latest developments in fmri peter a. bandettini, ph.d unit on functional imaging methods & 3t...

Post on 14-Jan-2016

217 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Latest Developments in fMRI

Peter A. Bandettini, Ph.D

Unit on Functional Imaging Methods&

3T Neuroimaging Core Facility

Laboratory of Brain and CognitionNational Institute of Mental Health

Technology

Interpretation

Methodology

Applications

Methodology

Interpretation Applications

Technology

Physicists

Statisticians

Mathematicians

Physiologists

Neuroscientists

Clinicians

Engineers

36 02010099989796959493929190898882

Methodology

Hemoglobin

Blood T2

IVIM

Baseline Volume

Interpretation

Applications

Volume-V1

BOLD

Correlation Analysis

Linear Regression

Event-related

BOLD -V1, M1, A1

TE dep

Veins

IV vs EVBOLD models

ASL

Deconvolution

Phase Mapping

V1, V2..mapping

LanguageMemory

Presurgical Attention

PSF of BOLDPre-undershoot

Ocular Dominance

Mental Chronometry

Electrophys. correlation

1.5T,3T, 4T 7T

SE vs. GE

Performance prediction

Emotion

Real time fMRI

Balloon Model

Post-undershoot

Inflow

PET correlation

CO2 effect

CO2 Calibration

Drug effects

Optical Im. Correlation

Imagery

Clinical Populations

Plasticity

Complex motor

Motor learning

Venography

Face recognition

Children

Simultaneous ASL and BOLD

Surface Mapping

Linearity

Mg+

Dynamic IV volume

Bo dep.

Diff. tensor

Volume - Stroke

Z-shim

Free-behavior Designs

Extended Stim.

Local Human Head Gradient Coils

NIRS Correlation

SENSE

Baseline Susceptibility

Metab. Correlation

Fluctuations

Priming/Learning

Resolution Dep.

Tumor vasc.

Technology EPI on Clin. Syst.EPI

Quant. ASL

Multi-shot fMRI

Parametric Design

Current Imaging?

Multi-Modal Mapping

Nav. pulses

Motion Correction

MRI Spiral EPI

ASL vs. BOLD

>8 channels

Multi-variate Mapping

ICA

Fuzzy Clustering

Alternating Left and Right Finger Tapping

~ 1992

The use of fMRI for the Investigation of Brain Function and Physiology

•Where?

•When?

•How much?

•How to do it well?

•Is there more?

A Primary Challenge for Observing Brain Activation with fMRI:

...to make progressively more precise inferences without making too many assumptions about non-neuronal physiologic factors.

Neuronal

Activation

Hemodynamics

MeasuredSignal

Noise

? ??

Latest Developments…

1. Temporal Resolution2. Spatial Resolution3. Sensitivity and Noise4. Information Content5. Implementation

Latest Developments…

1. Temporal Resolution2. Spatial Resolution3. Sensitivity and Noise4. Information Content5. Implementation

T2* decay

EPI Readout Window

≈ 20 to 40 ms

gradient-echo

RF

Gx

Gz

Gy

90°TE

Single Shot EPI

P. A. Bandettini, Functional MRI temporal resolution in "Functional MRI" (C. Moonen, and P. Bandettini., Eds.), p. 205-220, Springer - Verlag,. 1999.

+ 2 sec

- 2 sec

0 secDelay

ArbitraryScale

Dot Product

Latency

Magnitude

+ 2 sec

- 2 sec

P. A. Bandettini, The temporal resolution of Functional MRI in "Functional MRI" (C. Moonen, and P. Bandettini., Eds.), p. 205-220, Springer - Verlag,. 1999.

Venogram(3 Tesla)

+ 2 sec

- 2 sec

0 secDelay

ArbitraryScale

Dot Product

Hemi-Field Experiment

Right Hemisphere

Left Hemisphere

10 20 30

Time (seconds)

9.0 seconds

15 seconds

500 msec 500 msec

=+ 2.5 s

- 2.5 s

0 s

500 ms500 msRight Hemifield

Left Hemifield

-

0 10 20 30

BottleneckIn Processing(upstream)

DelayedProcessing

(downstream)

Hemodynamic Response Modulation

11026–11031 PNAS September 26, 2000 vol. 97 no. 20

Latest Developments…

1. Temporal Resolution2. Spatial Resolution3. Sensitivity and Noise4. Information Content5. Implementation

Single Shot Imaging

T2* decay

EPI Readout Window

≈ 20 to 40 ms

Partial k-space imaging

T2* decay

EPI Window

Jesmanowicz, P. A. Bandettini, J. S. Hyde, (1998) “Single shot half k-space high resolution EPI forfMRI at 3T.” Magn. Reson. Med. 40, 754-762.

Partial k-space imaging

Multishot Imaging

T2* decay

EPI Window 1

T2* decay

EPI Window 2

Excitations 1 2 4 8Matrix Size 64 x 64 128 x 128 256 x 128 256 x 256

Multi Shot EPI

BOLD Rest Activation

P. A. Bandettini, E. C. Wong, Magnetic resonance imaging of human brain function: principles, practicalities, and possibilities, in "Neurosurgery Clinics of North America: Functional Imaging" (M. Haglund, Ed.), p.345-371, W. B. Saunders Co., 1997.

Perfusion

Anatomy

BOLD

Perfusion

P. A. Bandettini, E. C. Wong, Magnetic resonance imaging of human brain function: principles, practicalities, and possibilities, in "Neurosurgery Clinics of North America: Functional Imaging" (M. Haglund, Ed.), p.345-371, W. B. Saunders Co., 1997.

Venous inflow(for ASL, w/ no VN)

Arterial inflow(BOLD TR < 500 ms)

Pulse SequenceSensitivity

SpatialHeterogeneity

ODC Maps using fMRI

calcarine

1 cm

1Malonek D, Grinvald A. Science 272, 551-4 (1996).3Horton JC, Hocking DR. J Neurosci 16, 7228-39 (1996).4Horton JC, et al. Arch Ophthalmol 108, 1025-31 (1990).

• Identical in size, orientation, and appearance to those obtained by optical imaging1 and histology3,4.

Menon, et al

Latest Developments…

1. Temporal Resolution2. Spatial Resolution3. Sensitivity and Noise4. Information Content5. Implementation

Ziad Saad, et al

Continuously GrowingActivation Area

Inflection Point

CC Histogram

1400

1200

1000

800

600

400

200

0 200 400 600 800 1000 1200 1400

PHANTOMS

Image S/N

Tem

por

al

S/N

N. Petridou N. Petridou

Image S/N

0 200 400 600 800 1000

1000

800

600

400

200

Tem

por

al

S/N

SUBJECTS

Temporal S/N vs. Image S/N

Signal

/ The

rmal

Noise

Signal / Physiologic Noise

Resolution, Speed, Surface Coils, Field Strength, etc..

Optimal for fMRISig

nal t

o N

oise

Rat

io

Latest Developments…

1. Temporal Resolution2. Spatial Resolution3. Sensitivity and Noise4. Information Content5. Implementation

Neuronal ActivityNumber of Neurons

Spiking Rate

Local Field Potential

Metabolism

HemodynamicsBlood

Volume

Flow Velocity

Aerobic Metabolism

Anaerobic Metabolism

BOLD Contrast

-

-

Spiking Coherence

Deoxy-Hb

OxygenatedBlood

DeoxygenatedBlood

+

MRI PulseSequence

Perfusion

Perfusion Contrast

Inflow Contrast

Motor CortexAuditory Cortex

S. M. Rao et al, (1996) “Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex.” J. Cereb. Blood Flow and Met. 16, 1250-1254.

J. R. Binder, et al, (1994). “Effects of stimulus rate on signal response during functional magnetic resonance imaging of auditory cortex.” Cogn. Brain Res. 2, 31-38

Logothetis et al. (2001) “Neurophysiological investigation of the basis of the fMRI signal” Nature, 412, 150-157

S. M. Rao et al, (1996) “Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex.” J. Cereb. Blood Flow and Met. 16, 1250-1254.

Different stimulus “ON” periods

measuredlinear

Sig

nal

0.25 s 0.5 s 1 s 2 s 20 stime (s)

Stimulus timing

BOLD Response

Brief stimuli produce larger responses than expected

Results – visual task

0 1 2 3 4 5

-2

2

4

6

8

Stimulus Duration

f (SD)

0 1 2 3 4 5

-2

2

4

6

8

Stimulus Duration

f (SD)

nonlinearity2 0 2 4 6 80

20

40

60

0 10 20 30 40

0 10 20 30 40

Results – visual task

Nonlinearity

Magnitude

Latency

Sources of this Nonlinearity

• Neuronal

• Hemodynamic

– Oxygen extraction– Blood volume

dynamics

Volume

Flow In Flow Out

Oxygen Extraction

BOLD Correlation with Neuronal Activity

Logothetis et al. (2001) “Neurophysiological investigation of the basis of the fMRI signal” Nature, 412, 150-157.

P. A. Bandettini and L. G. Ungerleider, (2001) “From neuron to BOLD: new connections.” Nature Neuroscience, 4: 864-866.

0 200 400 600 800 1000 1200 1400-10

-5

0

5

10

15

20

CB

F

(% i

ncr

ease

)

Time (seconds)

0 200 400 600 800 1000 1200 1400

0

1

2

3

BO

LD

(%

in

crea

se)

Time (seconds)

N=12

CBF BOLD

Simultaneous Perfusion and BOLD imaging during graded visual activation and hypercapnia

Computed CMRO2 Changes

Subject 1 Subject 2

%%

40

0

10

20

30

-10

-20

-30

-40

CBF OEF CMRO2

Latest Developments…

1. Temporal Resolution2. Spatial Resolution3. Sensitivity and Noise4. Information Content5. Implementation

Neuronal Activation Input Strategies

1. Block Design

2. Parametric Design

3. Frequency Encoding

4. Phase Encoding

5. Event Related

6. Orthogonal Design

7. Free Behavior Design

Blamire, A. M., et al. (1992). “Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging.” Proc. Natl. Acad. Sci. USA 89: 11069-11073.

First Event-related fMRI Results

Event Related Advantages

•Task Randomization

•Post acquisition, Performance-based, data binning

•Natural presentation

•Reduction of habituation effects

•Overt responses

•Reduction of scanner noise effects

•More precise estimation of hemodynamic response

fMRI during tasks that involve brief motion

motion BOLD response

task

BOLD response

t

motion

task

Blocked Design

Event-Related Design

R. M. Birn, P. A. Bandettini, R. W. Cox, R. Shaker, Event - related fMRI of tasks involving brief motion. Human Brain Mapping 7: 106-114 (1999).

2 3 4 5

6 7 8 9

10 11 12 13

Overt Word Production

R. M. Birn, P. A. Bandettini, R. W. Cox, R. Shaker, Event - related fMRI of tasks involving brief motion. Human Brain Mapping 7: 106-114 (1999).

Speaking - Blocked Trial

ExpectedResponse

motion

BOLDresponse

t

t

R. M. Birn, P. A. Bandettini, R. W. Cox, R. Shaker, Event - related fMRI of tasks involving brief motion. Human Brain Mapping 7: 106-114 (1999).

Speaking - ER-fMRI

avg

avg

ExpectedResponse

R. M. Birn, P. A. Bandettini, R. W. Cox, R. Shaker, Event - related fMRI of tasks involving brief motion. Human Brain Mapping 7: 106-114 (1999).

R. M. Birn, R. W. Cox, P. A. Bandettini, Detection versus estimation in Event-Related fMRI: choosing the optimal stimulus timing. NeuroImage 15: 262-264, (2002).

Neuronal Activation Input Strategies

1. Block Design

2. Parametric Design

3. Frequency Encoding

4. Phase Encoding

5. Event Related

6. Orthogonal Design

7. Free Behavior Design

Free Behavior Design

Use a continuous measure as a reference function:

•Task performance•Skin Conductance•Heart, respiration rate..•Eye position•EEG

Amygdala

Sympathetic Nervous System

The Skin Conductance Response (SCR)

Ventromedial PFC

Hypothalamus

Resistance change across two electrodes induced by changes in sweating.

Sweat Gland

Orbitofrontal Cortex

Brain activity correlated with SCR during “Rest”

J. C. Patterson II, L. G. Ungerleider, and P. A Bandettini, Task - independent functional brain activity correlation with skin conductance changes: an fMRI study. NeuroImage (in press)

OHBM 2002

•Shimming•Acoustic Noise•Multishot Techniques•Increased Gradient Performance•Higher Field Strengths•Surface Coil Arrays•Calibration / Quantification•Embedded Functional Contrast•Noise / Fluctuations•Direct Neuronal Current Imaging•Clinical Populations•Neuronal,Vascular, and Metabolic Information

Director:

Peter Bandettini

Staff Scientists:

Sean Marrett

Jerzy Bodurka

Frank Ye

Wen-Ming Luh

Computer Specialist:

Adam Thomas

Post Docs:

Rasmus Birn

Hauke Heekeren

David Knight

Patrick Bellgowan

Ziad Saad

FIM Unit & FMRI Core Facility

Graduate Student:

Natalia Petridou

Post-Back. IRTA Students:

Elisa Kapler

August Tuan

Dan Kelley

Visiting Fellows:

Sergio Casciaro

Marta Maieron

Guosheng Ding

Clinical Fellow:

James Patterson

Psychologist:

Julie Frost

Summer Students:

Hannah Chang

Courtney Kemps

Douglass Ruff

Carla Wettig

Kang-Xing Jin

Program Assistant:

Kay Kuhns

Scanning Technologists:

Karen Bove-Bettis

Paula Rowser

top related