrons.

    Energy

    Internuclear

    DistanceO

    H

    H

    !".#$ Correct Descri%tion

    for Bond&brea'ing

    and Bond&forming 

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    17/103

    Basis of "uantum Chemistr!

    Schr#dinger e$uation%

    HHψ ψ  "" E Eψ ψ 

    Erwin (chr)dinger *aul A. +. Dirac

    Nobel Prize in Physics1933

    "or the !iscovery o ne#ro!uctive orms o

    atomic theory"

    Dirac &'()(*% +The underl!ing ph!sical

    la,s necessar! for the mathematical

    theor! of a large part of ph!sics and

    the ,hole of chemistr! are thus

    completel! kno,n.

    o,e/er0 it can be sol/ed e1actl! onl! for one-electron s!stems &e.g.0 a

    h!drogen atom* and numericall! for an! a s!stem ha/ing more electrons.

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    18/103

    2ccurate "uantum Mechanical Methods

    2ccurate $uantum mechanical computation is a po,erful tool in stud! ofchemistr! 3 chemical engineering .

    ,obel *ri-e inChemistry /

    4alter 5ohn 6ohn 2. Pople

    +for his de/elopment of the

    densit!-functional theor!

    +for his de/elopment of

    computational methods in

    $uantum chemistr!

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    19/103

    Schr#dinger $uation

    2

    n

    n

    2

    1a

     N 

    a   a M ∇−= ∑T

    ∑∇−=

    e N 

    i

    i

    m

    2

    e

    e

    2

    1T

    Kinetic energy of nuclei 

    Kinetic energy of electrons

    Coulombic energy between nuclei

    Coulombic energy between electrons

    Coulombic energy between nuclei and electrons

    H  Tn ! Te ! Vnn ! Vee ! Vne

    n9 n:

    e9 e:

    ∑∑>

    =n n

    nn

     N 

    a

     N 

    ab   ab

    ba

     Z  Z V

    ∑∑>=e e 1

    ee

     N 

    i

     N 

      ji   ijr V

    ∑∑=n e

    ne

     N 

    a

     N 

    i   ai

    a

     Z V

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    20/103

    2ppro1imations

    To solve the "chr#dinger equation appro$imately, assumptionsare made to simplify the equation%

    &Born-Oppenheimer approximation allows separate

    treatment of nuclei and electrons. 'ma (( me)

    &Hartree-o!" in#epen#ent ele!tron approximation 

    allows each electron to be considered as being affected by

    the sum 'field) of all other electrons.

    &LC$O $pproximation represents molecular orbitals as

    linear combinations of atomic orbitals 'basis functions).

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    21/103

    Born-7ppenheimer 2ppro1imation

    & *uclei are much heavier than electrons 'ma + me ≥ 1-) andmove much slower.

    &/ffectively, electrons ad0ust themselves instantaneously to

    nuclear configurations.

    &/lectron and nuclear motions are uncoupled, thus the energies

    of the two are separable.

    Energy

    Internuclea 

    r Distance

    9; oint toform a potential enery

    s+rface on which n+cleimove;

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    22/103

    Man!-electron 4a/e function

    %

    e9

    e:

    e N 

    ei

    Pauli #rinci#le& 0wo electrons can not have all8+ant+m n+m/er e8+al;

    This requires that the total 'manyelectron) wave function

    is antisymmetric whenever one e$changes two electrons

    coordinates.

    φ i' x 1)   φ  j' x 1) 3 φ k ' x 1)

    φ i' x 2)   φ  j' x 2) 3 φ k ' x 2)

    φ i' x  N )   φ  j' x  N ) 3 φ k ' x  N )

    Ψ' x 1, x 2, 3, x  N ) '1+ N 4)5 

    Hartree #ro!uct&  All electrons are independent= each in itsown or/ital;Ψ67' x 1, x 2, 3, x  N ) φ i' x 1)   φ  j' x 2)3

    φ k ' x  N )

    Ψ' x 1, x 2, 3, x  N )  − Ψ' x 2, x 1, 3, x  N )

    Slater !eterminant satises the (a+li principle;

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    23/103

    Man!-electron 4a/e function &)*

    e9e:

    The total 'manyelectron) wavefuntion is antisymmetric when one

    e$changes two electrons coordinates x 1 and x 2.

    φ i' x 1) φ  j' x 1)

    φ i' x 2) φ  j' x 2)Ψ' x 1, x 2) '1+2)5 

    Hartree #ro!uct& 4oth electrons areindependent;Ψ67' x 1, x 2) φ i' x 1) φ  j' x 2)

    Ψ' x 2, x 1) '1+2)5 8φ i' x 2) φ  j' x 1) − φ i' x 1) φ  j' x 2)9 − Ψ' x 1, x 2)

    Slater !eterminant satises the (a+li principle;

    -@ample* A twoelectron system;

    Ψ' x 1, x 2) '1+2)5 8φ i' x 1) φ  j' x 2) − φ i' x 2) φ  j' x 1)9

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    24/103

    artree-8ock 2ppro1imation

    %

    &: ;ock operator  is introduced for a given electron in the ith orbital%

    i

     φ i

      ε i

     φ i

    $inetic eneryterm of the

    iven electron

    potentialenery termd+e to @ed

    n+cleiaveraed

    potentialenery termd+e to the

    other electrons

    i %

    φ i is the ith molecular orbital, and ε i is the corresponding orbital energy.

     *ote% The total energy is *feels? all the other electrons as a whole 'field

    of charge), .i.e., an electron moves in a meanfield generated by all the other electrons.

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    25/103

    The 8ock 7perator

    Kinetic energy term

    and nuclear attraction

    for the given electron

    ∑   −+= N 

      j

      j  jii   )' % &h

    ,oreHamiltonian

    operator

    ,o+lom/

    operator

    -@chane

    operator

    Coulombic energy

    term for the given

    electron due to

    another electron

    /$change energy due

    to another electron

    ': pure quantum

    mechanical term due tothe 7auli principle, no

    classical interpretation)

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    26/103

    Self-consistenc!

    &The ;ock equation for an electron in

    the ith orbital contains information ofall the other electrons 'in an averaged

    fashion), i.e., the ;ock equations for all

    electrons are coupled with each other.

    e jek

    ei

    &/ach electron >feels? all the other electrons as a whole 'field of

    charge), .i.e., an electron moves in a meanfield generated byall the other electrons.

    &:ll equations must be solved together

    'iteratively until selfconsistency is obtained).

     @ "elfconsistent field '"C;) method.

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    27/103

    Refresh 9our Mind%

    igen/alue 3 igen/ectorAenerally, one can construct a matri$ for an operator, e.g., the6amiltonian H' using a set of basis functions Bφ i.

    φ 1 φ 2 ...  φ nφ 1φ 2... φ n

     H 99 H 9: ;;;  H 9n

     H :9 H :: ;;;  H :n

     H n9 H n: ;;;  H nn:fter diagonaliDation, one obtains eigenvalues 'energy levels)

    and eigenvectors 'wavefunctions).

    Where H ij " 〈φ i B H B φ  j〉

    " ∫ φ i*# x & H# x & φ  j # x & d x 

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    28/103

    Linear Combination of 2tomic 7rbitals

    &/ach oneelectron molecular orbital is appro$imated by a linear combination

    of atomic orbitals 'basis functions).

    φ   c1 χ1 ! c2 χ2 ! c- χ- ! 3

     where φ  is the molecular orbital wavefunction, χi represents atomic orbitalwavefunction, and ci is the corresponding e$pansion coefficients.

    &The resulting ;ock equations are called Eoothaan6all equations.

    &This reduces the problem of finding the best functional form for the

    molecular orbitals to the much simpler one of optimiDing a set of coefficients

    'cn) in a linear equation.

     x

     y

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    29/103

    :ariational Principle

    Fased on the GC:< appro$imation, each oneelectron molecular

    orbital is appro$imated as a linear combination of atomic orbitals.

    φ   c1 χ1 ! c2 χ2 ! c- χ- ! 3

    &The energy calculated from any appro$imated wave function ishigher than the true energy.

    &The better the wave function, the lower the energy.

    &

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    30/103

      functionwaetheis

    energy !otential energykineticenergytotal theis E 

    o!erator nhamiltoniatheis " 

    where

    i −

    +−

    ψ 

    )'

    %

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

      functionwaetheis

    energy !otential energykineticenergytotal theis E 

    o!erator nhamiltoniatheis " 

    where

    i −

    +−

    ψ 

    )'

    %ii   E  "    ψ ψ   =

      functionwaetheis

    energy !otential energykineticenergytotal theis E 

    o!erator nhamiltoniatheis " 

    where

    i −

    +−

    ψ 

    )'

    %

     µ 

     µ 

     µ φ ψ  ∑=

    =n

    ii   C 1

    ii   E  "    ψ ψ   =

      functionwaetheis

    energy !otential energykineticenergytotal theis E 

    o!erator nhamiltoniatheis " 

    where

    i −

    +−

    ψ 

    )'

    %

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

     µ 

     µ 

     µ φ ψ  ∑=

    =n

    ii   C 1

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

      functionwaetheis

    energy !otential energykineticenergytotal theis E 

    o!erator nhamiltoniatheis " 

    where

    i −

    +−

    ψ 

    )'

    %

     µ 

     µ 

     µ φ ψ  ∑=

    =n

    ii   C 1

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

    kxma $ law Newtons

    kxmenergyof  onConserati

    Classical 

    −==

    +=

    I

    2

    1

    2

    1

    %

    22

    ii   E  "    ψ ψ   =

    ErwinSchrödinger,

    1927

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

    kxma $ law Newtons

    kxmenergyof  onConserati

    Classical 

    −==

    +=

    I

    2

    1

    2

    1

    %

    22

     µ 

     µ 

     µ φ ψ  ∑=

    =n

    ii   C 1

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

    kxma $ law Newtons

    kxmenergyof  onConserati

    Classical 

    −==

    +=

    I

    2

    1

    2

    1

    %

    22

      functionwaetheis

    energy !otential energykineticenergytotal theis E 

    o!erator nhamiltoniatheis " 

    where

    i −

    +−

    ψ 

    )'

    %

     µ 

     µ 

     µ φ ψ  ∑=

    =n

    ii   C 1

    2

    2

    22

    22

    2

    1

    26/quationIdinger"chr 

    2

    1

    2

    %

    kx xm

    o

     xi

     !

    kxm

     !energyof  onConserati

    #uantum

    +∂∂−

    =∂

    ∂=

    +=

    kxma $ law Newtons

    kxmenergyof  onConserati

    Classical 

    −==

    +=

    I

    2

    1

    2

    1

    %

    22

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    31/103

    C+ant+m Harmonic Oscillator*Wave f+nction

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    32/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    33/103

    C+ant+m ,hemical Map

    7

    8 8 8 8

    7

     M% &%   'C&%    →  

    CHEMICAL

    ENGINEERDECIDES 

    COMPUTER CALCULATES 

    #tartingmoleculargeometry

    9asis set : 9asisfunction

    Type of

    Calculation

    ;roperties to (ecalculated

    7

    8 8 8 8

    7

     M% &%   'C&%    →  

    7

    8 8 8 8

    7

     M% &%   'C&%    →     M% &%   'C&%    →  

    7

    8 8 8 8

    7

     M% &%   'C&%    →  

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    34/103

    4asis

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    35/103

    L+ -1 "$ (−

    The no of

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    36/103

    Software (ac$aes e8+ired

    E,ceed -

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    37/103

    )onic Ei8+ids Ionic li%uids/I$s are organic salts )ith )ide li%uid range and lo)

    melting point /?1000Cconsists of organic cation and

    organic*inorganic anion

    I$s also =no)n as @deigner o!"entA due to their a(ility to &ary

    the ions /i'e cation and anion and there(y modifying and optimi.ing

    the I$s properties'

    I$s are referred to as @green o!"entA due to negligi(le &apour

    pressure )hich can reduce the technical e,posure : sol&ent loss to

    the en&ironment'

    I$s ha&ing high denit# than organic inorganic and )ater

    molecules in )hich it may e,ist as a separate phase )hen in contact

    )ith aromatic sulphur*nitrogen compounds'

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    38/103

    S'*'+ ,- .,N.* /.Q.0

    NN

    CH3) 

    *-

    +

    12lyl3methylimi!azoliumanion 14utyl3methylimi!aozlium

    he5a6uoro#hos#hate

    F4M)MF(

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    39/103

    '7P.*2/ *2'.,NS 2N0 2N.,NS .N .,N.*/.Q.0S

     *

     *

    E -

    E 1

    E K

    E M

    E 2

     *

    E .

    E -

    E M

    E 1

    E 2

    E K

     *

    E 1

    E 2

    E -

    E M

    C$T,O-S   $-,O-S

    8F;M9 

    87;.9

    Cl+:lCl-

    Cl,Fr ,=

     *

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    40/103

    Chemical systems of IL’s

     April 9:= :I9 State of the art Seminar JI

    ;ure ionic li%uids

      cation anion B I$3s 9inary mi,ture containing I$3s

      I$3s "olecular Compounds

    Molecular compouns: aliphatic al=anes

    cyclohydrocar(ons aromatic hydrocar(onsetc'''!"amples:  solu(ility of 72  and C72  in 1-9utyl->-

    "ethylimida.olium Tetrafluoro(orate

    Ternary mi,ture containing I$3s

      I$3s "olecular compound "olecular compound

      /or

      I$3s I$3s "olecular compound

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    41/103

     Application of ionic li8+id in the f+t+re

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    42/103

    0ypical S+lph+r 5 Kitroencompo+nds#

      #

    #

    NH

    NH

    NH

    HN

    N

    N

    N

    Thiophene TS3 Ben4othiophene BTS3 i(en4othiophene BTS3

    yrrole 7) 3 ,n#ole ,3 ,n#oline ,O3Car(a4ole C$3

    yri#ine 73 8uinoline 893 Ben4ouinoline B893

    #   #

    #

    NH

    NH

    NH

    HN

    N

    N

    N

    Thiophene TS3 Ben4othiophene BTS3 i(en4othiophene BTS3

    yrrole 7) 3 ,n#ole ,3 ,n#oline ,O3Car(a4ole C$3

    yri#ine 73 8uinoline 893 Ben4ouinoline B893

    i(en4othiophene BTS3

    #   #

    #

    NH

    NH

    NH

    HN

    N

    N

    N

    Thiophene TS3 Ben4othiophene BTS3

    yrrole 7) 3 ,n#ole ,3 ,n#oline ,O3Car(a4ole C$3

    yri#ine 73 8uinoline 893 Ben4ouinoline B893

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    43/103

    Ho$ S % N co&'ound can a((ect)* 

    Di d t f it d l h i

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    44/103

     Disadvantages of nitrogen and sulphur in

     Diesel oil 

    itrogen3 S Sulphur3

    Nndesirable. Nndesirable.

    Catalyst deactivation . Catalyst deactivation .

    Geading to coke formation. Geading to coke formation.

    6ighly inhibiting effect on6O".

    6ighly inhibiting effect onactive catalyst.

    7otentially affect dieselstability during storage.

    7otentially affect dieselstability during storage.

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    45/103

    To produce *

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    46/103

     HDN & HDS Limitations

    H HS

    Consume high energy Consume high energy

    "evere operating conditionsT-HHHHQC R 7 J1H S7a

    "evere operating conditionsT-HHMHHQC R 7 (M S7a

    Gower space velocity Gower space velocity

    :dditives are needed toimprove fuel properties and

     performance

    :dditives are needed toimprove fuel properties and

     performance

    Gess efficiency for refractorynitrogen. Gess efficiency for refractorysulphur.

    e.g.%pyrrole,indoline,pyridine,quinoline.

    e.g.% thiophene,benDothiophene.

    Si l t d Di l iti

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    47/103

    Simulated Diesel composition

    #nti! C$

    wt %

    C& 

    wt %

    C' 

    wt %

    C9 

    wt %

    C1(

    wt %

    C11)

     wt

    %

    n*+arans

    -Cn.2n)2/

    &07 102 (01 20$ * * (0(&

    4soparans-Cn.2n)2/

    1(09 $0&2 10'1 17 10 * (0

    5romatics

    -Cn.2n*&/

    * (02 &07

    1

    (0 (0 (0& (0

    6aphthenes-Cn.2n/

    (0 10&2 101 102 * * *

    O!ens

    -Cn.2n/

    &07 10&2 (0$1 (01 (02 * *

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    48/103

    Separation processes eneral "echanical separations e'g' filtration of a

    solid from a suspension in a li%uid

    centrifugation screening etc

    "ass transfer operations e'g' distillatione,traction etc

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    49/103

    Mass transfer operations Lnat+re of interface /etween

    phases

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    50/103

    Mass transfer operations Lcontrollin transport

    phenomenon "ass transfer controlling e'g'distillationa(sorption e,traction adsorption etc

    "ass transfer and heat transfer controlling

    e'g' drying crystallisation 8eat transfer controlling e'g' e&aporation

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    51/103

    Methods of operation

    Non steady state concentration changes

    )ith time e'g' (atch processes

    #teady state

    #tage

    Differential contact

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    52/103

    When /oth phases areowin* Co-current contact

    Cross flo)

    Counter-current flo)

    Stae 9 Stae :

    9 :

    9 :

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    53/103

    ,hoice of separation process

    +actors to (e considered

    +easi(ility

    ;roduct &alue

    Cost

    ;roduct %uality

    selecti&ity

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    54/103

    Ei8+idli8+id e@tractionprinciples+eed phase contains a component  i )hich is

    to (e remo&ed' !ddition of a second phase/sol&ent phase )hich is immisci(le )ith feed

    phase (ut component i is solu(le in (othphases' #ome of component i /solute istransferred from the feed phase to the sol&entphase' !fter e,traction the feed and sol&ent

    phases are called the raffinate / ande,tract /E phases respecti&ely'

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    55/103

    -@tractants

    The efficiency of a li%uid li%uid e,traction can

    (e enhanced (y adding one or more

    e,tractants to the sol&ent phase' The

    e,tractant interacts )ith component iincreasing the capacity of the sol&ent for i'To

    reco&er the solute from the e,tract phase the

    e,tractant-solute comple, has to (e

    degraded'

    / 3

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    56/103

    Distri/+tion coe3icient

    B mass fraction solute in E phase

    mass fraction solute in phase

    B y*,

    $arge &alues are desira(le since less sol&ent is

    re%uired for a gi&en degree of e,traction

    ) i i/l li id

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    57/103

    )mmisci/le li8+ids

    e'g' )ater chloroform

    Consider a feed of )ater*acetone/solute'

    B mass fraction acetone in chloroform phase  mass fraction acetone in )ater phase

    B =g acetone*=g chloroform B y*,

      =g acetone*=g )ater 

    B 1'2i'e' acetone is preferentially solu(le in the chloroform phase

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    58/103

    ( i ll i i/l li id

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    59/103

    (artially misci/le li8+idsE'g' )ater "I9

    Consider a solute acetone'

    Need to use a triangular phase diagram to sho)

    e%uili(rium compositions of "I9-acetone-)ater mi,tures'

    Characteristics are single phase and t)o phaseregions tie lines connecting e%uili(rium phasecompositions in t)o phase region'

    ,h i f l t

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    60/103

    ,hoice of solvent+actors to (e considered

    #electi&ity Distri(ution coefficient

    Insolu(ility of sol&ent

    eco&era(ility of solute from sol&ent

    Density difference (et)een li%uid phases

    Interfacial tension

    Chemical reacti&ity

    Cost Fiscosity &apour pressure

    +lamma(ility to,icity

    S l ti it

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    61/103

    Selectivity

    G B /mass fraction 9 in E*/mass fraction ! in E

      /mass fraction 9 in */mass fraction ! in

    G H 1

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    62/103

    ( ti

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    63/103

    (roperties*Density:  ! density difference is re%uired (et)een

    the t)o phases'

    $nter%acial tension : The larger the interfacialtension (et)een the t)o phases the more

    readily coalescence of emulsions )ill occur togi&e t)o distinct li%uid phases (ut the more

    difficult )ill (e the dispersion of one li%uid in the

    other to gi&e efficient solute e,traction'

    Chemical reacti&ity: #ol&ent should (e sta(le andinert'

    (h i l ti

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    64/103

    (hysical properties

    +or material handling

    $o) &iscosity

    $o) &apour pressure

    Non-flamma(le /high flash point

    Non-to,ic

    S ti 0 h i

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    65/103

    Separation 0echni8+es

    $i%uid-$i%uid E,traction1';rocess is applica(le at am(ient conditions

    2'#pecial e%uipment re%uirements

    >'Energy consumption is negligi(le

    'No hydrogen consumption

    5'8andling is easy

    6'The process does not change the chemical

    structure of the components'

    A li ti f M l l

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    66/103

     Application of Molec+larSim+lation To predict the $J"7 and 87"7 energy of the

    molecules and their thermodynamic properties

    To find the scalar properties

    Chemical potential /K

    Electronegati&ity /L

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    67/103

    roperties name :mpiri!al expressionOperational

    expressionOr(ital e.inition

    Chemical potential ' )

    /lectronegativity 'U)

    Alobal 6ardness 'V )

    Alobal "oftness '")

    /lectrophilicity

    inde$'W )

    Or/ital DenitionsScalar(roperties

    ' ) r 

     E 

     N   µ 

    ∂ = ∂ 2

     /P E&+  − ÷   2

     "%M% '+M%ξ ξ +   ÷  

    ' ) r 

     E 

     N  χ µ  ∂ = ∂

    ; -

    2

     /P E&+   ÷   2

     "%M% '+M%ξ ξ +   ÷  

    2

    2' ) ' )

    1 1

    2 2V r r  

     E 

     N N 

     µ η 

      ∂ ∂ = = ∂ ∂ 2 /P E&−  

    ÷   2

     "%M% '+M%ξ ξ − +  

    ÷  

    2

    2' ) ' )

    1 1 1

    2 2V r r  

     s  E 

     N N 

     µ    η = = =∂ ∂ ∂ ∂

    2 /P E&

      ÷−  2

     "%M% '+M%ξ ξ 

      ÷− +  

    2

    2

     µ ω 

    η = M

     /P E&+   ÷   M

     "%M% '+M%ξ ξ − +  

    ÷  

    MOED-K S ft

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    68/103

    MOED-K Software

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    69/103

    (artial ,hares (redictions

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    70/103

    (artial ,hares (redictions'ile !it aitional

    section mem=-M> un

    Route section ? @35?*+,3--B/ opt=2iis#C'(C4N!R=9MAECC5!=-6) pop(npachelp2)2eom=istance

    7=

    Title section ?artial char2es

    Char2e an multiplicity -

    Molecular speci%ication

    'or e"ampleF Thiophene optimi1e &alues %rom M45D!N out %ile(a%ter 6ND step)s c - cs6c 6 cc3 - ccs3c 3 cc7 6 ccc7 - ih7

    c 7 cc8 3 ccc8 6 ih8h 8 hc+ 7 hcc+ - ih+h 7 hc9 8 hcc9 3 ih9h 3 hc 7 hcc 6 ihh 6 hc; 3 hcc; - ih;cs6 -.9-cc3 -.78ccs3 -;.79-cc7 -.78ccc7 -;.79-ih7 .

    cc8 -.78ccc8 -;.79-ih8 .hc+ -.;hcc+ -;.79-ih+ -.hc9 -.;hcc9 -;.79-ih9 -.

    (artial ,hares

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    71/103

    (artial ,hares

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    72/103

    (artial ,hares

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    73/103

    (artial ,hares of ,ation#4M(O&

    (artial ,hares of

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    74/103

    (artial ,hares of)E#4M(O4

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    75/103

    (artial ,hares of )E%0hiophene

    E!MO HOMO -neries

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    76/103

    E!MOHOMO -neries(redictions

    )nteraction -neries

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    77/103

    )nteraction -neries(redictions

    COSMO RS model

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    78/103

    COSMO-RS model C7#"7-# consist of

    - Puantum theory- #urface interactions

    - #tatistical thermodynamics

    - Dielectric continuum models

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    79/103

    *,SM, & *,n!uctor /ieScreenin8 M,!el

    Element #pecific

    "olecular Ca&itiesCreated #ol&ent !ccessi(le !rea

    /#!#

    "olecule ;laced

    In a conductor #olute "olecule

    "olecule ;ulls Charges

    +rom the conductor 

    To the interface

    ":" divided into small segments

    each having a screening charge

    density X

    LH :q)otal soluteΦ Φ = = +

    #urface Charge Distri(ution #I

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    80/103

    The energy difference (et)een the real situation of such contact and

    the ideally screened situation has to (e defined as a local electrostatic

    interaction energy )hich results from the contact of the molecules'

    PCI!

    ))))))

        

          

    σY

    σ

    σ>> 0σYZZ H 8ydrogen 9onding

    Interaction

    "isfit Energy

    Interaction

    IdealElectrostati

    c

    Contact

    I t ti "

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    81/103

     Interaction "ner#yCalculations "isfit interaction

    6ydrogen bonding   ( )2

    ' , ) ' , )

     

    2

    misfit eff misfit  

    eff  

     E a e

    a

    σ σ σ σ  

    α σ σ 

    ′ ′=

    ′′= +

    ' , ) ' , )

      minBH,min'H, )ma$'H, )C

    hb eff hb

    eff hb don hb acc hb

     E a e

    a c

    σ σ σ σ  

    σ σ σ σ  

    ′ ′=

    = + −

    mist constant

    .8drogen :onding coecientthresho!d for .8drogen:onding

    E;ecti

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    82/103

    $cti%ity Coe&icient

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    83/103

     $cti%ity Coe&icient

     !cti&ity Coefficient of the #egment

     !cti&ity Coefficient of Component in "i,ture

    ' , )ln ' ) ln ' ) ' )e$p

    * * * 

     E  !

    k) σ  

    σ σ  σ σ σ  

    ′ − Γ = − Γ ∑

    2' , ) ' ) minBH, min'H, ) ma$'H, )C

    2  hb don hb acc hb

     E cα 

    σ σ σ σ σ σ σ σ  ′

    ′ ′= + + + −

    + +ln ' )8ln ' ) ' )9 ln  *(

    i * i i * i i *  n !

    σ 

    γ σ σ σ γ    = Γ − Γ +∑i

    i

    eff  

     &n

    a==here

    i0e The contri(ution of molecule Ri’  to the surface segment

    ( )+γ  i S 7nce !cti&ity Coefficients is =no)n )e can predict $i%uid $i%uidE%uili(ria /$$E

    'eneration of COSMO (ile

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    84/103

    'eneration of COSMO (ile

    #tep:-: eometry 4ptimi1ation in as ?hase

    5e&el o% Theory ;9FQ6 /Density +unctional Theory

    @asis #et TSF; /Triple Seta Falence ;olari.ed )ith

    D

    #tep 6: C4#M4 'ile eneration

    5e&el o% Theory ;9FQ6 /Density +unctional Theory

    @asis #et TSF; /Triple Seta Falence ;olari.ed * D

    #C+ Calculation is done )ith SCRF=COSORS =ey)ord in

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    85/103

    "odified ashford ice algorithm

    for C7#"7-# model'

    Selectivity 5 ,apacity

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    86/103

    Selectivity 5 ,apacity

    The selecti&ity is defined as the ratio of the composition of/nitrogen*sulphur compounds species in I$ rich phase /e,tract

    and its composition in model diesel rich /raffinate phase'

    "u=hopadhyay1UUV

    The in&erse of the acti&ity coefficient of the species

    /nitrogen*sulphur compoundsat infinite dilution in sol&ent rich

    /e,tract phase' "u=hopadhyay : ao1UQV

    86

    2 1 2

    1 2 1

     /' !hase 0iesel !hase /' !hase

    ij1max ij* 2*   γ γ γ  

    γ γ γ  

    ∞ ∞ ∞∞

    ∞ ∞ ∞

     = ≈ ÷ ÷ ÷  

    12

    1

    1C 

    γ  ∞

     = ÷

     

    Separation of aromatic nitroen

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    87/103

    Separation of aromatic nitroen5 s+lph+r compo+nds

    0ernary Diaram

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    88/103

    0ernary Diaram

    TE"I"VTEt#7V0 10 20 >0 0 50 60 0 Q0 U0 100

    9en.othiophene

    0

    10

    20

    >0

    0

    50

    60

    0

    Q0

    U0

    100

    8e,ane

    0

    10

    20

    >0

    0

    50

    60

    0

    Q0

    U0

    100

    E,perimental

    C7#"7-# ;redictions

    RMSD for Quaternary systems

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    89/103

    yy#'No Name of the systems NT$ model JNIPJ!C

    modelC7#"7-#model

    1 !M$MI4AcIBThiophene

    ;yridine?entane

    0'> 1'6U '62

    2 E"I"VEt#7VThiophene

    ;yridine?entane

    0'12 0'1U 5'>

    > !M$MIMe#43IBThiophene

    ;yridine?entane

    1'U 1'60 6'

    !M$MI4AcIBThiophene

    ;yridineCyclohe"ane

    1'0> 1'6U 'Q5

    5 !M$MI!t#47IBThiophene

    ;yridineCyclohe"ane

    1'25 1'U0 5'U>

    6 !M$MIMe#43IBThiophene

    ;yridineCyclohe"ane

    1'0U 2' 5'>5

    !M$MI4AcIBThiophene

    ;yridineToluene

    0'U2Q 1'5 Q'1

    Q !M$MI!t#47IBThiophene

    ;yridineToluene

    1'2> 1'5 Q'

    U !M$MIMe#43IBThiophene

    ;yridineToluene

    0U'> 2'> 6'5>

    S+mmary

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    90/103

    S+mmary

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    91/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    92/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    93/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    94/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    95/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    96/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    97/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    98/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    99/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    100/103

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    101/103

     Ac$nowledements

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    102/103

    c o ede e ts

    Dr'Tamal 9anerYeeIIT

  • 8/18/2019 Application of Thermodynamics and Molecular Simulation in Chemical Engineering Problems

    103/103

     Than>s, and 4?!! see 8ou ne@t time0