appendix 1: heat transfer literature

31
Appendix 1: Heat Transfer Literature The following is a list of journals, proceedings, and bibliography which may be consulted in order to keep abreast of the most recently published work in heat transfer. The International Journal of Heat and Mass Transfer, Pergamon Press, monthly The Journal of Mechanical Engineering Science, The Institution of Mechnical Engineers, bi-monthly. Journal of Heat Transfer, Transactions of the American Society of Mechanical Engineers, Series C, quarterly. Proceedings of the International Heat Transfer Conferences, e.g., 4th 1970 5th 1974(Tokyo), Elsevier Publishing Company, Amsterdam. Progress in Heat and Mass Transfer, Monograph Series of the International Journal of Heat and Mass Transfer, Pergamon Press. Advances in Heat Transfer, Academic Press, New York. Proceedings of the Heat Transfer and Fluid Mechanics Institute, Stanford University Press, California. Heat Bibliography, HMSO London, annual. Reports of the National Engineering Laboratory, East Kilbride, (available on request). The Engineering Index, Engineering Index, Inc., New York. Applied Science and Technology Index, The H. W. Wilson Company, New York. The British Technology Index, The Library Association, London. ISMEC Bulletin, Information Service in Mechanical Engineering. The Institution of Mechanical Engineers. Science Abstracts A, Physics Abstracts, The Institution of Electrical Engineers. Science Abstracts B, Electrical and Electronic Abstracts, The Institution of Electrical Engineers and The Institute of Electrical and Electronic Engineers, Inc. 236

Upload: others

Post on 19-Mar-2022

12 views

Category:

Documents


0 download

TRANSCRIPT

Appendix 1: Heat Transfer Literature The following is a list of journals, proceedings, and bibliography which may be consulted in order to keep abreast of the most recently published work in heat transfer.

The International Journal of Heat and Mass Transfer, Pergamon Press, monthly

The Journal of Mechanical Engineering Science, The Institution of Mechnical Engineers, bi-monthly.

Journal of Heat Transfer, Transactions of the American Society of Mechanical Engineers, Series C, quarterly.

Proceedings of the International Heat Transfer Conferences, e.g., 4th 1970 (Paris~ 5th 1974(Tokyo), Elsevier Publishing Company, Amsterdam.

Progress in Heat and Mass Transfer, Monograph Series of the International Journal of Heat and Mass Transfer, Pergamon Press.

Advances in Heat Transfer, Academic Press, New York. Proceedings of the Heat Transfer and Fluid Mechanics Institute,

Stanford University Press, California. Heat Bibliography, HMSO London, annual. Reports of the National Engineering Laboratory, East Kilbride,

(available on request). The Engineering Index, Engineering Index, Inc., New York. Applied Science and Technology Index, The H. W. Wilson Company,

New York. The British Technology Index, The Library Association, London. ISMEC Bulletin, Information Service in Mechanical Engineering.

The Institution of Mechanical Engineers. Science Abstracts A, Physics Abstracts, The Institution of Electrical

Engineers. Science Abstracts B, Electrical and Electronic Abstracts, The

Institution of Electrical Engineers and The Institute of Electrical and Electronic Engineers, Inc.

236

Appendix 2: Units and Conversion Factors

SI units are used exclusively in this book. However, much of the existing heat transfer literature is in British units, and SI-British conversion factors are therefore included. The kJ and kW are accepted alternatives to the J and W in the use of SI units. They are the units of energy and power generally used in the teaching of engineering thermodynamics and are the preferred units used in this book. For a complete discussion see The UseofSI Units, published by the British Standards Institution, PD 5686: 1972.

The Basic SI units are:

Mass Length Time Temperature

1 kg = 2·2046lb 1m = 3·2808 ft 1 s = 2·778 x 1o- 4 h 1 K = 1·8 aRankine

Derived SI units are:

Force Pressure

Density Specific

volume Energy Power

1 N = 0·2248lbf (1 newton = 1 kg m/s2)

1 Pa = 14·5 x 10- 5 lbf/in2 (1 pascal= 1 N/m2)

1 bar = 105 Pa = 14·5lbf/in2

1 kgfm3 = 0·06243 lb/ft3

1 m3 fkg = 16·0179 ft3 flb 1 J = 1 Nm; 1 kJ = 103 Nm = 737·6ft lbf 1 W = 1 N mjs; 1 kW = 737·6 ft lbf/s = 1·341 h.p.

237

Con

vers

ion

Fac

tors

for

Hea

t Tra

nsfe

r U

nits

Phys

ical

C

onve

rsio

n R

ecip

roca

l

quan

tity

SI

B

ritis

h un

its

fact

or*

conv

ersi

on

fact

or*

Q

kW

Btu

fh

2·93

1 X

1

0-4

412

X

103

q kW

/m2

Btu

/(ft

2 h)

3-

155

X

10

-3

3-17

0 X

10

2

h, u

kW

/(m

2 K

) B

tu/(

ft2

h °F

) 5·

678

X

10

-3

1·76

1 X

10

2

k kW

/(m

K)

Btu

/(ft

h °

F)

1·73

1 X

1

0-3

777

X

102

cP

kJ/(

kg K

) B

tu/(

lb °

F)

4·18

68

Q-2

388

Pas

lb/(

ft h

) 4·

134

x w

-4

2·41

9 X

10

3 J1.

(Not

e: 1

Pas

= 10

dyn

sjc

m2

= 10

poi

se)

v, IX

, e,

D

m2 f

s ft

2/h

581

X

10

-S

3·87

4 X

10

4

(Not

e: 1

m2 f

s =

104

cm2 fs

= 1

04 s

toke

s, u

nit

of d

ynam

ic v

isco

sity

) 't

',P

,p

Pa

lbf/

ft2

9·93

1 X

10

5 1·

007

X

10

-6

't',

P,p

P

a lb

f/in

2 6·

897

X

103

1·45

0 X

1

0-4

* M

ulti

ply

the

num

eric

al v

alue

in

Bri

tish

units

by

the

conv

ersi

on f

acto

r to

obt

ain

the

equi

vale

nt i

n SI

; m

ultip

ly t

he n

umer

ical

val

ue i

n SI

by

the

rec

ipro

cal

conv

ersi

on f

acto

r to

obt

ain

the

equi

vale

nt in

Bri

tish

units

.

N w

00

tTl z C':l z tTl

tTl

:::0 - z C':l

::II

tTl >

>-l

>-l

:::0 >

z rJ)

>Tj

tTl

:::0

N w

'CJ

Ap

pe

nd

ix 3

: T

ab

les

of

Pro

pe

rty

Va

lue

s

Tab

le A

.l.

The

rmal

Pro

pert

ies

of S

olid

s: M

etal

s

Prop

ertie

s at

20°

C

k x

103 ,k

W/(

m K

)

p CP

X 10

3 /{

X 10

3 IX

(~3)

(k~K)

(!:)

(~2

) 10

0 20

0 30

0 40

0 (O

C)

Alu

min

ium

, pu

re

2707

89

6 20

4 8-

42 X

10

-5

206

215

229

249

Dur

alum

in, 9

4-96

AI,

3-5

Cu

27

87

883

164

6·68

18

2 19

4 L

ead

11.3

70

130

34·6

34

33-4

31

·5

29·8

Ir

on,

pure

78

97

452

72-7

03

67·5

62

·3

55·4

48

·5

Iron

, wro

ught

, C

< 0

·5%

78

49

460

58·9

63

57·1

51

·9

48·5

45

·0

Iron

, ca

st, C

:::::

4%

72

72

419

51·9

70

Car

bo

n s

teel

, C

:::::

0·5%

78

33

465

53-7

1-

47

51·9

48

·5

45·0

41

·5

Car

bo

n s

teel

. C

= 1

·5%

77

53

486

36-4

97

36·3

36

·3

34·6

32

-9

Nic

kel

stee

l, 10

%

7945

46

0 26

·0

0·72

N

icke

l st

eel,

30

%

8073

46

0 12

·1

0·33

N

icke

l st

eel,

50%

82

66

460

13-8

36

Nic

kel

stee

l, 70

%

8506

46

0 26

·0

0·67

N

icke

l st

eel,

90

%

8762

46

0 46

·7

1·16

C

hrom

e st

eel,

I %

7865

46

0 60

·6

1·67

55

-4

51·9

46

·7

41·5

C

hrom

e st

eel,

5 %

78

33

460

39·8

11

38·1

36

·4

36·4

32

·9

Chr

ome

stee

l, 10

%

7785

46

0 31

·2

0·87

31

·2

31·2

29

·4

29·4

C

r-N

i st

eel,

18%

Cr,

8%

Ni

7817

46

0 16

·3

0-44

17

·3

17·3

19

·0

19·0

N

i-C

r st

eel,

20

% N

i, 15

% C

r 78

65

460

14·0

39

15·1

15

·1

16·3

17

·3

Man

gane

se s

teel

, 2

%

7865

46

0 38

·1

1·05

36

·4

36-4

36

·4

34·6

600

39·8

36

·4

34·6

31

·2

36·4

29

·4

31·2

22

·5

19·0

32

·9

Tab

le A

. I.

Con

tinu

ed

Prop

ertie

s at

2o•

c kx 1

03kW

/(m

K)

p cP

x

103

k X

10

3 IX

(~~)

(k~K)

(!:)

(~2)

100

200

300

400

600

(•q

Tun

gste

n st

eel,

2%

7961

44

4 62

-3

1·76

x w-~

58·9

53

·7

48·5

45

·0

36·4

S

ilic

on s

teel

, 2 %

76

73

460

31·2

89

Cop

per,

pur

e 89

54

383

386

ll·2

37

9 37

4 36

9 36

4 35

3 B

ronz

e, 7

5 C

u, 2

5 Sn

86

60

343

26·0

86

Bra

ss,

70 C

u, 3

0 Z

n

8522

38

5 11

1 3-

41

128

144

147

147

Ger

man

silv

er,

62 C

u 15

Ni,

22 Z

n

8618

39

4 24

·9

0·73

31

·2

39·8

45

·0

48·5

C

onst

anta

n, 6

0 C

u, 4

0 N

i 89

22

410

22·7

61

22·2

26

·0

Mag

nesi

um, p

ure

1746

10

13

171

9·71

16

8 16

3 15

8 M

olyb

denu

m

10.2

20

251

123

4·79

ll

8

ll4

11

1 10

9 10

6 N

icke

l, 99

·9%

pur

e 89

06

446

90·0

27

83·1

72

-7

64·0

58

·9

Silv

er, 9

9·9%

pur

e 10

.520

23

4 40

7 16

·6

415

374

362

360

Tun

gste

n 19

,350

13

4 16

3 6·

27

151

142

133

126

113

Zin

c, p

ure

7144

38

4 11

2 4

·ll

109

106

100

93-5

T

in,

pure

73

04

227

64·0

3-

88

58·9

57

·1

Ada

pted

fro

m T

able

A-1

, E.

R.

G.

Eck

ert a

nd R

. M

. D

rake

, Jr.,

Hea

t an

d M

ass

Tran

sfer

, M

cGra

w-H

ill B

ook

Com

pany

, N

ew Y

ork

(195

9).

tv

-1>-

0 tT'l z Q z tT'l

tT'l ~ z Q

::z::

tT'l >

....,

...., ~ > z (

/)

"l"l

tT'l ~

APPENDIX 3 241

Table A.2. Thermal Properties of Solids: non-Metals

cP x 103 p t k X loJ ac

(k~K) (~~) (OC) (!:) (~2)

Bakelite 1590 1273 20 0·232 0·0114 x 10-s Bricks:

Common 837 1602 20 0·692 0·0516 Face 2050 20 1-32 Chrome 837 3011 200 2·32 0·0929

550 2-48 0·0981 900 1·99 0·0800

Diatomaceous earth 204 0·242 (fired) 872 0·312

Fire clay (burnt 1450°C) 963 2323 500 1·28 0·0568

800 1·37 Q-0619 1100 1·402 0·0619

Magnesite 1130 204 3·81 648 2·77

1204 1·90 Concrete 879 1906- 20 (}814- Q-0490-

2307 1·40 0·0697 Glass, plate 837 2707 20 0·762 0-()336 Plaster, gypsum 837 1442 21 (}485 0-<>413 Stone:

Granite 816 2643 1·73- 0·0800-3·98 0·183

Limestone 908 2483 99 1·26 Q-0568 299 1·33 Q-0594

Marble 808 2499- 20 2·77 Q-0394 2707

Sandstone 712 2163- 20 1·63- 0·106-2307 2·08 0·127

Wood, cross grain : Cypress 464 30 0·097 Fir 2721 417 24 0·109 0·0095 Oak 2387 ~81 30 0·166 Q-0126 Yellow pine 2805 641 24 0·147 0·0083

Wood, radial: Oak 2387 609- 20 0·173- 0·0111-

481 (}207 (}0121 Fir 2721 417 20 0·138 0·0124

242 ENGINEERING HEAT TRANSFER

Table A.2. Continued

CP X 1()3 p t k X 103

(k:JK) (~) c·q (~:)

Asbestos 816 577 0 0·151 816 577 100 0·192

Cotton 1298 80·1 20 ()-0589

Cork, board 160 30 ()-0433 Cork, expanded scrap 1884 44·8- 20 0-()363

119 Earth, coarse gravelly 1842 2050 20 0·519 Felt, wool 330 30 ()-0519 Fibre, insulating board 237 21 ()-0485 Glass wool 670 200 20 ()-0398 Ice 1926 913 0 2·22 Silk 1382 57·7 20 ()-0363

~

(~2)

0·194

()-0155--0·0439

D-0139

()-0284 0·124 ()-0439

Adapted from A. J. Chapman, Heat Transfer, The Macmillan Company, New York (1960); L. S. Marks, Mechanical Engineers' Handbook, 5th ed., McGraw-Hill Book Company, Inc., New York (1951); W. H. McAdams, Heat Transmission. 3rd ed., McGraw-Hill Book Company, Inc., New York (1954); and E. R. G. Eckert and R. M. Drake, Jr., Heat and Mass Transfer, McGraw-Hill Book Company, Inc., New York (1959).

APPENDIX 3 243

Table A3. Thermal Conductivity of Some Building Materials

Asbestos cement sheet Asbestos felt Asbestos insulating board Asphalt, roofing Brick, common, dry Brick, wet Chipboard Concrete, gravel1:2:4

vermiculite aggregate cellular

Cork, granulated, raw slab, raw

Fibreboard Glass, window Glassfibre, mat Hardboard Plasterboard, gypsum Polystyrene, expanded board Polyurethane foam Polyvinyl chloride, rigid foam Roofing felt Tiles, clay Tiles, concrete Tiles, PVC asbestos Urea formaldehyde foam Vermiculite granules Wilton carpet

1520 144

720-900 1920 1760 2034

350-1360 2240-2480 400-880 320-1600

115 160

280-420 2500

50 560

1120 15 30

25--80 960-1120

1900 2100 2000 8-30 100

k(Wj(mK))

0·29--0·43 0·078

0·11-0·21 0·58 0·81 1-67

0·07-0·21 1·4

0·11-0·26 0·08-0·65

0·046 0·05

0·05-0·08 1·05 0·033 0·08 0·16 0·037 0·026

0·035-0·041 0·19--0·20

0·85 1-10 0·85

0·032-0·038 0·065 0·058

244 ENGINEERING HEAT TRANSFER

Table A3. Continued

U values for Building structures, based on the dift'eren~ between inside and outside environment temperatures, and for sheltered, normal and severe external exposure, in W /(m2 K).

Sheltered Normal Severe

260 mm cavity wall, lOS mm inner and outer leaves, plus 16 mm lightplaster on inner face H H H

220 mm solid wall, with 16 mm light plaster 1·8 1·9 2·0

335 mm solid wan, with 16 m light plaster 1·4 1·5 1·6

Pitched roof, tiles on battens with roofing felt, roof space, foil backed plasterboard ceiling 1·4 H 1-6

As above, plus SO mm glass fibre loft insulation ()-49 o-s ()-51

Window, single glazing, 30% area due to wood frame 3·8 4·3 s-o

As above, double glazing 2-3 2·5 2·7

From the CIBS Guide Book A, The Chartered Institution of Building Services Engineers, London. The above U values and thermal conductivities are a brief extract only (used by permission of the Institution).

Tab

le A

.4.

Phys

ical

Pro

pert

ies

of so

me

Com

mon

Low

Mel

ting

Poi

nt M

etal

s

Mel

ting

Boi

ling

p Jl

cP x

10

3 k

X

103

poin

t po

int

Tem

p.

(~~)

(k:K)

(~~)

(oC

) (o

C)

(OC

) P

as

Bis

mut

h 27

2 14

80

315

10,0

10

1·62

x

10-3

14

4 16

·4

760

9467

79

164

15·6

L

ead

328

1738

37

1 10

.540

40

159

16·1

70

4 10

,140

37

155

14·9

L

ithi

um

179

1318

20

4 50

6 0·

59

4187

38

·1

983

442

0·42

41

87

Mer

cury

-3

9

357

10

13.5

70

1·59

13

8 8·

14

315

12,8

50

0·87

13

4 14

·0

Pot

assi

um

64

760

149

807

0·37

79

6 45

-()

704

674

0·13

75

4 33

·1

Sod

ium

97

88

4 20

4 90

2 0·

43

1340

80

·3

704

779

0·18

12

56

59·7

S

od

ium

-Po

tass

ium

, 22

% N

a 19

82

6 93

·5

849

0·49

94

6 24

·4

760

690

0·16

88

3 S

od

ium

-Po

tass

ium

, 56

% N

a -II

795

93·5

88

7 0·

58

1130

25

·6

760

740

0·16

10

42

28·9

L

ead-

Bis

mut

h, 4

4·5%

Pb

12

5 16

70

288

10,3

50

1·76

14

7 1(

}7

649

9835

15

Pr

0·01

4 0·

0084

024

0·01

6 0·

065

0·02

7 0·

0084

0066

0031

0072

0038

019

0·02

6 0·

058

0·02

4

>

"t::

"t:: til z 0 ><

w

N

Ada

pted

fro

m T

able

' 1&

-1, J

. G.

Knu

dsen

and

D.

L.

Kat

z, F

luid

Dyn

amic

s an

d H

eat

Tran

sfer

, M

cGra

w-H

ill

Boo

k C

ompa

ny,

Inc.

, N

ew Y

ork

t; (1

958)

.

t p

cP x

t(

)l

(OC

) (k

gfm

31

kJ/(

kgK

)

0 10

02

4218

20

10

01

4182

40

99

4·6

4178

60

98

5-4

4184

80

97

4·1

4196

10

0 96

()-6

4216

12

0 94

5·3

4250

14

0 92

8·3

4283

16

0 90

9·7

4342

18

0 88

9·0

4417

20

0 86

6·7

4505

22

0 84

2-4

4610

24

0 81

5·7

4756

26

0 78

5-9

4949

28

0 75

2·5

5208

30

0 71

4·3

5728

Tab

le A

.S.

The

rmal

Pro

pert

ies

of S

atur

ated

Liq

uids

v I

kxW

(%

P

r

(m2 /

s)

I kW

/(m

K)

(m2 /

s)

Wat

er (H

20

)

0·17

9 X

10

-S

()-55

2 13

-1 X

10

-8

13-6

()-

101

()-59

7 14

·3

7-()2

()-

0658

()-

628

15·1

34

0047

7 ()-

651

15·5

3-

()2

0036

4 0·

668

16·4

22

0029

4 ()-

680

16·8

74

0024

7 ()-

685

1H

446

0021

4 0·

684

17·2

241

0018

9 ()-

680

17-3

I -

o99

0017

3 ()-

675

17·2

1-

()04

0016

0 ()-

665

17·1

()-

937

0014

9 ()-

653

16·8

()-

891

0014

3 ()-

635

16·4

()-

871

0013

7 ()-

611

15·6

()-

874

0013

5 ()-

580

14·8

o-

910

0013

5 ()

-540

13

-2

1-()1

9

{J

(1/K

)

I ()-

18 X

10

-3

N

-1>-

0\ m

z C'l z tT1 m

:;e z C'l =

m

> ....,

....,

:;e > z V

>

'Tj m

:;e

-50

10

53

1476

-4

0

1033

14

83

-30

10

17

1492

-2

0

999·

4 15

04

-10

98

1·4

1519

0

962-

4 15

38

10

942·

4 15

60

20

923·

3 15

86

30

903-

1 16

16

40

883·

1 16

50

50

861·

2 16

89

-50

15

47

875·

0 -4

0

1519

88

4·7

-30

14

90

895·

6 -2

0

1461

90

7·3

-10

14

30

920·

3 0

1397

93

4·5

10

1364

94

9·6

20

1330

96

5·9

30

1295

98

3·5

40

1257

10

02

50

1216

10

22

Met

hyl

Chl

orid

e (C

H3C

l)

0·03

2o x

to

-s

0·21

5 13

·9 x

10-

8

0·03

18

0·20

9 13

-7

0·03

14

0·20

2 13

-4

Q-0

309

0·19

6 n

o

0·03

06

0·18

7 12

·6

0·03

02

0·17

8 12

·1

D-0

297

0·17

1 11

·7

Q-0

292

0·16

3 Il

-l

0·02

87

Q-1

54

10·6

0281

D

-144

96

Q-0

274

0·13

3 9·

21

Fre

on (C

CI 2

F 2

)

o-o3

10 x

10-

s Q

-067

5 5·

01

x 10

-8

D-0

279

0-06

92

5·13

0253

0692

26

0·02

35

0.07

10

5·39

D

-022

1 0.

0727

50

Q-0

214

0.07

27

5·57

Q

-020

3 0·

0727

60

Q-0

198

0·07

27

5·60

0194

0710

60

Q-0

191

0·06

92

5·55

0189

0675

44

2·31

32

2·35

38

2·43

49

2·55

63

2·72

83

2·97

6·2

5-4

4·8

4·4

4·0

3·8

3·6

3·5

3·5

3·5

3·5

2·63

x 1

0-3

>

'"t:l

'"t:l ttl z t:i >< w

w ~

-.J

t p

c, X

J(

)l

("C

) (k

l/m

3)

kJ/(

kg K

)

0 12

76

2261

10

12

70

2320

20

12

64

2387

30

12

58

2445

40

12

52

2512

50

12

45

2583

0 11

30

2294

20

11

17

2382

40

11

01

2474

60

10

88

2562

80

10

78

2650

10

0 10

59

2742

Tab

le A

.5.

Con

tinu

ed

v k

X

103

IX

(m1/s

) kW

/(m

K)

(m2 /

s)

Gly

ceri

n (C

3H

5(0

Hh

) 8·

31

x w

-3

0·28

2 9·

83 x

to

-s

3-()(

) Q

-284

65

H7

Q

-286

47

()-50

Q

-286

29

Q-22

286

9·13

Q-

15

0·28

7 8·

93

Eth

ylen

e gl

ycol

(C

2H

4(0

Hh

)

5-75

x w-

5 Q

-242

34 X

JO

-S

1·92

Q

-249

39

Q-8

69

Q-2

56

9·39

Q

-475

Q

-260

31

Q-2

98

Q-2

61

9·21

Q

-203

Q

-263

9-

()8

Pr

84·7

X

103

31·0

12

·5

5·38

2-

45

1·63

615

204 93

51

32-4

22

-4

p

(1/K

)

I 0·

504

x w

-3

1 o-

648

x w-

3

t0 """ 00 tT1 z C1 z tT1

tT1 ::e z C1

::I:

tT1 >

....,

...., ::e > z ~ 'T

l tT1

::e

Eng

ine

oil (

unus

ed)

0 89

9 17

96

4·28

X J

O-l

()-

147

9·11

x l

O-a

47

,100

20

88

8 18

80

()-9

()

()-14

5 8·

72

10,4

00

I o-1

02 x

w

-3

40

876

1964

()

-24

()-14

4 8·

33

2870

60

86

4 20

47

0083

9 ()-

140

8-()(

) lO

SO

80

852

2131

00

375

()-13

8 7·

69

490

100

840

2219

00

203

()-13

7 7-

38

276

120

829

2307

00

123

()-13

5 H

O

175

140

817

2395

00

080

0·13

3 6·

86

116

160

806

2483

00

056

()-13

2 6·

63

84

Mer

cwy(

Hg)

0

13.6

30

140-

3 00

124

x 10

-s

8·21

43

0 X

lO

-a

0028

8 20

13

.580

13

9-4

0011

4 8-

69

461

0024

9 )·8

2 X

10

-4

so

13,5

10

138-

6 00

104

9·40

S0

2 00

207

100

13,3

90

137-

3 00

0928

1o

-5

571

0016

2 IS

O 13

,260

13

6·5

0-()(

)853

11

·5

635

()-01

34

200

13,1

50

136·

1 00

0802

12

·3

691

()-01

16

2SO

13,0

30

135-

7 00

0764

13

-l 74

0 ()-

0103

31

6 12

.8SO

13

4.()

0006

73

14.()

81

5 0-

()()8

3

Ada

pted

from

Tab

le A

-3, E

. R. G

. Eck

ert a

nd R

. M. D

rake

, Jr.,

Hea

t and

Mas

s Tr

ansfe

r, M

cGra

w-H

ill B

ook

Com

pany

, Inc

., N

ew Y

ork

(195

9).

> :g tr1 z t1 x w

N ~

\0

T p

(oK

) (k

g/m

3)

250

1·41

3 .3

00

H7

7

350

()-99

8 40

0 Q

-883

45

0 ()-

783

500

()-70

5 55

0 ()-

642

600

()-58

8 65

0 ()-

543

700

()-50

3 75

0 ()-

471

800

o-44

1 85

0 o-

415

900

Q-3

92

950

()-37

2 10

00

()-35

2 11

00

Q-3

20

1200

()-

295

1.30

0 ()-

271

Tab

le A

.6.

The

rmal

Pro

pert

ies

of G

ases

at

Atm

osph

eric

Pre

ssur

e

C0

X

1()3

v

k X

J(

)l

Q(

Jl kJ

/(kg

K)

(m2 /

s)

kW

/(m

K)

(m2 /

s)

Pa

s

Air

10

05

()-94

9 X

10

-S

()-02

23

1·32

X

10-S

60 X

w-

s 10

06

1·57

()-

0262

22

1·85

10

09

2-()8

()-

0300

98

2·08

10

14

2·59

0337

3-

76

2·29

10

21

2·89

()-

0371

22

2·48

10

30

3-79

()-

0404

57

2·67

10

39

4·43

()-

0436

53

2·85

10

55

5·13

0466

51

3·02

10

63

5·85

()-

0495

58

3·18

10

75

6-63

()-

0523

67

3-33

10

86

7-39

()-

0551

10

·8

3-48

10

98

8·23

()-

0578

12

-()

3·63

1

ll0

9-

()7

()-06

03

IH

3·77

ll

21

9·93

()-

0628

14

·3

3·90

ll

32

1(

)-8

()-06

53

15·5

02

1142

11

·8

()-06

75

16·8

15

ll61

13

·7

()-07

23

19·5

40

ll7

9

15·7

()-

0763

22

-()

4·63

11

97

17·9

()-

0803

24

·8

4·85

Pr

0·72

2 ()-

708

0·69

7 0·

689

()-68

3 0·

680

0·68

0 0·

680

0·68

2 0·

684

0·68

6 ()-

689

()-69

2 ()-

696

0·69

9 ()-

702

0·70

6 0·

714

0·72

2

N

Vl

0 tr1 z 0 z tr1

tr1

:;tl - z 0 ::I:

tr1 > o-l

o-l

:;tl > z en

'TI

tr1

:;tl

Hyd

roge

n 25

0 Q

-098

1 14

,060

06 X

lO

-S

0·15

6 30

0 0·

0819

14

,320

10

·9

0·18

2 35

0 0·

0702

14

.440

14

·2

Q-2

06

400

O-o

614

14.4

90

17-7

229

450

0·05

46

14,5

00

21·6

251

500

0·04

92

14.5

10

25·7

272

550

0·04

47

14.3

30

30·2

293

600

0·04

08

14,5

40

35·0

315

650

0·03

49

14,5

70

45·5

351

700

0·03

06

14,6

80

56·9

384

750

0·02

72

14,8

20

69·0

412

800

0·02

45

14.9

70

82·2

440

850

0-()2

23

15.1

70

96·5

464

Oxy

gen

200

1·95

6 91

3·1

Q-7

95 X

lO

-S

0-()1

82

250

1·56

2 91

5·6

1·14

4 Q

-022

6 30

0 1·

301

920·

3 1·

586

Q-0

267

350

1-11

3 92

9·0

2·08

0 Q

-030

7 40

0 Q

-976

94

2-Q

618

Q-0

346

450

0·86

8 95

6·7

3·19

9 Q

-038

3 50

0 Q

-780

97

2-2

3·83

4 Q

-041

7 55

0 0·

710

988·

1 4·

505

Q-0

452

600

Q-6

50

1004

214

Q-0

483

11·3

x w

- s

15·5

20

·3

25·7

31

·6

38·2

45

·2

53·1

69

·0

85·6

10

2 12

0 13

7 1·0?

X

JO-S

1·58

24

2·97

3-

77

4·61

50

6"·44

7-

40

7·92

x w

-6

8·96

95

1Q-9

11

·8

12·6

13

·5

14·3

15

·9

17-4

18

·8

20·2

21

·5

14·9

x w-

6

17·9

2Q

-6

23·2

25

·5

27·8

29

·9

32·0

33

·9

G-7

13

Q-7

06

0·69

7 0·

690

0·68

2 0·

675

0·66

8 0·

664

0·65

9 0·

664

0·67

6 0·

686

0·70

3

0·74

5 0·

725

0·70

9 0·

702

0·69

5 Q

-694

697

0·70

0 0·

704

>

"'C

"'C

tr.l z 0 - >< w

N

01

Tab

le A

.6.

Con

tinu

ed

T

p c,

X

1()3

v

k X

10

3

("K

) (k

l/m

3)

k.J/

(kg

K)

(m2 /

s)

kW/(

m K

)

--

Nit

roge

n 20

0 1·

711

1043

o-

757

x w

-5

0018

2 30

0 1-

142

1041

563

0026

2 40

0 0·

854

1046

574

0033

3 50

0 0·

682

1056

3-

766

0039

8 60

0 0·

569

1076

119

(}04

58

700

0·49

3 10

97

6·51

2 00

512

800

(}42

8 11

23

8·14

5 00

561

900

(}38

0 11

46

9·10

6 Q

-060

7 10

00

0·34

1 11

68

11·7

2 00

648

1100

(}

311

1186

13

·60

(}06

85

1200

(}

285

1204

15

·61

0071

9 C

arbo

n di

oxid

e 25

0 2·

166

803-

9 Q-

581

x w-

5 00

129

300

1·79

7 87

(}9

(}83

2 00

166

350

1·53

6 90

02

1-11

9 00

205

400

1·34

2 94

2-()

1·43

9 00

246

450

H9

2

979·

7 1·

790

0029

0 so

o 1-

()73

1013

2-

167

(}03

35

sso

(}97

4 10

47

2·57

4 00

382

600

(}89

4 10

76

3002

00

431

IX

(m1/s

)

1-o2

x w

-5

2·21

3-

74

5·53

7-

49

9·47

11

·7

13-9

16

·3

18·6

20

·9

0·74

0 x

w-5

1-()6

48

1-95

2-

48

3-()8

3-

75

4·48

IJ

Pa

s

12·9

x w

-6

17·8

22

·0

25·7

29

·1

32·1

34

·8

37·5

4(

}0

42-3

44

·5

12·6

x w

-"

15·0

17

·2

19·3

21

·3

23-3

25

-1

26·8

Pr

(}74

7 (}

713

0·69

1 0·

684

(}68

6 0·

691

(}70

0 (}

711

(}72

4 (}

736

(}74

8

(}79

3 0·

770

(}75

5 (}

738

(}72

1 (}

702

(}68

5 (}

668

IV

...,.

IV

ttl z 0 - z ttl

ttl ~ - z 0 ::: ttl >

o-,l

o-,l ~ > z til

"!1

ttl ~

Car

bon

mon

oxid

e 25

0 ()-

841

1043

1-

128

X

10-5

(){

)214

30

0 1-

139

1042

567

(){)2

53

350

()-97

4 10

43

2-()6

2 (){

)288

40

0 ()-

854

1048

599

()-03

23

450

()-76

2 10

55

3-18

8 ()-

()436

50

0 ()-

682

1063

819

(){)3

86

550

0·62

0 10

76

4·49

6 ()-

0416

60

0 ()-

568

1088

206

()-04

45

Wat

er v

apou

r 38

0 ()-

586

2060

()-

216

X

10-4

(){

)246

40

0 ()-

554

2014

()-

242

(){)2

61

450

()-49

0 19

80

()-31

1 ()

{)29

9 50

0 ()-

441

1985

()-

386

(){)3

39

550

0·40

0 19

97

()-47

0 (){

)379

60

0 0·

365

2026

()-

566

()-()4

22

650

()-33

8 20

56

()-66

4 (H

)46

4

700

0·31

4 20

85

0·77

2 (){

)505

75

0 ()-

293

2119

()-

888

(){)5

49

800

()-27

4 21

52

1-()2

0 (){

)592

85

0 Q

-258

21

86

H5

2

()-06

37

1·51

X

10-5

15

·4 X

10

-6

2-13

17

·8

2·84

2(

)-1

3·61

22

·2

4·44

24

·2

5-33

26

·1

6·24

27

·9

7-19

29

·6

2·04

X

10

-5

12·7

X

10-6

2·24

13

-4

3·07

15

-3

3·87

17

·0

4·75

18

·8

5·73

2(

)-7

6·66

22

·5

7-12

24

·3

8·83

26

·0

1(){

) 27

·9

11·3

29

·7

Q-7

50

()-73

7 ()-

728

()-72

2 ()-

718

()-71

8 ()-

721

()-72

4

1-()6

0 1·

040

1·01

0 ()-

996

()-99

1 ()-

986

()-99

5 H

XlO

005

1-()1

0 1-

()19

> :g tt

l z t)

>< w

Ada

pted

fro

m T

able

A-4

, E. R

. G. E

cker

t and

R. M

. Dra

ke, J

r., H

eat a

nd M

ass

Tran

sfer

, McG

raw

-Hil

l Boo

k C

ompa

ny, I

nc.,

New

Yor

k (1

959)

. (N

ote:

A

t pr

essu

res

othe

r th

an a

tmos

pher

ic, t

he d

ensi

ty c

an b

e de

term

ined

fro

m t

he id

eal g

as e

quat

ion,

p =

= p/

RT

. H

ence

at

any

give

n te

pera

ture

p =

p0(

pjp

0)

whe

re P

o is

atm

osph

eric

pre

ssur

e an

d P

o is

giv

en i

n th

e ta

ble.

k, p

, an

d c

• m

ay b

e as

sum

ed i

ndep

ende

nt o

f pr

essu

re.

tv

v an

d 11

are

inve

rsel

y pr

opor

tion

al t

o th

e de

nsit

y; h

ence

at

a gi

ven

tem

pera

ture

are

inve

rsel

y pr

opor

tion

al t

o th

e pr

essu

re.)

~

254 ENGINEERING HEAT TRANSFER

Table A.7. Normal Total Emissivity of Various Surfaces

Ref. t Emissivity (OC)

Aluminium: Highly polished plate, 98·3% pure 11 237-576 Q-039--0057 Rough polish 1 100 Q-18 Commercial sheet 1 100 {)-()9

Heavily oxidized 2 93-505 Q-20-0-31 At-surfaced roofing 5 38 Q-216

Brass: Highly polished, 73-2 Cu, 26·7 Zn 11 247-357 0028-0031 Polished 1 100 006 Rollcd plate, natural surface 10 22 006

Chromium. polished 1 100 0075 Copper:

Carefully polished electrolytic copper 6 80 Q-018 Polished 1 100 Q-052 Molten 3 1076-1278 Q-16-o-13

Iron and steel : Steel, polished 1 100 0066 Iron, polished 12 427-1028 Q-14-0-38 Cast iron, polished 9 200 Q-21 Cast iron, newly turned lO 22 ()-44

Wrought iron, highly polished 16 38-249 Q-28 Iron plate, completely rusted lO 19 ()-69 Sheet steel, shiny oxide layer 10 24 Q-82 Steel plate, rough 5 38-372 Q-94-0-97 Cast iron, molten 15 1300-1400 Q-29 Steel, molten 7 1522-1650 Q-43-o-40 Stainless steel, polished 1 100 Q-074

Lead, grey oxidized 10 24 Q-28 Magnesium oxide 8 278-827 ()-55-Q-20 Nichrome wire, bright 14 49-1000 ()-65-Q-79 Nickel-silver, polished 1 100 0·135 Platinum filament 4 27-1230 0036-o-192 Silver, polished, pure 11 227--fJ27 ()-02....()-032 Tin, bright tinned iron lO 23 ()-043, ()-064 Tungsten filament 18 3320 Q-39 Zinc, galvanized sheet iron, fairly

bright lO 28 Q-23

APPENDIX 3

Table A.7. Continued

Ref. t c·q

Asbestos board 10 23 Brick:

Red, rough 10 21 Building 14 1000 Fireclay 14 1000 Magnesite, refractory 14 1000

Candle soot 17 97-272 Lampblack, other blacks 14 5{}-1000 Graphite, pressed, filed surface 8 249-516 Concrete tiles 14 1000 Enamel, white fused, on iron 10 19 Glass, smooth 10 22 Oak, planed 10 21 Flat black lacquer 5 38-94 Oil paints. 16 different, all colours 13 100 Aluminium paints, various 13 100 Radiator paint, bronze 1 100 Paper, thin, pasted on blackened plate 10 19 Plaster, rough lime 16 1{}-87 Roofing paper 10 21 Water (calculated from spectral data) {}-100

255

Emissivity

0·96

(}93 0·45 0·75 0·38 (}952 0·96 (}98 (}63 0·90 0·94 0·90

0·96--0·98 0·92-0·96 0·27-0·67

0·51 (}92, 0·94

(}91 (}.91

0·95-0·963

(Note: When temperatures and emissivities appear in pairs separated by dashes, they correspond; and linear interpolation is permissible.) By courtesy of H. C. Hottel, from Heat Transmission, 3rd ed., by W. H. McAdams, McGraw-Hill Book Company, Inc., New York (1954).

REFERENCES

I. Barnes, B. T., Forsythe, W. E., and Adams, E. Q. J. Opt. Soc. Amer., Vol. 37, 804 (1947).

2. Binkley, E. R., private communication (1933). 3. Burgess, G. K. Nat/. Bur. Stand., Bull. 6, Sci. paper 121, Ill (1909). 4. Davisson, C., and Weeks, J. R. Jr. J. OpL Soc. Amer., Vol. 8, 581 (1924). 5. Heilman, R. H. Trans. ASME, FSP 51,287 (1929). 6. Hoffman, K. Z. Physik, Vol. 14, 310 (1923). 7. Knowles, D., and Sarjant, R. J. J. Iron and Steel Inst. (London), Vol. 155,

577 (1947). 8. Pirani, M. J. Sci. Instrum., Vol. 16, 12 (1939). 9. Randolf, C. F., and Overhaltzer, M. J. Phys. Rev., Vol. 2, 144 (1913).

10. Schmidt, E. Gesundh-Ing., Beiheft 20, Reihe 1, 1-23 (1927).

256 ENGINEERING HEAT TRANSFER

11. Schmidt, H., and Furthman, E. Mitt. Kaiser-Kilhelm-Inst. Eisenforsch. Dusseldorf, Abhandle., Vol. 109, 225 (1928).

12. Snell, F. D. Ind. Eng. Chem., Vol. 29, 89 (1937). 13. Standard Oil Development Company, personal communication (1928). 14. Thring, M. W. The Science.of Flames and Furnaces, Chapman and Hall,

London (1952). 15. Thwing, C. B. Phys. Rev., Vol. 26, 190 (1908). 16. Wamsler, F. Z. Ver. deut.lng., Vol. 55, 599 (1911); Mitt. Forsch., Vol. 98,

1 (1911). 17. Wenzl, M., and Morawe, F. Stahl u. Eisen, Vol. 47, 867 (1927). 18. Zwikker, C. Arch. neerland. sci., Vol. 9, 207 (1925).

Appendix 4 Gas Emissivities The curves in Figs. Al and A2 give respectively emissivities of carbon dioxide and water vapour. In each case there are separate curves for constant values of the product of partial pressure and mean beam length. As the total pressure is increased, the lines of the C02

spectrum broaden, and a correction factor from Fig. A3 is applied for pressures other than 1 atmosphere. In the case of water vapour, the emissivity depends on the actual partial pressure and the total pressure as well as on the product of partial pressure and beam length.

()o02

()oOl

()o008

()o006

2500K

Fig. Al. Emissivity of carbon dioxide; adapted from W. H. McAdams Heat Transfer, McGraw·Hill Book Company, 3rd ed., New York (1954);

by permission of the publishers.

257

ENGINEERING HEAT TRANSFER

()o()l

<roo! ~~K~~~K~~~~--~~~--~~-

()-8 ()-6 ()-5 ()-4 o-3

Fig. Al. Emiuillity ofwtlterNpO.,.; tulllpt«lfrom W. H. McAtlturu, Hetlt Tr11111mislio11, 3nl ed. McGNw-Hi/1 Book Co111JH111y, New York (1954);

by permislio11 of tM pdlUMrr.

Hence Fig. A2 is for actual partial pressures extrapolated to zero, and the emissivity is multiplied by a correction factor from Fig. A4. When carbon dioxide and water vapour are both present the sum of emissivities is reduced by a value & obtained from Fig. AS, to allow for mutual absorption. Thus e1 = Ba1o + Bco1 - lie. To estimate absorptivities to radiation from enclosing surfaces, which depend on the gas temperature as well as the surface temperature, Hottel recommends an emissivity figure (e) is first determined at the surface temperature and at (pL)(T./T.~ Then

!Xcoz = e(T"./1'.)0·65

IXnzo = e(T"./T.)0·45

APPENDIX 4 259

2·0 3·0 5·0 total pressure, atm

Fig. A3. Adllptetl from W. H. McAtlams, Hut Trtu~smissioll, 3rtl etl., McGraw-Hill Book Co~~~pt~11y, New York (1954); by permissi011 of tu

p•blh,ers.

(total pressure + PH2o) /2, atm

Fig. A4. Adllptetl from W. H. McAtlams, Hetlt Tr1U1smissio11, 3rtl etl., McGraw-Hill Book Comptu~y, New York (1954); by permissioll of tu

pllblisurs.

810K >HOOK

0 PH20 PH.p PHil

Pco2 + PH20 Pco2 + PHp Pco2 + 1 JH20

Fig. AS. Adllptetlfrom W. H. McAtlams, Heat Tra11smissioll, McGraw-Hill Book ColllfHIIIy, New York (1954); by permusio11 of the p•blisurs. For Iiiia ofcouttutt P002 L + P820 L, ilf m btu, 1-1·5 m btu, :Z-HJ m btu, 3-0·6

m btu, 4-0·5 m btu, 6-0•:Z m hr, 7-0·1 m btu.

260 ENGINEERING HEAT TRANSFER

Then the correction factors are applied as in the case of emissivity determination, and finally the mutual absorption correction is similarly made.

ExAMPLE

A 1·5 m cubic chamber contains a gas mixture at a total pressure of 2·0 bar and a temperature of 1000 K. The gas contains 5 per cent by volume of carbon dioxide and 10 per cent water vapour. Determine the emissivity of the gas mixture.

Solution. The beam length is (2/3) x 1· 5 m = 1·0 m.

pL(C02) = 0·1 m bar, e = Q-112

pL(H20) = 0·2 m bar, e = 0·18.

The correction factor for C02 at 1·97 atm = H5 from Fig. A3, and for H 20 at (0·197 + 1·97)/2 = 1·083 atm, is 1·5, from Fig. A4

ec02 = 0·112 x H5 = Q-129

f:H 20 = (}18 X 1·5 = 0·270

The correction for mutual absorption is at PH2o/(p002 + PH2o) = 0·66, and pL(C02) + pL(H20) = 0·3 m bar. From the set of curves at 1100 K, lle = Q-035, at 810 K, = 0·016. Hence & may be taken as 0·023.

e = 0·129 + 0·270- Q-023 = 0·376 II

Index

absorptivity definition of 209 of black body 210 of grey body 213

Akers, W. W. 149 algebra, configuration factor, in

radiation 222-4 analogy, Reynolds 101-11, see

also Reynolds analogy analogy in complex flow 137 analogy of conduction 52-5 analogy of radiation 224-8,

230-1 anisotropic materials 1 0

Bagley,R. 153 BASIC listings 23, 30, 45, 51, 65,

116, 172, 198 batch heat exchangers 202-3 Bayley, F. J. 47, 68, 80 beam length in gas radiation 229 bibliography, heat transfer 236 Binder, L. 67 Biot, J. B. 3 black body 6, 210

artificial 21 0 emission 211 radiation 210-24

boiling coefficients 1 5 1-3 general discussion of 149-54 mechanisms of 149-50 vertical tube, in a 152-3

Boltzmann, L. 6, 211 boundary condition in transient

conduction 6 2-3, 68-9 boundary layer

equations of 80-7 growth in a tube entrance 79 integral equations of 84-7

laminar 78 separation of 136 sub-layer 78, 107 thermal 80

thickness of 90 thickness of 8 7-8 turbulent 78-9

velocity distribution in 79 velocity distribution in 79-87

boundary mesh points 47-9 British Nuclear Fuels, plc 158 Buckingham's pi theorem 111 building materials, thermal con-

ductivities of 243

capacity ratio in heat exchangers definition of 1 79 limiting values of 180

Carslaw, H. S. 10 Chapman, A. J. 118 Chato,J.C.J. 149 Churchill, S. W. 139 Clapp, R. M. 152 Colburn, A. P. 109, 139 ColburnJ-factor 109, 137 Collins,M.W. 115 condensation

general discussion of 144-5 inside a tube 149 on a horizontal tube 148 on a vertical surface 145-8

conducting film, equivalent 91 conduction

definition of 3 differential equation of

in cylindrical coordinates 13-15

in rectangular coordinates 10-13

in fins 157-60

261

262 INDEX

conduction cont'd in multiple plane slabs 170-3 one-dimensional

in cylindrical layers 25-9 in parallel systems 20 in plane slabs 16-20 in spherical layers 29 steady state 16-3 5 transient 61 -7 with heat sources 31-5

two-dimensional steady state 39-52 with heat sources 42-3

conductivity of metals 9 of non-metals 9

conductivity, thermal definition of 3 temperature dependent 10

in a plane slab 24-5 configuration factor

algebra 222-4 in radiation 218-24, see also

radiation configuration factor

convection at boundary

in transient conduction 63-7 in two-dimensional con­

duction 48-52 coefficient 5, 18, see also

Nusselt number discussion of treatment 78 forced see forced convection in cross flow 139-42 in separated flow 136-42 in tube bundles 139-42 natural see natural convection with phase change 144-54

conversion factors 23 7-8 counter flow in heat exchangers

176 critical radius in insulation 28-30

program list 30 cross flow heat exchange 191-4 Crosser, 0. K. 149

Deans, H. A. 149

diffusivity eddy, definition of 101 thermal, definition of 12 thermal eddy, definition of

103 dimensional analysis

of forced convection 111-15 of natural convection 125-6

dimensionless groups 111 Donohue, D. A. 140 double glazed window

analysis 21-4 program list 23

Douglas, M. J. M. 139 drag loss coefficient 13 7 Drake, R. M. Jnr 10

Eckert, E. R. G. 10,87 eddy diffusivity 101 effectiveness of heat exchangers

180 electrolytic tanks 55 emission 21 0

of black body 211 of grey body 213

emissivities of various surfaces 254-55

emissivity, monochromatic 211 of black body 214 ofgreybody 214

emittance, monochromatic 211 emitters, selective 212 empirical results

of forced convection 115, 118, 139-40

of natural convection 12 7-30 energy equation for laminar flow

in a tube 92-5 energy equation of laminar

boundary layer 83 integral form 85-7

energy stored in transient con­duction 62

entry length, laminar flow 115 extended surfaces 15 7-73, see

also fins

Farber, E. A. 150 Fenner, R. T. 52

INDEX 263

film, equivalent conducting 91 fin analysis, program list 172 finite difference relationships

in steady state conduction 42, 47-50

in transient conduction 61 , 63,67

finned surface equivalent effectiveness of

164-5 overall coefficient of 165-8

fins conduction in 158-62,170-2 effectiveness of 164-5 limit of usefulness of 164 numerical relationships in

170-3 temperature distribution in

160-3 fire-resistant door analysis 64-7

program list 65 Firman, E. C. 152 forced convection

definition of 4 dimensional analysis of 111-15 empirical results of 115, 118,

139-40 in laminar flow 78-98

flat plates 87-92 in tubes 92-8

in tubulent flow 117-19 forces, buoyancy 4, 124-5 Fourier number, definition of 62 Fourier's law 3, 8 friction coefficient

for flat plates 102 for tubes 103

Gardner, G. C. 152 gas emissivities 257-60 gas radiation, non-luminous 228-

31 gases, thermal properties of

250-3 Gaussian elimination method 4 7 Gauss-Siedel iterative method 52 Graetz number 115 graphical solution of transient

conduction 67

Grashof number, definition of 126

grey body 212 emission 213

Griffith, P. 151 Grimison, E. D. 140

heat, definition of 2 heat exchangers

basic types of 176-7 batch 202-3 cross flow 177, 191-4 determination of performance

of 181-203 in counter and parallel flow

181-91 in cross flow 191-4

effectiveness of at limiting value of capacity

ratio 190 in counter flow 187-8 in cross flow 190-1 in parallel flow 189

general discussion of 176 in-line 176-7 thermal wheel 116, 194-9 transfer units 18 5-91

heat flux 8 heat sink, transistor 163 heat transfer across boundary layer

in laminar flow 103 in turbulent flow 103

heat transfer coefficient 19, 28-9, 165-8, see also convection coefficient and Nusselt number

in complex flow system 137-9 in fins 158-64 in liquid metals 118-19 in uniform temperature system

58-61 heat transfer in building structures

20-1 horizontal surfaces, natural con­

vection 12 7-8 Hottel, H. C. 224, 229 Hsu,S.T. 67,127,139,153

insulation, critical thickness of 28-30

264 INDEX

integral energy equation of laminar boundary layer 85-7

integral equation of motion of laminar boundary layer 84-7

intensity of radiation 215-17 irradiation 210

in grey body exchanges 225 isothermal surfaces in conduction

8,9 isotropic materials 10 iterative technique 51-2

program list 51

Jaeger, J. C. 10 Jakob, M. 153,211 /-factor 109, 137-8 joule, definition of 237

Karmam, T. von 85 Kays, W. M. 141, 186 Kirchhoff's law 213-15

Lam bert's law 215 laminar boundary layer 78

equations of 80-7 laminar convection

in tubes 92-7 on flat plates 87-92

laminar sub-layer 78 velocity at limit of

in tubes 103 on a flat plate 1 02

Langhaar, H. L. 112 Liebmann method 52 liquid metals

heattransferin 118-19 thermal properties of 245

liquids, saturated, thermal proper­ties of 246-9

London, A. L. 141,186 lumped capacity systems 58-61,

202-3

MacLaurin's series 40 McAdams,W.H. 117,127,131 metals, liquid

heat transfer in 118-19 thermal properties of 245

metals, thermal properties of 239-40

mixed fluid in heat exchangers 187

models, testing of 114 modes of heat transfer, discussion

of 3-7 momentum diffusivity, definition

of 83 monochromatic emissivity 211

natural convection 4, 124-32 approximate results, in air

130-2 buoyancy force 125 definition of 4 dimensional analysis of 125-6 empirical results of 126-32 in laminar flow 127-32 in tubulent flow 127-32

newton, definition of 237 Newton's equation of convection

5, 18,78 Newton's second law 81 number of transfer units, defini­

tion of 186 numerical relationships in fins

170-3 in steady state conduction 41-

3,47-9 in transient conduction 61-8

numerical solution of cross-flow heat exchange 191-4

of transient conduction 62-8 of two-dimensional steady state

conduction 40-52 Nusselt, W. 145 Nusselt number

definition of 91 for laminar flow on flat plates

91 average value of 92

in pipes 96, 97 of condensation 148 of finned surfaces 157

Ohm's law 17, 52, 224 one-dimensional steady state

conduction 16-35

INDEX 265

program list 23-4 one-dimensional transient con­

duction 61-7 program list 65

overall heat transfer coefficient 19,28

finned surfaces 165-8 heat exchangers 181

Owen, J. M. 47,80

parallel flow in heat exchangers 179, 182, 189

parallel plates, natural convection 129

pi theorem 111 Planck, M. 211 plate heat exchangers 200-2 Pohlhausen, K. 88 Prandtl number, definition of 83 pressure loss

in a complex flow system 137-9

in pipe flow 103 properties, thermal

of building materials 243 of gases 250-3 of liquid metals 245 of metals 239-40 of non-metals 241-2 of radiating surfaces 254-5 of saturated liquids 246-9

radiation 208-32 definition of 6 electrical analogy of 2 24-8,

230-1 general discussion of 208-9 intensityof 215-17 real surface 212 solar 231-2

radiation coefficient 19 radiation configuration factor

218-24 for arbitrarily disposed black

surfaces 218-19 for black bodies 217-24 for grey bodies 224-8 for grey enclosures 227 for infinite parallel black

surfaces 219 grey surfaces 227

for parallel and perpendicular rectangles 221-2

for thermocouple in a duct 220 radiation exchange

between black bodies 217-24 between grey bodies 224-8

radiation in black enclosures 219 radiation in gases 228-31 radiosity 21 0

in grey body exchanges 225 radius, critical 28-9 Rayleigh number, definition of

126 rectangular solids, natural con­

vection 130 reflectivity, definition of 209 relaxation method 40-4

program list 45 resistivity 17 Reynolds, 0. 101 Reynolds analogy 101-6

assumptions in 104 in laminar flow 102 in turbulent flow 108

in tubes 109-10 on flat plates 108-9

in laminar flow 104 on a flat plate 105-6

in turbulent flow lOS in tubes 106

Prandtl-Taylor modification of 107-11

Reynolds number, definition of 79

Rohsenow, W. M. 151 rotary generator 194-9

Schenck, H. Jm 137 Schmidt, E. 67 Scorah, R. L. 1 SO selective emitters 212-13 shape factor

electrical 54 thermal 54

shear stress at wall 102 shear stress equation 79

in laminar flow 10 1

266 INDEX

shear stress equation cont'd in turbulent flow 101

SI units 3, 23 7 Sieder, E. N. 115 Snyder, N. W. 139 solar constant 231 solar energy, flat plate collectors

for 232 solar radiation 231-2 solid, semi-infinite 68 spines, conduction in 158-63 Stanton number, definition of

105 Stefan-Boltzmann constant 211 Stefan-Boltzmann law 211 system, uniform temperature,

heat transfer in 58-61

Tate, G. E. 115 temperature, periodic changes of,

in transient conduction 68-75

temperature distribution in fins 161-2 in laminar pipe flow 95 in thermal boundary layer 88

temperature residuals 42 temperature wave

velocity of propagation of 72 wave-length of 72

Test,F.L. 115 thermal boundary layer 80

on a flat plate 88 thickness of 90

thermal diffusivity, definition of 12

thermal eddy diffusivity, defini­tion of 104

thermal properties of building materials 243 of gases at atmospheric pressure

250-3 of liquid metals 245 of saturated liquids 246-9 of solids 239-43

thermal wheel 116, 194-9

program list 198-9 time constant 58 transients, in cross flow heat

exchange 192-4 transistor heat sink, analysis 163 transmissivity, definition of 209 turbulent boundary layer 78, see

also boundary layer Turner, A. B. 47,80 two-dimensional steady state

conduction 39-55 program list 45-6, 51

two-dimensional transient con­duction 67-8

units, discussion of 3, 23 7 unmixed fluids in heat exchangers

185 U-values for building structures

variables in forced convection 112 in natural convection 125

velocity of temperature wave 72 velocity profile

in condensing flow 145 in laminar flow on flat plates

87 in pipes 79, 94

in turbulent flow on flat plates 78, 107

in pipes 79 vertical cylinder, hollow, natural

convection in 130 vertical surfaces, natural con­

vection 128-9 viscosity

kinematic, definition of 83 molecular, definition of 79 temperature dependent 114

wall shear stress 1 02 watt, definition of 237 wave-length of temperature wave

72 wheel, thermal 116, 194-9